• Tidak ada hasil yang ditemukan

Chapter 2: Controlled Growth of WS 2 Quantum dots by liquid exfoliation and Monolayer

2.5. Conclusion

49 | C o n t r o l l e d G r o w t h o f W S2 Q D s b y l i q u i d e x f o l i a t i o n a n d 1 L - W S2 b y C V D

optimum growth. Finally, we have shown a simple salt-assisted approach to growing high- quality, large-area continuous monolayer WS2 film on different substrates by CVD. The influence of the change in the growth temperature (800-940 °C) was investigated to understand the effect on WS2 growth. We have systematically studied the Raman and PL properties of the as-grown WS2 on different substrates. We have briefly addressed the substrate-dependent built- in strain and doping effects. Thus, it is found that the growth substrates significantly affect the PL emission characteristics of the 1L-WS2. Our results indicate that the large-area monolayer WS2 grown on sapphire substrate contains fewer defects than that of the other substrates. The controlled synthesis procedures of these WS2 QDs and monolayer films could further open avenues for investigations into the fundamentals of light-matter interactions in these 2D systems and thus, pave way for the development of various optoelectronic devices.

51 | C o n t r o l l e d G r o w t h o f W S2 Q D s b y l i q u i d e x f o l i a t i o n a n d 1 L - W S2 b y C V D

References

1. Lan, C.; Zhou, Z.; Zhou, Z.; Li, C.; Shu, L.; Shen, L.; Li, D.; Dong, R.; Yip, S.; Ho, J. C., Wafer- Scale Synthesis of Monolayer Ws2 for High-Performance Flexible Photodetectors by Enhanced Chemical Vapor Deposition. Nano Research 2018, 11, 3371-3384.

2. Bai, X., et al., Ultrasmall Ws2 Quantum Dots with Visible Fluorescence for Protection of Cells and Animal Models from Radiation-Induced Damages. ACS Biomaterials Science & Engineering 2017, 3, 460-470.

3. Li, X.; Zhang, J.; Liu, Z.; Fu, C.; Niu, C., Ws 2 Nanoflowers on Carbon Nanotube Vines with Enhanced Electrochemical Performances for Lithium and Sodium-Ion Batteries, 2018; Vol. 766.

4. Yao, Y.; Jin, Z.; Chen, Y.; Gao, Z.; Yan, J.; Liu, H.; Wang, J.; Li, Y.; Liu, S., Graphdiyne-Ws2 2d- Nanohybrid Electrocatalysts for High-Performance Hydrogen Evolution Reaction. Carbon 2018, 129, 228-235.

5. Feng, S., et al., Engineering Valley Polarization of Monolayer Ws2: A Physical Doping Approach. Small 2019, 15, 1805503.

6. Koperski, M.; Molas, M. R.; Arora, A.; Nogajewski, K.; Bartos, M.; Wyzula, J.; Vaclavkova, D.;

Kossacki, P.; Potemski, M., Orbital, Spin and Valley Contributions to Zeeman Splitting of Excitonic Resonances in Mose <Sub>2</Sub> , Wse <Sub>2</Sub> and Ws <Sub>2</Sub> Monolayers. 2D Materials 2018, 6, 015001.

7. Norden, T.; Zhao, C.; Zhang, P.; Sabirianov, R.; Petrou, A.; Zeng, H., Giant Valley Splitting in Monolayer Ws 2 by Magnetic Proximity Effect. Nature Communications 2019, 10, 1-10.

8. Piao, M.; Chu, J.; Wang, X.; Chi, Y.; Zhang, H.; Li, C.; Shi, H.; Joo, M.-K., Hydrothermal Synthesis of Stable Metallic 1t Phase Ws<Sub>2</Sub> Nanosheets for Thermoelectric Application.

Nanotechnology 2017, 29, 025705.

9. Yan, Y.; Zhang, C.; Gu, W.; Ding, C.; Li, X.; Xian, Y., Facile Synthesis of Water-Soluble Ws2 Quantum Dots for Turn-on Fluorescent Measurement of Lipoic Acid. The Journal of Physical Chemistry C 2016, 120, 12170-12177.

10. Xu, S.; Li, D.; Wu, P., One-Pot, Facile, and Versatile Synthesis of Monolayer Mos2/Ws2 Quantum Dots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction.

Advanced Functional Materials 2015, 25, 1127-1136.

11. Zhao, H.; Wu, H.; Wu, J.; Li, J.; Wang, Y.; Zhang, Y.; Liu, H., Preparation of Mos2/Ws2 Nanosheets by Liquid Phase Exfoliation with Assistance of Epigallocatechin Gallate and Study as an Additive for High-Performance Lithium-Sulfur Batteries. Journal of Colloid and Interface Science 2019, 552, 554-562.

12. Ghorai, A.; Midya, A.; Maiti, R.; Ray, S. K., Exfoliation of Ws2 in the Semiconducting Phase Using a Group of Lithium Halides: A New Method of Li Intercalation. Dalton Transactions 2016, 45, 14979-14987.

13. Wu, Y., et al., Unexpected Intercalation-Dominated Potassium Storage in Ws2 as a Potassium-Ion Battery Anode. Nano Research 2019, 12, 2997-3002.

14. Godel, F., et al., Ws2 2d Semiconductor Down to Monolayers by Pulsed-Laser Deposition for Large-Scale Integration in Electronics and Spintronics Circuits. ACS Applied Nano Materials 2020, 3, 7908-7916.

15. Loh, T. A. J.; Chua, D. H. C.; Wee, A. T. S., One-Step Synthesis of Few-Layer Ws2 by Pulsed Laser Deposition. Scientific Reports 2015, 5, 18116.

16. Okada, M.; Sawazaki, T.; Watanabe, K.; Taniguch, T.; Hibino, H.; Shinohara, H.; Kitaura, R., Direct Chemical Vapor Deposition Growth of Ws2 Atomic Layers on Hexagonal Boron Nitride. ACS Nano 2014, 8, 8273-8277.

17. Xu, Z.; Lv, Y.; Li, J.; Huang, F.; Nie, P.; Zhang, S.; Zhao, S.; Zhao, S.; Wei, G., Cvd Controlled Growth of Large-Scale Ws2 Monolayers. RSC Advances 2019, 9, 29628-29635.

18. Koçak, Y.; Akaltun, Y.; Gür, E., Magnetron Sputtered Ws<Sub>2</Sub>; Optical and Structural Analysis. Journal of Physics: Conference Series 2016, 707, 012028.

19. Weiß, V.; Seeger, S.; Ellmer, K.; Mientus, R., Reactive Magnetron Sputtering of Tungsten Disulfide (Ws2−X) Films: Influence of Deposition Parameters on Texture, Microstructure, and Stoichiometry. Journal of Applied Physics 2007, 101, 103502.

20. Epstein, I., et al., Near-Unity Light Absorption in a Monolayer Ws2 Van Der Waals Heterostructure Cavity. Nano Letters 2020, 20, 3545-3552.

21. Long, H.; Tao, L.; Tang, C. Y.; Zhou, B.; Zhao, Y.; Zeng, L.; Yu, S. F.; Lau, S. P.; Chai, Y.; Tsang, Y.

H., Tuning Nonlinear Optical Absorption Properties of Ws2 Nanosheets. Nanoscale 2015, 7, 17771- 17777.

22. Lin, L.; Xu, Y.; Zhang, S.; Ross, I. M.; Ong, A. C. M.; Allwood, D. A., Fabrication of Luminescent Monolayered Tungsten Dichalcogenides Quantum Dots with Giant Spin-Valley Coupling. ACS Nano 2013, 7, 8214-8223.

23. Li, R.-Z.; Dong, X.-Y.; Li, Z.-Q.; Wang, Z.-W., Correction of the Exciton Bohr Radius in Monolayer Transition Metal Dichalcogenides. Solid State Communications 2018, 275, 53-57.

24. Singh, V. K.; M. Yadav, S.; Mishra, H.; Kumar, R.; Tiwari, R. S.; Pandey, A.; Srivastava, A., Ws2 Quantum Dot Graphene Nanocomposite Film for Uv Photodetection. ACS Applied Nano Materials 2019, 2, 3934-3942.

25. Caigas, S. P.; Santiago, S. R. M.; Lin, T.-N.; Lin, C.-A. J.; Yuan, C.-T.; Shen, J.-L.; Lin, T.-Y., Origins of Excitation-Wavelength-Dependent Photoluminescence in Ws2 Quantum Dots. Applied Physics Letters 2018, 112, 092106.

26. Perrozzi, F.; Emamjomeh, S. M.; Paolucci, V.; Taglieri, G.; Ottaviano, L.; Cantalini, C., Thermal Stability of Ws2 Flakes and Gas Sensing Properties of Ws2/Wo3 Composite to H2, Nh3 and No2.

Sensors and Actuators B: Chemical 2017, 243, 812-822.

27. Molas, M. R.; Nogajewski, K.; Potemski, M.; Babiński, A., Raman Scattering Excitation Spectroscopy of Monolayer Ws2. Scientific Reports 2017, 7, 5036.

28. Berkdemir, A., et al., Identification of Individual and Few Layers of Ws2 Using Raman Spectroscopy. Scientific Reports 2013, 3, 1755.

29. Lan, C.; Li, C.; Yin, Y.; Liu, Y., Large-Area Synthesis of Monolayer Ws2 and Its Ambient- Sensitive Photo-Detecting Performance. Nanoscale 2015, 7, 5974-5980.

30. Kang, K. N.; Godin, K.; Yang, E.-H., The Growth Scale and Kinetics of Ws2 Monolayers under Varying H2 Concentration. Scientific Reports 2015, 5, 13205.

31. Zhang, Y.; Yao, Y.; Getaye, M.; Yin, L.; Zhan, X.; Wang, F.; Wang, Z.; He, J., Recent Progress in Cvd Growth of 2d Transition Metal Dichalcogenides and Related Heterostructures. Advanced Materials 2019, 31.

32. Cong, C.; Shang, J.; Wu, X.; Cao, B.; Peimyoo, N.; Qiu, C.; Sun, L.; Yu, T., Synthesis and Optical Properties of Large-Area Single-Crystalline 2d Semiconductor Ws2 Monolayer from Chemical Vapor Deposition. Advanced Optical Materials 2014, 2, 131-136.

33. Lan, F.; Yang, R.; Xu, Y.; Qian, S.; Zhang, S.; Cheng, H.; Zhang, Y., Synthesis of Large-Scale Single-Crystalline Monolayer Ws₂ Using a Semi-Sealed Method. Nanomaterials (Basel) 2018, 8, 100.

34. Zhu, B.; Chen, X.; Cui, X., Exciton Binding Energy of Monolayer Ws2. Scientific Reports 2015, 5, 9218.

35. Li, S.; Wang, S.; Tang, D.-M.; Zhao, W.; Xu, H.; Chu, L.; Bando, Y.; Golberg, D.; Eda, G., Halide- Assisted Atmospheric Pressure Growth of Large Wse2 and Ws2 Monolayer Crystals. Applied

Materials Today 2015, 1, 60-66.

36. Singh, A.; Moun, M.; Sharma, M.; Barman, A.; Kumar Kapoor, A.; Singh, R., Nacl-Assisted Substrate Dependent 2d Planar Nucleated Growth of Mos2. Applied Surface Science 2021, 538, 148201.

37. Wang, Z., et al., Nacl-Assisted One-Step Growth of Mos<Sub>2</Sub>–Ws<Sub>2</Sub>in- Plane Heterostructures. Nanotechnology 2017, 28, 325602.

38. Shu, H.; Chen, X.; Ding, F., The Edge Termination Controlled Kinetics in Graphene Chemical Vapor Deposition Growth. Chemical Science 2014, 5, 4639-4645.

39. Molina-Sánchez, A., Phonons in Single and Few-Layer Mos2 and Ws2. Phys. Rev. B 2011, 84.

53 | C o n t r o l l e d G r o w t h o f W S2 Q D s b y l i q u i d e x f o l i a t i o n a n d 1 L - W S2 b y C V D 40. Su, L.; Yu, Y.; Cao, L.; Zhang, Y., Effects of Substrate Type and Material-Substrate Bonding on High-Temperature Behavior of Monolayer Ws2. Nano Research 2015, 8, 2686-2697.

41. McCreary, K. M.; Hanbicki, A. T.; Singh, S.; Kawakami, R. K.; Jernigan, G. G.; Ishigami, M.; Ng, A.; Brintlinger, T. H.; Stroud, R. M.; Jonker, B. T., The Effect of Preparation Conditions on Raman and Photoluminescence of Monolayer Ws2. Scientific Reports 2016, 6, 35154.

42. Wang, F.; Kinloch, I. A.; Wolverson, D.; Tenne, R.; Zak, A.; O’Connell, E.; Bangert, U.; Young, R. J., Strain-Induced Phonon Shifts in Tungsten Disulfide Nanoplatelets and Nanotubes. 2D Materials 2016, 4, 015007.

55 | S p e c t r a l a n a l y s i s o f W S2 Q D s a n d i n t e r a c t i o n w i t h S W C N T s

Chapter 3