• Tidak ada hasil yang ditemukan

CSX456 Advanced Data Mining

N/A
N/A
Protected

Academic year: 2024

Membagikan "CSX456 Advanced Data Mining"

Copied!
2
0
0

Teks penuh

(1)

DEPARTMENT OF COMPUTER SCIENCE &

ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY PATNA

Ashok Raj Path, PATNA 800 005 (Bihar), India

Phone No.: 0612 – 2372715, 2370419, 2370843, 2371929, 2371930, 2371715 Fax – 0612- 2670631 Website: www.nitp.ac.in

CSX456 Advanced Data Mining

L-T-P-Cr:3-0-0-3

Pre-requisite: Fundamental knowledge on Frequent Pattern Mining,Classification and clustering algorithms.

Objectives/Overview:

 Advanced concepts and technologies of mining association rules, cluster analysis, stream data mining, time series data mining, sequence pattern mining, text mining and web mining.

Course Outcomes:

At the end of the course, a student should able to:

S.No Course Outcome Mapping to POs

1 Analyze Algorithms for sequential patterns PO1, PO2, PO3 2 Determine patterns from time series data PO1, PO2, PO3 3 Understand Data Stream Mining models and methods PO1, PO2, PO3 4 Distinguish computing frameworks for Big Data

analytics.

PO1, PO6, PO12

5 Apply Graph mining algorithms to Web Mining PO1, PO2, PO3, PO6, PO12

UNIT I: Sequential Pattern Mining Lectures: 10

Concepts, primitives, scalable methods for mining sequential patterns – GSP, SPADE, PrefixSpan, Mining Closed Sequential Patterns, Mining Multidimensional and Multilevel sequential Patterns.

UNIT II: Mining Time series Data Lectures: 04

Periodicity Analysis for Time-Related Sequence Data, Trend analysis, Similarity search in Time-series analysis;

(2)

UNIT III: Mining Data Streams Lectures: 8 Methodologies for stream data processing and stream data systems, Frequent pattern mining in stream data, Sequential Pattern Mining in Data Streams, Classification of dynamic data streams, Class Imbalance Problem;

UNIT IV: Graph Mining Lectures: 8

Mining frequent subgraphs, finding clusters, hub and outliers in large graphs, Graph

Partitioning; Web Mining, Mining the web page layout structure, mining web link structure, mining multimedia data on the web, Automatic classification of web documents and web usage mining.

UNIT V: Distributed Data Mining Lectures: 8

Distribute data mining framework, Distributed data source, Distributed data mining

techniques, Distributed classifier learning, distributed clustering, distributed association rule mining and Challenges of distributed data mining;

Text/Reference Books:

1) Data Mining Concepts and Techniques.2nd Edition, Elsevier, 2011. J Han and M Kamber.

2) Introduction to Data Mining. Addision Wesley,2006, Pang Ning Tan, M Steinbach, Vipin Kumar,

3) Sequence Data Mining. Springer, 2007, G Dong and J Pei

Referensi

Dokumen terkait

Data hasil seleksi yang akan digunakan untuk proses data mining , disimpan dalam suatu berkas, terpisah dari basis data operasional...

Association Rule Mining (ARM) merupakan task dari data mining yang berfungsi khusus untuk mencari aturan asosiasi antar item s dalam frequent itemsets pada dataset yang

Abstract : This study proposed an encoding scheme of sensing data for efficient data stream mining the environment which takes into account the frequency

Association Rule Mining (ARM) merupakan task dari data mining yang berfungsi khusus untuk mencari aturan asosiasi antar items dalam frequent itemsets pada dataset yang

Data hasil seleksi yang akan digunakan untuk proses data mining, disimpan dalam suatu berkas, terpisah dari basis data operasional...

The proposed method is based on prime number characteristics for frequent pattern mining including a data transformation technique, an efficient tree structure called Prime-based

Keywords—Data mining, High speed data streams, Data streams, High dimensional anomay detection, Outlier detection, MOA, Simple COD, MCOD I.. INTRODUCTION An anomaly is a data point

Association Rule Mining • Mines frequent patterns, correlations, associations, or causal patterns from transaction data • Finds rules used to predict the occurrence of a specific