• Tidak ada hasil yang ditemukan

SnO 2 NPs on GO-85

5.5. Conclusion

In this chapter, we discussed the successful fabrication of an interdigitated electrode (IDE) pattern on GO sheets using the UV lithography process. The channel width or minimum distance between the two electrodes is made as 10 µm, confirmed by the AFM and FESEM images. The thickness of the metal electrode is 30 nm, measured from the height profile analysis of the AFM image. The FESEM images observe the fabrication of the GO-based IDE pattern. The changes in characteristics and properties of the GO after different temperatures annealing, such as 50 ˚C, 85 C, 120 ˚C, and 230 ˚C are studied. The restoration of the graphitic structure after annealing at 230 ˚C is authenticated from the XRD and Raman spectra analysis;

the shifting of 2θ peak towards the 25.6˚ of the XRD spectra and reducing the value of ID/IG

Raman spectra. The presence of oxygen functional groups is studied using XPS and FTIR analysis; flattening of C-O peak at 286 eV after 230 C annealing of GO and removal of oxygen functional groups related peaks from 950 cm-1 to 1480 cm-1 in the FTIR spectra. PL and UV absorption also fortified the rich presence of oxygen functional groups in the GO-RT.

I-V measurement of the GO and different annealed GO are studied and concluded that higher the oxygen functional groups attached to GO disturbed the flow of current in the GO, which leads to behaving like an insulator. The attached oxygen functional groups can regulate the electrical properties of the GO on the GO. Three photodetectors are made by using GO-85, Ar-GO, and SO-GO. The performances of the devices are compared, such as photocurrent (Iph), response time (τrise and τdec), responsivity (R), and detectivity (D). Ar-GO photodetector performs better than the other two, showing that the surface modification using the Ar-plasma treatment improves the GO-based photodetector performance.

Reference:

(1) Tang, L.; Li, X.; Ji, R.; Teng, K. S.; Tai, G.; Ye, J.; Wei, C.; Lau, S. P. Bottom-up Synthesis of Large- Scale Graphene Oxide Nanosheets. J. Mater. Chem. 2012, 22 (12), 5676–5683.

https://doi.org/10.1039/c2jm15944a.

(2) Khan, M. A.; Kumar, A.; Zhang, J.; Kumar, M. Recent Advances and Prospects in Reduced Graphene Oxide-Based Photodetectors. J. Mater. Chem. C 2021, 9 (26), 8129–8157.

https://doi.org/10.1039/d1tc01306h.

(3) Chen, W.; Lv, G.; Hu, W.; Li, D.; Chen, S.; Dai, Z. Synthesis and Applications of Graphene Quantum Dots: A Review. Nanotechnol. Rev. 2018, 7 (2), 157–185. https://doi.org/10.1515/ntrev-2017-0199.

(4) Wang, L.; Kang, J.; Nam, J. Do; Suhr, J.; Prasad, A. K.; Advani, S. G. Composite Membrane Based on Graphene Oxide Sheets and Nafion for Polymer Electrolyte Membrane Fuel Cells. ECS Electrochem.

Lett. 2015, 4 (1), F1–F4. https://doi.org/10.1149/2.0021501eel.

(5) Wei, Z.; Wang, D.; Kim, S.; Kim, S. Y.; Hu, Y.; Yakes, M. K.; Laracuente, A. R.; Dai, Z.; Marder, S. R.;

Berger, C.; King, W. P.; De Heer, W. A.; Sheehan, P. E.; Riedo, E. Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics. Science (80-. ). 2010, 328 (5984), 1373–1376.

https://doi.org/10.1126/science.1188119.

(6) Yu, X.; Cai, H.; Zhang, W.; Li, X.; Pan, N.; Luo, Y.; Wang, X.; Hou, J. G. Tuning Chemical Enhancement of SERS by Controlling the Chemical Reduction of Graphene Oxide Nanosheets. ACS Nano 2011, 5 (2), 952–958. https://doi.org/10.1021/nn102291j.

(7) Dong, L.; Yang, J.; Chhowalla, M.; Loh, K. P. Synthesis and Reduction of Large Sized Graphene Oxide Sheets. Chemical Society Reviews. Royal Society of Chemistry December 7, 2017, pp 7306–7316.

https://doi.org/10.1039/c7cs00485k.

(8) Das, P.; Mandal, B.; Gumma, S. Applied Surface Science Engineering of Structural and Surface Functional Characteristics of Graphite Oxide Nanosheets by Controlling Oxidation Temperature. Appl.

Surf. Sci. 2020, 504 (October 2019), 144444. https://doi.org/10.1016/j.apsusc.2019.144444.

(9) Jiang, X.; Nisar, J.; Pathak, B.; Zhao, J.; Ahuja, R. Graphene Oxide as a Chemically Tunable 2-D Material for Visible-Light Photocatalyst Applications. J. Catal. 2013, 299, 204–209.

https://doi.org/10.1016/j.jcat.2012.12.022.

(10) Chang, S.; Zhou, X.; Palacios, T.; Gradečak, S.; Kong, J.; Park, H. Flexible Graphene Electrode-Based Organic Photovoltaics with Record-High Efficiency. Nano Lett. 2014, 14 (9), 5148–5154.

https://doi.org/10.1021/nl501981f.

(11) Chong, K. Y.; Chia, C. H.; Chook, S. W.; Zakaria, S.; Lucas, D. Simplified Production of Graphene Oxide Assisted by High Shear Exfoliation of Graphite with Controlled Oxidation. New J. Chem. 2018, 42 (6), 4507–4512. https://doi.org/10.1039/c7nj04911k.

(12) Jiang, J.; Wen, Y.; Wang, H.; Yin, L.; Cheng, R.; Liu, C.; Feng, L.; He, J. Recent Advances in 2D

Materials for Photodetectors. Adv. Electron. Mater. 2021, 7 (7), 1–27.

https://doi.org/10.1002/aelm.202001125.

(13) Xiao, N.; Dong, X.; Song, L.; Liu, D.; Tay, Y.; Wu, S.; Li, L.; Zhao, Y. ACS Nano 2011 Xiao N.Pdf.

2011, No. 4, 2749–2755.

(14) Zheng, L.; Zhongzhu, L.; Guozhen, S.; Zhang, K.; Zhang, L.; Han, L.; Wang, L.; Chen, Z.; Xing, H.;

Chen, X.; Qiao, H.; Huang, Z.; Ren, X.; Liu, S.; Zhang, Y.; Qi, X.; Zhang, H.; Long, M.; Wang, P.; Fang, H.; Hu, W.; Jiang, J.; Wen, Y.; Wang, H.; Yin, L.; Cheng, R.; Liu, C.; Feng, L.; He, J.; Huo, N.;

Konstantatos, G.; Ezhilmaran, B.; Patra, A.; Benny, S.; M. R., S.; V. V., A.; Bhat, S. V.; Rout, C. S.

Recent Progress and Future Prospects of 2D-Based Photodetectors. Adv. Funct. Mater. 2021, 7 (19), 1–

27. https://doi.org/10.1088/1674-4926/37/9/091001.

(15) Huang, X. M.; Liu, L. Z.; Zhou, S.; Zhao, J. J. Physical Properties and Device Applications of Graphene Oxide. Front. Phys. 2020, 15 (3). https://doi.org/10.1007/s11467-019-0937-9.

(16) Torrisi, F.; Hasan, T.; Wu, W.; Sun, Z.; Lombardo, A.; Kulmala, T. S.; Hsieh, G. W.; Jung, S.;

Bonaccorso, F.; Paul, P. J.; Chu, D.; Ferrari, A. C. Inkjet-Printed Graphene Electronics. ACS Nano 2012, 6 (4), 2992–3006. https://doi.org/10.1021/nn2044609.

(17) Li, G.; Liu, L.; Wu, G.; Chen, W.; Qin, S.; Wang, Y.; Zhang, T. Self-Powered UV–Near Infrared Photodetector Based on Reduced Graphene Oxide/n-Si Vertical Heterojunction. Small 2016, 12 (36), 5019–5026. https://doi.org/10.1002/smll.201600835.

(18) Zheng, L.; Zhongzhu, L.; Guozhen, S. Photodetectors Based on Two Dimensional Materials. J. Semicond.

2016, 37 (9). https://doi.org/10.1088/1674-4926/37/9/091001.

(19) Ezhilmaran, B.; Patra, A.; Benny, S.; M. R., S.; V. V., A.; Bhat, S. V.; Rout, C. S. Recent Developments in the Photodetector Applications of Schottky Diodes Based on 2D Materials. J. Mater. Chem. C 2021, 9 (19), 6122–6150. https://doi.org/10.1039/d1tc00949d.

(20) Abid; Sehrawat, P.; Islam, S. S.; Mishra, P.; Ahmad, S. Reduced Graphene Oxide (RGO) Based Wideband Optical Sensor and the Role of Temperature, Defect States and Quantum Efficiency. Sci. Rep. 2018, 8 (1), 1–13. https://doi.org/10.1038/s41598-018-21686-2.

(21) Krishnamoorthy, K.; Veerapandian, M.; Yun, K.; Kim, S. J. The Chemical and Structural Analysis of Graphene Oxide with Different Degrees of Oxidation. Carbon N. Y. 2013, 53, 38–49.

https://doi.org/10.1016/j.carbon.2012.10.013.

(22) Sreeja, V. G.; Vinitha, G.; Reshmi, R.; Anila, E. I.; Jayaraj, M. K. Effect of Reduction Time on Third Order Optical Nonlinearity of Reduced Graphene Oxide. Opt. Mater. (Amst). 2017, 66, 460–468.

https://doi.org/10.1016/j.optmat.2017.01.042.

(23) Li, X. Preparation of Graphene Oxide and Its Application as Substrates for SERS. J. Chem. 2018, 2018.

https://doi.org/10.1155/2018/8050524.

(24) Zhao, H.; Fan, S.; Chen, Y.; Feng, Z.; Zhang, H.; Pang, W.; Zhang, D.; Zhang, M. Oxygen Plasma-Treated Graphene Oxide Surface Functionalization for Sensitivity Enhancement of Thin-Film Piezoelectric Acoustic Gas Sensors. ACS Appl. Mater. Interfaces 2017, 9 (46), 40774–40781.

https://doi.org/10.1021/acsami.7b09547.

(25) Aliahmad, M.; Dehbashi, M. Synthesis and Characterization of Thermally-Reduced Graphene. Iran. J.

Energy Environ. 2013, 4 (1), 53–59. https://doi.org/10.5829/idosi.ijee.2013.04.01.

(26) Deemer, E. M.; Paul, P. K.; Manciu, F. S.; Botez, C. E.; Hodges, D. R.; Landis, Z.; Akter, T.; Castro, E.;

Chianelli, R. R. Consequence of Oxidation Method on Graphene Oxide Produced with Different Size Graphite Precursors. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2017, 224 (March 2019), 150–

157. https://doi.org/10.1016/j.mseb.2017.07.018.

(27) Smith, A. T.; LaChance, A. M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, Properties, and Applications of Graphene Oxide/Reduced Graphene Oxide and Their Nanocomposites. Nano Mater. Sci. 2019, 1 (1), 31–

47. https://doi.org/10.1016/j.nanoms.2019.02.004.

(28) Lai, S. K.; Tang, L.; Hui, Y. Y.; Luk, C. M.; Lau, S. P. A Deep Ultraviolet to Near-Infrared Photoresponse from Glucose-Derived Graphene Oxide. J. Mater. Chem. C 2014, 2 (34), 6971–6977.

https://doi.org/10.1039/c4tc01175a.

(29) Zheng, K.; Meng, F.; Jiang, L.; Yan, Q.; Hng, H. H.; Chen, X. Visible Photoresponse of Single-Layer Graphene Decorated with TiO 2 Nanoparticles. Small 2013, 9 (12), 2076–2080.

https://doi.org/10.1002/smll.201202885.

(30) Liu, N.; Tian, H.; Schwartz, G.; Tok, J. B. H.; Ren, T. L.; Bao, Z. Large-Area, Transparent, and Flexible Infrared Photodetector Fabricated Using P-N Junctions Formed by N-Doping Chemical Vapor Deposition Grown Graphene. Nano Lett. 2014, 14 (7), 3702–3708. https://doi.org/10.1021/nl500443j.

(31) Qi, X.; Zou, X.; Huang, Z.; Ren, L.; Hao, G.; Liu, Y.; Wei, X.; Zhong, J. Ultraviolet, Visible, and near Infrared Photoresponse Properties of Solution Processed Graphene Oxide. Appl. Surf. Sci. 2013, 266, 332–

336. https://doi.org/10.1016/j.apsusc.2012.12.020.

(32) Chang, H.; Sun, Z.; Saito, M.; Yuan, Q.; Zhang, H.; Li, J.; Wang, Z.; Fujita, T.; Ding, F.; Zheng, Z.; Yan, F.; Wu, H.; Chen, M.; Ikuhara, Y. Regulating Infrared Photoresponses in Reduced Graphene Oxide Phototransistors by Defect and Atomic Structure Control. ACS Nano 2013, 7 (7), 6310–6320.

https://doi.org/10.1021/nn4023679.

(33) Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H.

Ultrasensitive Solution-Cast Quantum Dot Photodetectors. Nature 2006, 442 (7099), 180–183.

https://doi.org/10.1038/nature04855.

(34) Simone, G.; Dyson, M. J.; Meskers, S. C. J.; Janssen, R. A. J.; Gelinck, G. H. Organic Photodetectors and Their Application in Large Area and Flexible Image Sensors: The Role of Dark Current. Adv. Funct.

Mater. 2020, 30 (20). https://doi.org/10.1002/adfm.201904205.

(35) Wei, Y.; Chen, H.; Liu, T.; Wang, S.; Jiang, Y.; Song, Y.; Zhang, J.; Zhang, X.; Lu, G.; Huang, F.; Wei, Z.; Huang, H. Self-Powered Organic Photodetectors with High Detectivity for Near Infrared Light Detection Enabled by Dark Current Reduction. Adv. Funct. Mater. 2021, 31 (52).

https://doi.org/10.1002/adfm.202106326.

(36) Eun, H. J.; Kye, H.; Kim, D.; Jin, I. S.; Jung, J. W.; Ko, S. J.; Heo, J.; Kim, B. G.; Kim, J. H. Effective Dark Current Suppression for High-Detectivity Organic Near-Infrared Photodetectors Using a Non- Fullerene Acceptor. ACS Appl. Mater. Interfaces 2021, 13 (9), 11144–11150.

https://doi.org/10.1021/acsami.0c22808.

(37) Kumawat, K. L.; Singh, D. K.; Nanda, K. K.; Krupanidhi, S. B. Solution-Processed SnSe2-RGO-Based Bulk Heterojunction for Self-Powered and Broadband Photodetection. ACS Appl. Electron. Mater. 2021, 3 (7), 3131–3138. https://doi.org/10.1021/acsaelm.1c00352.

(38) Parveen, S.; Das, M.; Ghosh, S.; Giri, P. K. Experimental and Theoretical Study of Europium-Doped Organometal Halide Perovskite Nanoplatelets for UV Photodetection with High Responsivity and Fast Response. Nanoscale 2022, 6402–6416. https://doi.org/10.1039/d2nr01063a.

(39) Cao, Y.; Zhu, J.; Xu, J.; He, J. Tunable Near-Infrared Photovoltaic and Photoconductive Properties of Reduced Graphene Oxide Thin Films by Controlling the Number of Reduced Graphene Oxide Bilayers.

Carbon N. Y. 2014, 77, 1111–1122. https://doi.org/10.1016/j.carbon.2014.06.029.

(40) Yin, J.; Wang, H.; Peng, H.; Tan, Z.; Liao, L.; Lin, L.; Sun, X.; Koh, A. L.; Chen, Y.; Peng, H.; Liu, Z.

Selectively Enhanced Photocurrent Generation in Twisted Bilayer Graphene with van Hove Singularity.

Nat. Commun. 2016, 7, 1–8. https://doi.org/10.1038/ncomms10699.

(41) Freitag, M.; Low, T.; Avouris, P. Increased Responsivity of Suspended Graphene Photodetectors. Nano Lett. 2013, 13 (4), 1644–1648. https://doi.org/10.1021/nl4001037.

(42) Patil, V.; Capone, A.; Strauf, S.; Yang, E. H. Improved Photoresponse with Enhanced Photoelectric Contribution in Fully Suspended Graphene Photodetectors. Sci. Rep. 2013, 3, 1–5.

https://doi.org/10.1038/srep02791.

(43) Moon, I. K.; Ki, B.; Yoon, S.; Oh, J. Lateral Photovoltaic Effect in Flexible Free-Standing Reduced Graphene Oxide Film for Self-Powered Position-Sensitive Detection. Sci. Rep. 2016, 6 (August), 1–12.

https://doi.org/10.1038/srep33525.