Chapter 2 Synthesis and characterization of large lateral-size graphene oxide and its
2.5. Conclusion
Graphite oxide is synthesized using the simplified Hummers method; we have omitted continuous stirring of solution during the oxidation process, which leads to breaking the graphite oxide into small pieces. We have oxidized the graphite flakes to a high degree of oxidation, which is visually confirmed by the change of solution color into dark brown and later light yellow. Further, it is confirmed from the XRD and Raman analysis of GO. We have demonstrated a cost-effective and facile approach using mild heating to exfoliate graphene oxide (GO) sheets with ultra-large lateral sizes up to 104 µm using a simplified technique, superior to the commonly used ultrasonic method. Ultrasonication of GO breaks the GO sheets apart from exfoliation, leading to reduced flake sizes observed from the FESEM and AFM image. Subsequently, the reduction of GO sheets was carried out to obtain graphene sheets (RGO) with fewer defects as indicated by the ID/IG ration from Raman analysis. The highly uniformed and small size distribution of the GQDs after 60 minutes of tip-sonication is validated from the FETEM imaging and its size distribution analysis. Further, the structure of GQDs is analyzed using XRD and Raman spectroscopy. Thus, we successfully synthesized high-quality, super large lateral size GO sheets of thickness ~1.3 nm and its derivative materials such as RGO and GQDs.
Reference
(1) Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6 (3), 183–191.
https://doi.org/10.1038/nmat1849.
(2) Pei, S.; Cheng, H. M. The Reduction of Graphene Oxide. Carbon N. Y. 2012, 50 (9), 3210–3228.
https://doi.org/10.1016/j.carbon.2011.11.010.
(3) Lonkar, S. P.; Deshmukh, Y. S.; Abdala, A. A. Recent Advances in Chemical Modifications of Graphene.
Nano Res. 2015, 8 (4), 1039–1074. https://doi.org/10.1007/s12274-014-0622-9.
(4) Acik, M.; Chabal, Y. J. A Review on Reducing Graphene Oxide for Band Gap Engineering. J. Mater. Sci.
Res. 2012, 2 (1), 101–112. https://doi.org/10.5539/jmsr.v2n1p101.
(5) Das, R.; Parveen, S.; Bora, A.; Giri, P. K. Origin of High Photoluminescence Yield and High SERS Sensitivity of Nitrogen-Doped Graphene Quantum Dots. Carbon N. Y. 2020, 160, 273–286.
https://doi.org/10.1016/j.carbon.2020.01.030.
(6) Li, M.; Chen, T.; Gooding, J. J.; Liu, J. Review of Carbon and Graphene Quantum Dots for Sensing. ACS Sensors 2019, 4 (7), 1732–1748. https://doi.org/10.1021/acssensors.9b00514.
(7) Chen, W.; Lv, G.; Hu, W.; Li, D.; Chen, S.; Dai, Z. Synthesis and Applications of Graphene Quantum Dots: A Review. Nanotechnol. Rev. 2018, 7 (2), 157–185. https://doi.org/10.1515/ntrev-2017-0199.
(8) Kang, J. H.; Kim, T.; Choi, J.; Park, J.; Kim, Y. S.; Chang, M. S.; Jung, H.; Park, K. T.; Yang, S. J.; Park, C. R. Hidden Second Oxidation Step of Hummers Method. Chem. Mater. 2016, 28 (3), 756–764.
https://doi.org/10.1021/acs.chemmater.5b03700.
(9) Saafi, M.; Tang, L.; Fung, J.; Rahman, M.; Sillars, F.; Liggat, J.; Zhou, X. Graphene/Fly Ash Geopolymeric Composites as Self-Sensing Structural Materials. Smart Mater. Struct. 2014, 23 (6).
https://doi.org/10.1088/0964-1726/23/6/065006.
(10) Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated
Graphite Oxide. Carbon N. Y. 2007, 45 (7), 1558–1565.
https://doi.org/https://doi.org/10.1016/j.carbon.2007.02.034.
(11) He, H.; Riedl, T.; Lerf, A.; Klinowski, J. Solid-State NMR Studies of the Structure of Graphite Oxide. J.
Phys. Chem. 1996, 100 (51), 19954–19958. https://doi.org/10.1021/jp961563t.
(12) He, H.; Klinowski, J.; Forster, M.; Lerf, A. A New Structural Model for Graphite Oxide. Chem. Phys.
Lett. 1998, 287 (1–2), 53–56. https://doi.org/10.1016/S0009-2614(98)00144-4.
(13) Lerf, A.; He, H.; Forster, M.; Klinowski, J. Structure of Graphite Oxide Revisited. J. Phys. Chem. B 1998, 102 (23), 4477–4482. https://doi.org/10.1021/jp9731821.
(14) Lázár, L.; Szakonyi, Z.; Forró, E.; Palkó, M.; Zalán, Z.; Szatmári, I.; Fülöp, F. [Synthesis of hydrazino alcohols with anti-inflammatory activity]. Acta Pharm. Hung. 2004, 74 (1), 11–18.
(15) Fernández-Merino, M. J.; Guardia, L.; Paredes, J. I.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez- Alonso, A.; Tascón, J. M. D. Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. J. Phys. Chem. C 2010, 114 (14), 6426–6432. https://doi.org/10.1021/jp100603h.
(16) Dash, P.; Dash, T.; Rout, T. K.; Sahu, A. K.; Biswal, S. K.; Mishra, B. K. Preparation of Graphene Oxide by Dry Planetary Ball Milling Process from Natural Graphite. RSC Adv. 2016, 6 (15), 12657–12668.
https://doi.org/10.1039/c5ra26491j.
(17) Deemer, E. M.; Paul, P. K.; Manciu, F. S.; Botez, C. E.; Hodges, D. R.; Landis, Z.; Akter, T.; Castro, E.;
Chianelli, R. R. Consequence of Oxidation Method on Graphene Oxide Produced with Different Size Graphite Precursors. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2017, 224 (March 2019), 150–
157. https://doi.org/10.1016/j.mseb.2017.07.018.
(18) Gupta, B.; Kumar, N.; Panda, K.; Kanan, V.; Joshi, S.; Visoly-Fisher, I. Role of Oxygen Functional Groups in Reduced Graphene Oxide for Lubrication. Sci. Rep. 2017, 7, 1–14.
https://doi.org/10.1038/srep45030.
(19) Yuan, R.; Yuan, J.; Wu, Y.; Chen, L.; Zhou, H.; Chen, J. Efficient Synthesis of Graphene Oxide and the Mechanisms of Oxidation and Exfoliation. Appl. Surf. Sci. 2017, 416, 868–877.
https://doi.org/10.1016/j.apsusc.2017.04.181.
(20) Aliahmad, M.; Dehbashi, M. Synthesis and Characterization of Thermally-Reduced Graphene. Iran. J.
Energy Environ. 2013, 4 (1), 53–59. https://doi.org/10.5829/idosi.ijee.2013.04.01.
(21) Panchakarla, L. S.; Subrahmanyam, K. S.; Saha, S. K.; Govindaraj, A.; Krishnamurthy, H. R.; Waghmare, U. V.; Rao, C. N. R. Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene. Adv.
Mater. 2009, 21 (46), 4726–4730. https://doi.org/10.1002/adma.200901285.
(22) Konstantin N. Kudin, †; Bulent Ozbas, ‡; Hannes C. Schniepp, ‡; Robert K. Prud’homme, ‡; Ilhan A.
Aksay, ‡ and; Roberto Car*, †. Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets.
Nano Lett. 2008, 8 (1), 36–41. https://doi.org/10.1021/NL071822Y.
(23) Tung, T. T.; Yoo, J.; Alotaibi, F. K.; Nine, M. J.; Karunagaran, R.; Krebsz, M.; Nguyen, G. T.; Tran, D.
N. H.; Feller, J. F.; Losic, D. Graphene Oxide-Assisted Liquid Phase Exfoliation of Graphite into Graphene for Highly Conductive Film and Electromechanical Sensors. ACS Appl. Mater. Interfaces 2016, 8 (25), 16521–16532. https://doi.org/10.1021/acsami.6b04872.
(24) Lee, A. Y.; Yang, K.; Anh, N. D.; Park, C.; Lee, S. M.; Lee, T. G.; Jeong, M. S. Raman Study of D* Band in Graphene Oxide and Its Correlation with Reduction. Appl. Surf. Sci. 2021, 536 (September 2020), 147990. https://doi.org/10.1016/j.apsusc.2020.147990.
(25) Zhou, Y.; Lin, X.; Huang, Y.; Guo, Y.; Gao, C.; Xie, G.; Jiang, Y. Impact of Further Thermal Reduction on Few-Layer Reduced Graphene Oxide Film and Its n-p Transition for Gas Sensing. Sensors Actuators, B Chem. 2016, 235, 241–250. https://doi.org/10.1016/j.snb.2016.05.078.
(26) Dervishi, E.; Ji, Z.; Htoon, H.; Sykora, M.; Doorn, S. K. Raman Spectroscopy of Bottom-up Synthesized
Graphene Quantum Dots: Size and Structure Dependence. Nanoscale 2019, 11 (35), 16571–16581.
https://doi.org/10.1039/c9nr05345j.
(27) Das, R.; Parveen, S.; Bora, A.; Giri, P. K. Origin of High Photoluminescence Yield and High SERS Sensitivity of Nitrogen-Doped Graphene Quantum Dots. Carbon N. Y. 2020, 160, 273–286.
https://doi.org/10.1016/j.carbon.2020.01.030.
(28) Ghaffarkhah, A.; Hosseini, E.; Kamkar, M.; Sehat, A. A.; Dordanihaghighi, S.; Allahbakhsh, A.; van der Kuur, C.; Arjmand, M. Synthesis, Applications, and Prospects of Graphene Quantum Dots: A Comprehensive Review. Small 2022, 18 (2), 1–48. https://doi.org/10.1002/smll.202102683.