• Tidak ada hasil yang ditemukan

A refined approximation for Euclidean k-means

N/A
N/A
Protected

Academic year: 2023

Membagikan "A refined approximation for Euclidean k-means"

Copied!
7
0
0

Teks penuh

(1)

Contents lists available atScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A refined approximation for Euclidean k-means

Fabrizio Grandoni

a

, , Rafail Ostrovsky

b

, Yuval Rabani

c

, Leonard J. Schulman

d

, Rakesh Venkat

e

aIDSIA,USI-SUPSI,Switzerland bUCLA,UnitedStatesofAmerica cTheHebrewUniversityofJerusalem,Israel dCaltech,UnitedStatesofAmerica eIITHyderabad,India

a rt i c l e i nf o a b s t ra c t

Articlehistory:

Received15July2021 Accepted23January2022 Availableonline2February2022 CommunicatedbyLeahEpstein

Keywords:

Approximationalgorithms Euclideank-means Euclideanfacilitylocation Integralitygaps

IntheEuclideank-MeansproblemwearegivenacollectionofnpointsDinanEuclidean spaceandapositiveintegerk.Ourgoalistoidentifyacollectionofkpointsinthesame space(centers)soastominimizethesumofthesquaredEuclideandistancesbetweeneach pointinDandtheclosestcenter.ThisproblemisknowntobeAPX-hardandthecurrent bestapproximationratioisaprimal-dual6.357 approximationbasedonastandardLPfor theproblem[Ahmadianetal.FOCS’17,SICOMP’20].

In thisnote weshow how aminor modification ofAhmadian etal.’sanalysis leads to a slightlyimproved6.12903 approximation. As arelated result,we alsoshow thatthe mentionedLPhasintegralitygapatleast 16+155>1.2157.

©2022TheAuthor(s).PublishedbyElsevierB.V.Thisisanopenaccessarticleunderthe CCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

ClusteringisacentralprobleminComputerScience,withmanyapplicationsindatascience,machinelearningetc.Oneof themostfamousandbest-studiedproblemsinthisareaisEuclideank-Means:givenasetDofnpoints(ordemands)inR andanintegerk∈ [1

,

n],selectkpoints S (centers)soastominimize

jDd2

(

j

,

S

)

.Hered

(

j

,

i

)

istheEuclideandistance betweenpoints j andi andforasetofpointsI,d

(

j

,

I

)

=miniId

(

j

,

i

)

.Inotherwords,wewishtoselectk centerssoasto minimizethesumofthesquaredEuclideandistancesbetweeneachdemandandtheclosestcenter.Equivalently,afeasible solutionisgivenbya partitionofthedemandsintok subsets(clusters).Thecost wC ofa clusterCDis

jCd2

(

c

, μ )

, where

μ

isthe centerofmassofC.Werecall that wC canalsobe expressedas 2|1C|

jC

jCd2

(

j

,

j

)

.Ourgoalis to minimizethetotalcostoftheseclusters.

Euclideank-Meansiswell-studiedintermsofapproximationalgorithms.ItisknowntobeAPX-hard.Moreprecisely,itis hardtoapproximatek-Meansbelowafactor1

.

0013 inpolynomialtimeunless P=N P [6,16].Thehardness wasimproved to 1

.

07 under the Unique Games Conjecture [9]. Some heuristics are known to perform very well in practice, however their approximation factor is O

(

logk

)

or worse on generalinstances [3,4,17,21]. Constantapproximation algorithms are known.Alocal-searchalgorithmbyKanugoetal. [15] providesa9+

ε

approximation.1 Theauthorsalsoshowthatnatural local-search basedalgorithmscannot performbetter thanthis. Thisratiowas improvedto 6

.

357 byAhmadian etal. [1,2]

*

Correspondingauthor.

E-mailaddress:fabrizio@idsia.ch(F. Grandoni).

1 Throughoutthispaperbyεwemeananarbitrarilysmallpositiveconstant.W.l.o.g.weassumeε1.

https://doi.org/10.1016/j.ipl.2022.106251

0020-0190/©2022TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

usinga primal-dualapproach. Theyalso provea 9+

ε

approximation forgeneral(possiblynon-Euclidean) metrics.Better approximationfactorsareknownunderreasonablerestrictionsontheinput[5,7,10,20].APTASisknownforconstantk[19]

orforconstantdimension

[10,12].Noticethat

can bealwaysassumedtobe O

(

logn

)

by astandardapplicationofthe Johnson-Lindenstrausstransform[14].Thiswasrecentlyimprovedto O

(

logk+log logn

)

[8] andfinallyto O

(

logk

)

[18].

InthispaperwedescribeasimplemodificationoftheanalysisofAhmadianetal. [2] whichleadstoaslightlyimproved approximationforEuclideank-Means(seeSection2).

Theorem1.Thereexistsadeterministicpolynomial-timealgorithmforEuclideank-Meanswithapproximationratio

ρ

+

ε

forany positiveconstant

ε >

0,where

ρ :=

1

+

1 2

(

2

+

3

3

2

2

+

3

3

+

2

2

)

2

<

6

.

12903

.

The above approximation ratio is w.r.t. the optimal fractional solution to a standard LP relaxation L Pk-Means for the problem(definedlater). Asaside result(seeSection 3),weprove alower boundontheintegralitygapofthisrelaxation (wearenotawareofanyexplicitsuchlowerboundintheliterature).

Theorem2.TheintegralitygapofL Pk-Means,evenintheEuclideanplane(i.e.,for

=2),isatleast16+155

>

1

.

2157.

1.1. Preliminaries

As mentioned earlier, one can formulate Euclideank-Means in term of the selection of k centers. In this case, it is convenienttodiscretizethepossiblechoicesforthecenters,henceobtainingapolynomial-sizesetF ofcandidatecenters, atthecostofanextrafactor1+

ε

intheapproximationratio(wewillneglectthisfactorintheapproximationratiossince itisabsorbedbyanalogousfactorsintherestoftheanalysis).Inparticularwewillusetheconstructionin[11] (Lemma24) thatchoosesasF thecentersofmassofanycollectionofupto16

/ ε

2 pointswithrepetitions.Inparticular|F|=O

(

n16/ε2

)

inthiscase.

Letc

(

j

,

i

)

beanabbreviationford2

(

j

,

i

)

.ThenastandardLP-relaxationfork-Meansisasfollows:

min

iF,jD

xi j

·

c

(

j

,

i

)

L Pk-Means

s

.

t

.

iF

xi j

1

j

D

xi j

yi

j

D

,

i

F

iF

yi

k

j

D

,

i

F

xi j

,

yi

0

j

D

,

i

F

In an integral solution,we interpret yi=1 as i beinga selectedcenter in S (i is open), andxi j=1 as demand j being assignedtocenteri.2 Thefirstfamilyofconstraintsstatesthateachdemandhastobeassignedtosomecenter,thesecond onethatademandcanonlybeassignedtoanopencenter,andthethirdonethatwecanopenatmostkcenters.

Foranyparameter

λ >

0 (Lagrangianmultiplier),theLagrangianrelaxation L P

(λ)

ofL Pk-Means (w.r.t.thelastmatrixcon- straint)anditsdualD P

(λ)

areasfollows:

min

iF,jD

xi j

·

c

(

j

,

i

) + λ ·

iF

yi

λ

k L P

(λ)

s

.

t

.

iF

xi j

1

j

D

xi j

yi

j

D

,

i

F

xi j

,

yi

0

j

D

,

i

F

2 Technicallyeachdemandisautomaticallyassignedtotheclosestopencenter.Howeveritisconvenienttoallowalsosub-optimalassignmentsinthe LPrelaxation.

(3)

max

jD

α

j

λ

k D P

(λ)

s

.

t

.

jD

max

{

0

, α

j

c

(

j

,

i

) } ≤ λ

i

F (1)

α

j

0

j

D

Abovemax{0

, α

jc

(

j

,

i

)

}replacesthedualvariable

β

i j correspondingtothesecondconstraintintheprimalinthestandard formulationofthedualLP.Noticethat,byremovingthefixedterm−λkintheobjectivefunctionsofL P

(λ)

andD P

(λ)

,one obtains thestandardLPrelaxationL PF L

(λ)

fortheFacilityLocationproblem(FL)withuniformfacilitycost

λ

andits dual D PF L

(λ)

.

Wesaythata

ρ

-approximationalgorithmforaFLinstanceoftheabovetypeisLagrangianMultiplierPreserving(LMP)if itreturnsasetoffacilitiesS thatsatisfies:

jD

c

(

j

,

S

)ρ (

O P T

(λ)λ|

S

|),

where O P T

(λ)

isthevalueoftheoptimalsolutiontoL PF L

(λ)

. 2. ArefinedapproximationforEuclideank-means

Inthissection we presentourrefined approximationforEuclideank-Means.Westart bypresentingthe LMPapproxi- mation algorithmforthe FLinstances arisingfromk-Meansdescribed in[2] in Section 2.1.Wethen presenttheanalysis ofthatalgorithmasin[2] inSection2.2.InSection2.3we describeourrefined analysisofthesamealgorithm.Finally,in Section2.4wesketchhowtousethistoapproximatek-Means.

2.1. Aprimal-dualLMPalgorithmforEuclideanfacilitylocation

Weconsider aninstanceofEuclideanFLinducedby ak-Meansinstanceinthementionedway,foragivenLagrangian multiplier

λ >

0.

We considerexactly the sameLagrangian Multiplier Preserving(LMP) primal-dual algorithm J V

(δ)

asin[2].In more detail, let

δ

2 be a parameter to be fixed later. The algorithm consists of a dual-growth phase and a pruningphase.

The dual-growth phase is exactly asin the classical primal-dual algorithm JV by Jain andVazirani [13]. We start with all the dual variables set to 0 and an empty set Ot of tentatively open facilities. The clients such that

α

jc

(

j

,

i

)

for some iOt arefrozen,andtheother clientsareactive.Wegrowthedualvariables ofactive clientsatuniformrateuntil one ofthefollowingtwo eventshappens. Thefirsteventisthat some constraintoftype (1) becomes tight.At thatpoint the corresponding facilityi isadded to Ot andall clients j with

α

jc

(

j

,

i

)

are set tofrozen. The second eventisthat

α

j=c

(

j

,

i

)

forsomeiOt.Inthatcase j issettofrozen.Inanycase,thefacilityw

(

j

)

thatcauses j tobecomefrozenis calledthewitnessof j.Thephasehaltswhenallclientsarefrozen.

Inthepruningphasewe willclosesomefacilitiesinOt,henceobtainingthefinalsetofopenfacilities I S.Here J V

(δ)

deviates from J V.Foreach client jD,let N

(

j

)

= {iF:

α

j

>

c

(

j

,

i

)

} be thesetof facilities i such that j contributed with apositive amount to the openingof i. Symmetrically,for iF, let N

(

i

)

= {jD:

α

j

>

c

(

j

,

i

)}

be theclients that contributed with a positive amount to the opening of i. For iOt, we let ti=maxjN(i)

α

j, where the values

α

j are consideredattheendofthedual-growthphase.Wesetconventionallyti=0 forN

(

i

)

= ∅.Intuitively,ti isthe“time”when facilityi istentativelyopen(atwhichpointallthedualvariablesofcontributingclientsstopgrowing).Wedefineaconflict graph H overtentatively open facilitiesasfollows. Thenode set of H is Ot. Weplace an edgebetween i

,

iOt iff the followingtwoconditionshold:(1)forsome client j, jN

(

i

)

N

(

i

)

(inwords, j contributestotheopeningofbothi and i) and(2)one has c

(

i

,

i

)

δ

·min{ti

,

ti}.In thisgraphwe compute a maximal independent set I S,which providesthe desiredsolutiontothefacilitylocationproblem(whereeachclientisassignedtotheclosestfacilityinI S).

Weremarkthatthepruningphaseof J V differsfromtheoneof J V

(δ)

onlyinthedefinitionofH,wherecondition(2) isnotrequiredtohold(or,equivalently, J V behaveslike J V

(

+∞

)

for

λ >

0).

2.2. Theanalysisin[2]

Thegeneralgoalistoshowthat

jD

c

(

j

,

I S

)ρ (

jD

α

j

λ|

I S

|),

for some

ρ

1 as small as possible. This shows that the algorithm is an LMP

ρ

-approximation for the problem. It is sufficienttoprovethat,foreachclient j,onehas

(4)

c

(

j

,

I S

) ρ α

j

iN(j)I S

( α

j

c

(

j

,

i

)) = α

j

iI S

max

{

0

, α

j

c

(

j

,

i

) } .

LetS=N

(

j

)

I S ands= |S|.Wedistinguish3 casesdependingonthevalueofs.

CaseA:s=1 Let S= {i}.Thenforany

ρ

1, c

(

j

,

I S

)

ρ

c

(

j

,

I S

) =

c

(

j

,

i

) = α

j

( α

j

c

(

j

,

i

)).

CaseB:s

>

1 Here weusethe propertiesofEuclideanmetrics.Thesum

iSc

(

j

,

i

)

isthesumofthesquareddistances from j tothe facilitiesin S. Thisquantityis lowerboundedby thesumofthe squareddistancesfrom S tothe centroid

μ

of S.Recallthat

iSc

( μ ,

i

)

=2s1

iS

iSc

(

i

,

i

)

.Wealsoobservethat,byconstruction,foranytwodistinct i

,

iI S onehas

c

(

i

,

i

) > δ ·

min

{

ti

,

ti

} ≥ δ · α

j

,

wherethelastinequalityfollowsfromthefactthat jiscontributingtotheopeningofbothiandi.Altogetheroneobtains

iS

c

(

j

,

i

)

iS

c

( μ ,

i

) =

1 2s iSiS

c

(

i

,

i

)(

s

1

α

j

2

.

Thus

iS

( α

j

c

(

j

,

i

))(

s

δ(

s

1

)

2

) α

j

= (

s

(

1

δ

2

) + δ

2

) α

j δ2,s2

(

2

δ

2

) α

j

.

Usingthefactthat

α

j

>

c

(

j

,

i

)

foralliS,hence

α

j

>

c

(

j

,

I S

)

,onegets

( δ

2

1

)

c

(

j

,

I S

)

δ

2

( δ

2

1

) α

j

.

Weconcludethat

iS

( α

j

c

(

j

,

i

)) + ( δ

2

1

)

c

(

j

,

I S

)(

2

δ

2

) α

j

+ ( δ

2

1

) α

j

= α

j

.

Thisgivesthedesiredinequalityassumingthat

ρ

δ/211.

CaseC:s=0 Considerthewitnessi=w

(

j

)

of j.Noticethat

α

jtiand

α

jc

(

j

,

i

)

=d2

(

j

,

i

)

.Hence d

(

j

,

i

) +

δ

ti

(

1

+ √ δ)

α

j

.

IfiI S,thend

(

j

,

I S

)

d

(

j

,

i

)

.OtherwisethereexistsiI S suchthatd2

(

i

,

i

)

δ

min{ti

,

ti}≤

δ

ti.Thusd

(

j

,

I S

)

d

(

j

,

i

)

+ d

(

i

,

i

)

d

(

j

,

i

)

+√

δ

ti.Inbothcasesonehasd

(

j

,

I S

)

(

1+√

δ)

α

j,hence c

(

j

,

I S

)(

1

+ √

δ)

2

α

j

.

Thisgivesthedesiredinequalityfor

ρ

(

1+√

δ)

2. Fixing

δ

Altogetherwecanset

ρ

=max{δ/211

, (

1+√

δ)

2}.Thebestchoicefor

δ

(namely,theonethatminimizes

ρ

)isthe solutionof δ/211=

(

1+√

δ)

2.Thisisachievedfor

δ

2

.

3146 andgives

ρ

6

.

3574.

2.3. Arefinedanalysis

WerefinetheanalysisinCaseBasfollows.Let =

iSc

(

j

,

i

)

.Ourgoalistoupperbound c

(

j

,

S

)

α

j

iS

( α

j

c

(

j

,

i

)) =

c

(

j

,

S

)

iSc

(

j

,

i

)(

s

1

) α

j

=

c

(

j

,

S

)

(

s

1

) α

j

.

Insteadofusingtheupperboundc

(

j

,

S

)

α

j weusetheaverage

c

(

j

,

S

)

1 s iS

c

(

j

,

i

) =

s

.

(5)

Thenitissufficienttoupperbound 1

s

(

s

1

) α

j

.

The derivativein oftheabove functionis 1s (s1)αj

( (s1j)2

<

0.Hence themaximumisachievedforthesmallestpossible valueof .Recallthatwealreadyshowedthat ≥(s12αj.Henceavalidupperboundis

1 s

(s1)δαj 2 (s1)δαj

2

(

s

1

) α

j

=

1 s

δ/

2

δ/

2

1

s22

δ/

4

δ/

2

1

.

This imposes

ρ

δ/δ/241 rather than

ρ

δ/211 in Case B.Notice that thisis an improvementfor

δ <

4. The bestchoice of

δ

is now obtained by imposing δ/δ/241 =

(

1+√

δ)

2. This gives

δ

=12

(

2+3 3−2

2+3 3+2

2

)

2

.

1777 and

ρ

=

1+

1 2

(

2+3

3−2√ 2+3

3+2√ 2

)

2

<

6

.

12903.

2.4. Fromfacilitylocationtok-means

Wecanusetherefined

ρ

:=

1+

1 2

(

2+3

3−2√ 2+3

3+2√ 2

)

2

approximationforEuclideanFacilityLocationfrom previoussectiontoderivea

ρ

+

ε

approximationforEuclideank-Means,foranyconstant

ε >

0.Herewefollowtheapproach of[2] withonlyminorchanges.Inmoredetail,theauthorsconsideravariantoftheFLalgorithmdescribedbefore,whose approximationfactoris

ρ

+

ε

ratherthan

ρ

.Acarefuluseofthisalgorithmleadstoasolutionopeningpreciselykfacilities, which leads to the desiredapproximation factor. In their analysisthe authors use slight modifications of the inequality

(

1+√

δ)

α

jd

(

j

,

i

)

+√

δ

ti (comingfromCaseC,whichisthesameintheir andouranalysis).Thegoalistoprovethat themodifiedalgorithmis

ρ

+

ε

approximate.Here

δ

and

ρ

areusedasparameters.Thereforeitissufficienttoreplacetheir valuesoftheseparameterswiththeonescomingfromourrefinedanalysis.Therestisidentical.

3. Lowerboundontheintegralitygap

In thissectionwe describe ourlower bound instanceforthe integralitygapof L Pk-Means. Itis convenientto consider firstthefollowingslightlydifferentrelaxation,basedonclusters(withwC asdefinedinSection1):

min

CC

wCxC L Pk-Means

s

.

t

.

CC:jC

xC

1

j

D

CC xC

k

xC

0

C

C

Here C denotes theset ofpossible clusters, i.e.thepossible subsetsofpoints. In an integral solution xC=1 meansthat clusterC ispartofoursolution.

Ourinstanceison theEuclideanplane, andits points arethe(10)vertices oftworegular pentagonsofside length 1.

ThesepentagonsareplacedsothatanytwoverticesofdistinctpentagonsareatlargeenoughdistanceM tobefixedlater.

Here k=5. We remark that our argument can be easily extended to an arbitrarynumber of points by taking 2h such pentagons forany integer h1 so that the pairwise distancebetween vertices ofdistinct pentagons is atleast M, and settingk=5h.

Afeasible fractionalsolutionis obtainedby settingxC =0

.

5 forevery C consistingofa pairofconsecutiveverticesin thesamepentagon(soweareconsidering10 fractionalclustersintotal).Obviouslythissolutionisfeasible.ThecostwC of eachsuchclusterC is2

(

0

.

5

)

2=0

.

5.Hencethecostofthisfractionalsolutionis10·0

.

0

.

5=52.

Next consider the optimalintegral solution,consisting of5 clusters. Recall that the radius of each pentagon (i.e. the distancefromavertextoitscenter) isr=

2 5−√

50

.

851 andthedistancebetweentwo non-consecutiveverticesinthe same pentagonis d=52+11

.

618.A solutionwithtwo clustersconsistingoftheverticesof eachpentagoncosts 10r2. Any cluster involving vertices ofdistinct pentagonscosts atleast M2

/

2, hence for M large enough the optimal solution forms clusters only with vertices of the same pentagon. In more detail the optimal solution consists of x∈ {1

,

2

,

3

,

4} clusters containing the vertices of one pentagon and 5−x clusters containing the vertices of the remaining pentagon.

(6)

Let w

(

x

)

be theminimum costassociated withonepentagonassuming that we formx clusterswithitsvertices. Clearly w

(

1

)

=5r2=5105.Regarding w

(

4

)

,itisobviouslyconvenienttochoosetwoconsecutiveverticesintheuniqueclusterof size2.Thus w

(

4

)

=1

/

2.Forx∈ {2

,

3},wenote,asiseasytoverify,thatclusterswithconsecutiveverticesarelessexpensive thanthealternatives.Forw

(

2

)

,onemightformoneclusterofsize1 andoneofsize4.Thiswouldcost 3(1+4d2)=15+835. Alternatively,onemightformoneclusterofsize2 andoneofsize3,atsmallercost 12+2+3d2=10+65.Thus w

(

2

)

=10+65. Forx=3,onemightformtwoclustersofsize1 andoneofsize3,ortwoclustersofsize2 andoneofsize1.Theassociated costinthetwocasesis 2+3d2

>

1 and2·12=1,resp.Hence w

(

3

)

=1.Sotheoverallcostoftheoptimalintegralsolutionis min{w

(

1

)

+w

(

4

),

w

(

2

)

+w

(

3

)

}=w

(

2

)

+w

(

3

)

=16+65.ThustheintegralitygapofL Pk-Means isatleast 16+

5

6 ·25=16+155. Consider next L Pk-Means.Herea technicalcomplicationcomesfromthe definitionofF whichisnot partoftheinput instance ofk-Means. The sameconstruction as above worksifwe let F contain the centersof mass ofany setof 2 or 3 points. Notice thatthis isautomatically guaranteedby the construction in[11] for 16

/ ε

23. Inthiscasethe optimal integral solutionsto L Pk-Means andL Pk-Means are thesameintheconsideredexample.Furthermoreone obtainsafeasible fractional solutionto L Pk-Means ofcost5

/

2 bysetting yi=0

.

5 for thecentersofmassofanytwo consecutivevertices of thesamepentagon,andsettingxi j=0

.

5 foreachpointi andthetwoclosestcenters jwithpositive yj.Thisconcludesthe proofofTheorem2.

Declarationofcompetinginterest

The authors declare that they haveno known competingfinancial interests or personal relationships that could have appearedtoinfluencetheworkreportedinthispaper.

Acknowledgements

WorksupportedinpartbytheNSFgrants1909972andCNS-2001096,theSNFexcellencegrant200020B_182865/1,the BSFgrants2015782and2018687,andtheISFgrants956-15,2533-17,and3565-21.

References

[1]SaraAhmadian,AshkanNorouzi-Fard,OlaSvensson,JustinWard,Betterguaranteesfork-meansandEuclideank-medianbyprimal-dualalgorithms, in:ChrisUmans(Ed.),58thIEEEAnnualSymposiumonFoundationsofComputerScience,FOCS2017,Berkeley,CA,USA,October15-17,2017,IEEE ComputerSociety,,2017,pp. 61–72.

[2]SaraAhmadian,AshkanNorouzi-Fard,OlaSvensson,JustinWard,Betterguaranteesfork-meansandEuclideank-medianbyprimal-dualalgorithms, SIAMJ.Comput.49 (4)(2020).

[3]DavidArthur,SergeiVassilvitskii,Howslowisthek-meansmethod?,in:NinaAmenta,OtfriedCheong(Eds.),Proceedingsofthe22ndACMSymposium onComputationalGeometry,Sedona,Arizona,USA,June5–7,2006,ACM,2006,pp. 144–153.

[4]DavidArthur,SergeiVassilvitskii,k-means++:theadvantagesofcarefulseeding,in:NikhilBansal,KirkPruhs,CliffordStein(Eds.),Proceedingsof theEighteenthAnnual ACM-SIAMSymposiumon DiscreteAlgorithms,SODA2007, NewOrleans,Louisiana,USA, January7-9, 2007, SIAM,2007, pp. 1027–1035.

[5]PranjalAwasthi,AvrimBlum,OrSheffet,StabilityyieldsaPTASfork-medianandk-meansclustering,in:51thAnnualIEEESymposiumonFoundations ofComputerScience,FOCS2010,October23-26,2010,LasVegas,Nevada,USA,IEEEComputerSociety,2010,pp. 309–318.

[6]PranjalAwasthi,MosesCharikar,RavishankarKrishnaswamy,AliKemalSinop,ThehardnessofapproximationofEuclideank-means,in:LarsArge, JánosPach(Eds.),31stInternationalSymposiumonComputationalGeometry,SoCG2015,June22-25,2015,Eindhoven,TheNetherlands,in:LIPIcs, vol. 34,SchlossDagstuhl- Leibniz-ZentrumfürInformatik,2015,pp. 754–767.

[7]Maria-FlorinaBalcan,AvrimBlum,AnupamGupta,Approximateclusteringwithouttheapproximation,in:ClaireMathieu(Ed.),Proceedingsofthe TwentiethAnnualACM-SIAMSymposiumonDiscreteAlgorithms,SODA2009,NewYork,NY,USA,January4-6,2009,SIAM,2009,pp. 1068–1077.

[8]LucaBecchetti,MarcBury,VincentCohen-Addad,FabrizioGrandoni,ChrisSchwiegelshohn,Obliviousdimensionreductionfork-means:beyondsub- spacesandtheJohnson-Lindenstrausslemma,in:MosesCharikar,EdithCohen(Eds.),Proceedingsofthe51stAnnualACMSIGACTSymposiumon TheoryofComputing,STOC2019,Phoenix,AZ,USA,June23-26,2019,ACM,2019,pp. 1039–1050.

[9]VincentCohen-Addad,C.S.Karthik,Inapproximabilityofclusteringinlpmetrics,in:DavidZuckerman(Ed.),60thIEEEAnnualSymposiumonFounda- tionsofComputerScience,FOCS2019,Baltimore,Maryland,USA,November9-12,2019,IEEEComputerSociety,2019,pp. 519–539.

[10]VincentCohen-Addad,PhilipN.Klein,ClaireMathieu,Localsearchyieldsapproximationschemesfork-meansandk-medianinEuclideanandminor- freemetrics,SIAMJ.Comput.48 (2)(2019)644–667.

[11]Wenceslas FernandezdelaVega,MarekKarpinski,ClaireKenyon,YuvalRabani,Approximation schemesfor clusteringproblems,in:LawrenceL.

Larmore,MichelX.Goemans(Eds.),Proceedingsofthe35thAnnualACMSymposiumonTheoryofComputing,June9-11,2003,SanDiego,CA,USA, ACM,2003,pp. 50–58.

[12]ZacharyFriggstad,MohsenRezapour,MohammadR.Salavatipour,LocalsearchyieldsaPTASfork-meansindoublingmetrics,SIAMJ.Comput.48 (2) (2019)452–480.

[13]KamalJain,VijayV.Vazirani,Approximationalgorithmsformetricfacilitylocationandk-medianproblemsusingtheprimal-dualschemaandLa- grangianrelaxation,J.ACM48 (2)(2001)274–296.

[14]WilliamB.Johnson,JoramLindenstrauss,ExtensionsofLipschitzmappingsintoaHilbertspace,Contemp.Math.26(1984)189–206.

[15]TapasKanungo,DavidM.Mount,NathanS.Netanyahu,ChristineD.Piatko,RuthSilverman,AngelaY.Wu,Alocalsearchapproximationalgorithmfor k-meansclustering,Comput.Geom.28 (2–3)(2004)89–112.

[16]EuiwoongLee,MelanieSchmidt,JohnWright,Improvedandsimplifiedinapproximabilityfork-means,Inf.Process.Lett.120(2017)40–43.

[17]StuartP.Lloyd,LeastsquaresquantizationinPCM,IEEETrans.Inf.Theory28 (2)(1982)129–136.

[18]KonstantinMakarychev,YuryMakarychev,IlyaP.Razenshteyn,PerformanceofJohnson-Lindenstrausstransformfork-meansandk-mediansclustering, in:MosesCharikar,EdithCohen(Eds.),Proceedingsofthe51stAnnualACMSIGACTSymposiumonTheoryofComputing,STOC2019,Phoenix,AZ, USA,June23-26,2019,ACM,2019,pp. 1027–1038.

(7)

[19]JiríMatousek,Onapproximategeometrick-clustering,DiscreteComput.Geom.24 (1)(2000)61–84.

[20]RafailOstrovsky,YuvalRabani,LeonardJ.Schulman,ChaitanyaSwamy,TheeffectivenessofLloyd-typemethodsforthek-meansproblem,J.ACM59 (6) (2012)28.

[21]AndreaVattani,k-meansrequiresexponentiallymanyiterationsevenintheplane,DiscreteComput.Geom.45 (4)(2011)596–616.

Referensi

Dokumen terkait

Judul Jumal Ilrniah {Artikel Jumlah Penulis Status Pengusul ldentitas Jumal ilmiah LEMBAR HASIL PENILAIAN SEJAWAT SEBIDANG ATAU PEEJT REVIEW KARYA ILMIAH : JURNAL ILMIAH Analisis

At various times in my life I have come across so-called officially recognized facts in South Afri- can history from the Afrikaner's point of view that, if entirely correct, would