• Tidak ada hasil yang ditemukan

Chapter 3: Excitation wavelength-dependent spectral shift and large exciton binding

3.4. Conclusion

excitation. The WS2 QDs exhibit characteristic bright green emission, as evident from Fig. 3.8(a).

On the other hand, the fluorescence images distinctively depict a gradual reduction in the fluorescence background with an increase in the concentration of SWCNT1 (Fig. 3.8(b-d)). This gives us direct evidence of the systematic quenching of fluorescence of the as-prepared WS2 QD with the increase in the concentration of SWCNT1.

Based on our observations, we propose that during the ultrasonication process, the WS2

QDs form complexes with SWCNT. The presence of ample surface edge sites/defects on the WS2

QDs allow their attachment to the abundant defect sites on the carbon nanotube walls, which lead to the formation of non-fluorescent ground state complexes, primarily responsible for effective quenching of fluorescence13, 42. This attachment of WS2 QDs on walls of the SWCNT, in turn, leads to charge transfer and further quenching of the PL intensity of the WS2 QDs.

79 | S p e c t r a l a n a l y s i s o f W S2 Q D s a n d i n t e r a c t i o n w i t h S W C N T s

transfer from WS2 QDs to the SWCNTs due to the strong bonding between them. The quenching efficiency is shown to be higher for more defective SWCNT1 than that of less defective SWCNT2.

The results are insightful in understanding the interaction between WS2 QD and SWCNTs and regulating the fluorescence intensity of WS2 QDs, which is important for various applications in biomedical areas, such as bio-imaging/sensing, drug delivery, etc.

References

1. Zhu, B.; Zeng, H.; Dai, J.; Gong, Z.; Cui, X., Anomalously Robust Valley Polarization and Valley Coherence in Bilayer Ws<Sub>2</Sub>. Proceedings of the National Academy of Sciences 2014, 111, 11606-11611.

2. Gusakova, J.; Wang, X.; Shiau, L. L.; Krivosheeva, A.; Shaposhnikov, V.; Borisenko, V.; Gusakov, V.;

Tay, B. K., Electronic Properties of Bulk and Monolayer Tmds: Theoretical Study within Dft Framework (Gvj-2e Method). physica status solidi (a) 2017, 214, 1700218.

3. Peimyoo, N.; Shang, J.; Cong, C.; Shen, X.; Wu, X.; Yeow, E. K. L.; Yu, T., Nonblinking, Intense Two- Dimensional Light Emitter: Monolayer Ws2 Triangles. ACS Nano 2013, 7, 10985-10994.

4. Zhu, B.; Chen, X.; Cui, X., Exciton Binding Energy of Monolayer Ws2. Scientific Reports 2015, 5, 9218.

5. Yan, Y.; Zhang, C.; Gu, W.; Ding, C.; Li, X.; Xian, Y., Facile Synthesis of Water-Soluble Ws2 Quantum Dots for Turn-on Fluorescent Measurement of Lipoic Acid. The Journal of Physical Chemistry C 2016, 120, 12170-12177.

6. Xu, S.; Li, D.; Wu, P., One-Pot, Facile, and Versatile Synthesis of Monolayer Mos2/Ws2 Quantum Dots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction. Advanced Functional Materials 2015, 25, 1127-1136.

7. Bayat, A.; Saievar, E., Synthesis of Blue Photoluminescent Ws2 Quantum Dots Via Ultrasonic Cavitation, 2017; Vol. 185.

8. Bai, X., et al., Ultrasmall Ws2 Quantum Dots with Visible Fluorescence for Protection of Cells and Animal Models from Radiation-Induced Damages. ACS Biomaterials Science & Engineering 2017, 3, 460- 470.

9. Shi, J.; Lyu, J.; Tian, F.; Yang, M., A Fluorescence Turn-on Biosensor Based on Graphene Quantum Dots (Gqds) and Molybdenum Disulfide (Mos2) Nanosheets for Epithelial Cell Adhesion Molecule (Epcam) Detection. Biosensors and Bioelectronics 2017, 93, 182-188.

10. Zhong, Y.; Yi, T., Mos2 Quantum Dots as a Unique Fluorescent “Turn-Off–on” Probe for the Simple and Rapid Determination of Adenosine Triphosphate. Journal of Materials Chemistry B 2019, 7, 2549- 2556.

11. Gan, Z.; Gui, Q.; Shan, Y.; Pan, P.; Zhang, N.; Zhang, L., Photoluminescence of Mos2 Quantum Dots Quenched by Hydrogen Peroxide: A Fluorescent Sensor for Hydrogen Peroxide. Journal of Applied Physics 2016, 120, 104503.

12. Zhu, Z.; Yang, R.; You, M.; Zhang, X.; Wu, Y.; Tan, W., Single-Walled Carbon Nanotube as an Effective Quencher. Analytical and Bioanalytical Chemistry 2010, 396, 73-83.

13. Lakowicz, J. R., Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, 1983.

14. Das, R.; Rajender, G.; Giri, P. K., Anomalous Fluorescence Enhancement and Fluorescence Quenching of Graphene Quantum Dots by Single Walled Carbon Nanotubes. Physical Chemistry Chemical Physics 2018, 20, 4527-4537.

15. Karimi, B.; Arabi, A. M.; Najafi, F.; Shafiee Afarani, M., Cnt–Cdse Qds Nanocomposites: Synthesis and Photoluminescence Studies. Journal of Materials Science: Materials in Electronics 2018, 29, 13499- 13507.

16. Zeng, H., et al., Optical Signature of Symmetry Variations and Spin-Valley Coupling in Atomically Thin Tungsten Dichalcogenides. Scientific Reports 2013, 3, 1608.

17. Yin, W.; Bai, X.; Chen, P.; Zhang, X.; Su, L.; Ji, C.; Gao, H.; Song, H.; Yu, W. W., Rational Control of Size and Photoluminescence of Ws2 Quantum Dots for White Light-Emitting Diodes. ACS Applied Materials & Interfaces 2018, 10, 43824-43830.

81 | S p e c t r a l a n a l y s i s o f W S2 Q D s a n d i n t e r a c t i o n w i t h S W C N T s 18. Lin, L.; Xu, Y.; Zhang, S.; Ross, I. M.; Ong, A. C. M.; Allwood, D. A., Fabrication of Luminescent Monolayered Tungsten Dichalcogenides Quantum Dots with Giant Spin-Valley Coupling. ACS Nano 2013, 7, 8214-8223.

19. Zhao, W.; Ghorannevis, Z.; Chu, L.; Toh, M.; Kloc, C.; Tan, P.-H.; Eda, G., Evolution of Electronic Structure in Atomically Thin Sheets of Ws2 and Wse2. ACS Nano 2013, 7, 791-797.

20. Chernikov, A.; Berkelbach, T. C.; Hill, H. M.; Rigosi, A.; Li, Y.; Aslan, O. B.; Reichman, D. R.;

Hybertsen, M. S.; Heinz, T. F., Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer

${\Mathrm{Ws}}_{2}$. Physical Review Letters 2014, 113, 076802.

21. Amani, M.; Taheri, P.; Addou, R.; Ahn, G. H.; Kiriya, D.; Lien, D.-H.; Ager, J. W.; Wallace, R. M.;

Javey, A., Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides. Nano Letters 2016, 16, 2786-2791.

22. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F., Atomically Thin ${\Mathrm{Mos}}_{2}$: A New Direct-Gap Semiconductor. Physical Review Letters 2010, 105, 136805.

23. Chow, P. K.; Jacobs-Gedrim, R. B.; Gao, J.; Lu, T.-M.; Yu, B.; Terrones, H.; Koratkar, N., Defect- Induced Photoluminescence in Monolayer Semiconducting Transition Metal Dichalcogenides. ACS Nano 2015, 9, 1520-1527.

24. Caigas, S. P.; Santiago, S. R. M.; Lin, T.-N.; Lin, C.-A. J.; Yuan, C.-T.; Shen, J.-L.; Lin, T.-Y., Origins of Excitation-Wavelength-Dependent Photoluminescence in Ws2 Quantum Dots. Applied Physics Letters 2018, 112, 092106.

25. Cushing, S. K.; Ding, W.; Chen, G.; Wang, C.; Yang, F.; Huang, F.; Wu, N., Excitation Wavelength Dependent Fluorescence of Graphene Oxide Controlled by Strain. Nanoscale 2017, 9, 2240-2245.

26. Liu, H.; Lu, J., Exciton Dynamics in Tungsten Dichalcogenide Monolayers. Physical Chemistry Chemical Physics 2017, 19, 17877-17882.

27. Nan, H., et al., Strong Photoluminescence Enhancement of Mos2 through Defect Engineering and Oxygen Bonding. ACS Nano 2014, 8, 5738-5745.

28. Mawlong, L. P. L.; Paul, K. K.; Giri, P. K., Direct Chemical Vapor Deposition Growth of Monolayer Mos2 on Tio2 Nanorods and Evidence for Doping-Induced Strong Photoluminescence Enhancement. The Journal of Physical Chemistry C 2018, 122, 15017-15025.

29. Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F., Emerging Photoluminescence in Monolayer Mos2. Nano Letters 2010, 10, 1271-1275.

30. Yong, Y.; Cheng, X.; Bao, T.; Zu, M.; Yan, L.; Yin, W.; Ge, C.; Wang, D.; Gu, Z.; Zhao, Y., Tungsten Sulfide Quantum Dots as Multifunctional Nanotheranostics for in Vivo Dual-Modal Image-Guided Photothermal/Radiotherapy Synergistic Therapy. ACS Nano 2015, 9, 12451-12463.

31. Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A., Raman Spectroscopy of Carbon Nanotubes.

Physics Reports 2005, 409, 47-99.

32. Jorio, A., et al., $G$-Band Resonant Raman Study of 62 Isolated Single-Wall Carbon Nanotubes.

Physical Review B 2002, 65, 155412.

33. Brar, V. W.; Samsonidze, G. G.; Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Swan, A. K.; Ünlü, M.

S.; Goldberg, B. B.; Souza Filho, A. G.; Jorio, A., Second-Order Harmonic and Combination Modes in Graphite, Single-Wall Carbon Nanotube Bundles, and Isolated Single-Wall Carbon Nanotubes. Physical Review B 2002, 66, 155418.

34. Liu, Z.; Zhang, J.; Gao, B., Raman Spectroscopy of Strained Single-Walled Carbon Nanotubes.

Chemical Communications 2009, 6902-6918.

35. Li, Z.; Ye, R.; Feng, R.; Kang, Y.; Zhu, X.; Tour, J. M.; Fang, Z., Graphene Quantum Dots Doping of Mos2 Monolayers. Advanced Materials 2015, 27, 5235-5240.

36. Berciaud, S.; Cognet, L.; Poulin, P.; Weisman, R. B.; Lounis, B., Absorption Spectroscopy of Individual Single-Walled Carbon Nanotubes. Nano Letters 2007, 7, 1203-1207.

37. Rance, G.; Marsh, D.; Nicholas, R.; Khlobystov, A., Uv-Vis Absorption Spectroscopy of Carbon Nanotubes: Relationship between the Pi-Electron Plasmon and Nanotube Diameter. CHEMICAL PHYSICS LETTERS 2010, 493, 19-23.

38. Weisman, R. B., Chapter 5 Optical Spectroscopy of Single-Walled Carbon Nanotubes. In Contemporary Concepts of Condensed Matter Science, Saito, S.; Zettl, A., Eds. Elsevier: 2008; Vol. 3, pp 109-133.

39. Choi, J.; Zhang, H.; Choi, J. H., Modulating Optoelectronic Properties of Two-Dimensional Transition Metal Dichalcogenide Semiconductors by Photoinduced Charge Transfer. ACS Nano 2016, 10, 1671-1680.

40. Wang, K., et al., Interlayer Coupling in Twisted Wse2/Ws2 Bilayer Heterostructures Revealed by Optical Spectroscopy. ACS Nano 2016, 10, 6612-6622.

41. Shiraishi, M.; Ata, M., Work Function of Carbon Nanotubes. Carbon 2001, 39, 1913-1917.

42. Singh, D. K.; Iyer, P. K.; Giri, P. K., Role of Molecular Interactions and Structural Defects in the Efficient Fluorescence Quenching by Carbon Nanotubes. Carbon 2012, 50, 4495-4505.

83 | S i / A u / W S2 Q D b a s e d s e l f - b i a s e d S c h o t t k y p h o t o d e t e c t o r

Chapter 4