• Tidak ada hasil yang ditemukan

Introduction t Th - IDR

N/A
N/A
Protected

Academic year: 2024

Membagikan "Introduction t Th - IDR"

Copied!
12
0
0

Teks penuh

(1)

Intro d uctio n t

Th« advantage o f tranam itting analogue s ig n a ls in a d i g i t a l f o r * are w all known and the procaaaae o f co n v e r tin g the analogue s ig n a le In t o a d i g i t a l format or eource encoding techniques have been stud ied in g rea t d e t a i l .

One o f the techniques o f a/ D conversion known as Pulse Code Modulation (PCM) In v o lv in g sam pling q u a n t is in g and coding waa developed q u it e e a rly and communication lin k s u s in g PCM have been in operation f o r a long tim e. W hile PCM was b e in g s t u d i e d , another form of d i g i t a l encoding known as D i f f e r e n t i a l encoding was Invented [C - 9 ], and aa a s p e c ia l oase o f D i f f e r e n t i a l ancodlng

Oeltam odulation (DM) [D-4] waa proposed. Even though adaptive deltam odulation (ADM) re q u ire s M e coder f o r each channel in a m ultiplexed system , two fa c to r s have co n tributed to the grow ing in t e r e s t in the ADM. They a r e , the r e l a t i v e l y low coat o f the encoder and the promise o f good q u a l it y o f transm ission at r e l a t i v e l y lower b i t r a t e s as compared to the PCM.

The ADM encoders d e sc r ib e d in the l i t e r a t u r e have t h e i r own d is a d v a n t a g e s . Some

©1

the im portant drawbacks fo r example are

* f a l l in the output am plitude at the h ig h e r message frequen- d e s i ( l i ) a f a l l in the s ig n a l to n o i s e r a t i o (S K R ) at th e h ig h er input fr e q u e n c ie s * and ( i l l ) a r e l a t i v e l y moderate improvement in the SBR w it h an in c r e a s e in the T ransm ission r a t e . Thus in the ADM eystema an improvement o f only 9 dfl ( s i n g l e in t e g r a t i o n ) o r

15

dB

Copyright

IIT Kharagpur

(2)

(double In t e g r a t io n ) per octave in c r e e s e in the t ra n a a ie a io n r e t * h a . b##n obtained w h ile the SNR in th# PCM incr#a e #e #xp o n #n tia lly w ith th# b i t r a t # .

Th# a ia o f th# pr###nt in v e s t ig a t io n ha# been to d#slgn ADM coder# that would tak# ear# o f or r#aov# soa# o f th# d e fe c t s

■entloned above and thua d#v#lop sy s te a s which ar# b # tt e r and

e f f i c i e n t w hil# # t i l i r e t a in in g th# s l a p l l c l t y o f th # DM tec h n iq u e . Th# in v e s t ig a t io n s hav# lad to th# d#v#lopa#nt of fo u r

d i f f e r e n t syst#ms #ach h aving aoet ap#oial c h a r a c t e r is t ic and perform ance. A ll the ayaten# b e lo n g to the e la a a of encoder#

u s in g Adaptive Q u an tisatio n w it h Backward s s t l a a t io n (AQB) in th#

sens# that th# a da p tiv e atrat#gy i s c o n tro lle d by th# s y s t # » output.

Th# syst#a# hav# b##n c l a s s i f i e d # ith e r on th# b a a is of th#

t#chniqu# o f a d a p ta t io n , th# p#rforasnc# a c h ie v e d , or th# k in d o f approximation in v o lv e d . Thus, the systsas hav# b#sn ca lle d

s a p lit u d # c o n tr o lle d two loop ADM, Slop# C ontro lled two loop ADM, F la t Sp#ctrua ADM and M u l t id ig it ADM s y s t e a s . T h «s « sy st#a# hav#

only on# th in g in coanon, that ia a l l o f th#a us# th# id#a o f a two loop cod#r f o r f u l f i l l i n g th# v ario us r # q u lr# a # n ts»

TWO LOOP ADAPTIVE DELTA MODULATORS

Th# p h ilo so p hy o f th# two loop ADM has b##n based t o son#

#xt#nt on th# two loo p sy stea s proposed w h ich war# d#v#lop#d to r#aov# th # freq uency d is t o r t io n at th# hig h#r end o f th# ao ssa g # band in a DM c o d e r . The two loo p ADM c o n s is t s of s s ia p l# s in g le

DM around w hich an e x tr a fee d b a c k loop c o n t a in in g th# a dap tatio n l o g i c has b##n u s e d . The use o f the fe e d b a c k loops

(ii>

Copyright

IIT Kharagpur

(3)

( ( t i l )

has be«n ahown [.C-2] to have s o n * id v a n t a |t i in clu d in g tht uee of a double in t e g r a to r In tha feedback path w hich y ie ld a a higher SNR without the othor a ssociated problems o f s t a b i l i t y and id la channel noise* Thla is achieved by a s k in g the a da p tiv e lo g ic operate only for la rg e r s ig n a ls and by a llo w in g the sy s te a to degen erate into a s in g le in teg ra tio n DM at low input a ig n a la * T h is scheme also avoida tha need fo r a b ia s that must be used to keep the ADH in the i d l i n g c o n d it io n .

Two d if f e r e n t scheaea have been developed fo r o b t a in in g the control s ig n a l which v a r is s the am plitude of the fea d b &c k p ulse in the second feedback loop and thus changss the step s is e * In the a a p lit u d s con trolled two loop AON, the control s i g n a l is developed by d i f f e r e n t i a t i n g , r e c t i f y i n g and f i l t e r i n g the output b i t stream and i t has been shown that t h is c o n tr o l s ig n a l is

in v e r s e ly p ropo rtional to the an p litu d e of th e input s ig n a l* The control s ig n s l v a r ie s ths a a p lit u d s o f the fee d b a c k pulse by

c o n t r o llin g the r e s is t a n c e o f a FET in a d iv i d e r c ir c u it * T h is p ulse output i s then integrated in a d ouble In te g r a t o r and a fte r s u it a b le le v e l adjustm ent, ths reconstructed s ig n a l la fa d back to ths input of the d i f f e r e n t i a l comparator, thereby e o a p le t in g ths second loop* Ths decoder w i l l o f c o u r s e , be Just the fesdb sck path o f the encoder* The c i r c u i t has been ana£yaad by t a k in g

ths input to be a s in u s o id * A r e l a t io n s h ip has baan e s t a b lis h e d batween tha feed back p u ls e a a p l it u d e , tha in p u t am plitude and the norm alised number o f t r a n s it io n s in tha d i g i t a l output par c y c le . Trom t h is r e l a t i o n s h i p , the v a r ia t io n o f SNR over tha input range w ith re sp e c t to th a peak SKR, has been d e r iv e d .

Copyright

IIT Kharagpur

(4)

I ( i v )

For • s ia u f o l d a l Input ths SNR o f the l y i t M la the coapanded r « f io o la o f the f o r a

f SNR -

ao

log k < ■■ T ’t-

f a

3 /2

. ( D

v h t rt f r Is the clock r a t # , f is t h « fre q u en cy of th« In p u t ,

k

1

> • constant dapeodant upon tha In t e g r a t o r t l a e constants and tha f a i n o f tha lo o p s . In tha uncowpanded r e g io n , where the s y a t M Is a s l a p i s DM, ths SNR w i l l f a l l w it h tha Input am plitude*

In ths p r a c t ic a l l y ia p le a e n te d s y s t e a , ths a l n g l t l n t i g r a * tor has a pols s t 8 0 0 H s , w h ile ths d oubls In t e g r a t o r has p o lss at 8 0 0 and 1600 Hz w ith a asro at 3 0 0 0 Ha. For these v a lu ta at f r ■ 32 K H s, ths peak SNR i s t h s o r a t lc a lly 3 2 dB f o r a 6 0 0 Ha sinew a r e , and w it h a coapandlng r a t i o o f 0 , 0 3 , ths SNR should b a above 2 6 dB ovsr 35 dB input r a n g e . Tha ex p erim en ta lly aeaaured va lu es show a psak SNR o f 3 0 dB w it h SNR g r e a e r than 2 6 dB ovsr an Input r a n g * o f 3 0 dB* Ths d s c r s a s s In ths dynaalc ranga a r is e s because at h ig h er In p u t le v e la th s SNR la lowered due to the alope overload - a f a c t vldeh was not c o n sid ered i n d e r iv in g the

equation ( l ) . T he depend ence, o f the constant k on the b r e a k - p o in t s , la such t h a t a r e d u c t io n of the in t e g r a to r corner

fr e q u e n c ie s w i l l in c r e a s e the SNRj b u t w i l l r e s u l t in a poorer frequency r e s p o n s e . The v a lu e a used in the experim ental ays tea have been found to b e a good co a p ro a ia e betw een a h ig h SNR and a good fr e q u e n c y r e s p o n s e . Tho speech q u a l i t y a l e o has been found to be good at a b i t r a t a o f 32 K b / a . Aa expected f r o a

fn la the badnwidth &, /*■> */ are the In te g r a t o r b rea k p o in ts and

Copyright

IIT Kharagpur

(5)

<*)

tq n , ( l ) , the SNR has baan meaaured and found to improve at a rata o f about

9

d B /o cta v a change In f r «

Tha aaeond method o f o b ta in in g the con trol s ig n a l y la ld a a con trol s ig n a l which la proportional to tha naan input s l o p a

9

and tha aystem haa baan ca lle d tha Slope C ontro llad Two Loop ADM.

Tha control a ig n a l la obtained In tha fo llo w in g manner. Tha

\

d i g i t a l output o f a DM la delayed In a a e rie s o f S h i f t k e g ia t e r e , and the outputo o f theee ara fad to a co in ciden ce d e t e c t o r . Vhen M aucceaaive b i t a o f tha d i g i t a l output are h ig h , tha detector w i l l produce an output which la than f i l t e r e d by a s y l l a b l e f i l t e r of a la rg e time constant to g iv e tha control s ig n a l* T h is s ig n a l is now used to vary th e a n p litu d e o f tha feedback p u ls e , as b e fo r e , but now in a m u lt ip lie r c ir c u it in s te a d o f s d i v i d e r . The re st o f the c ir c u it is s im ila r t o the Amplitude C ontro lled Two Loop ADM.

The SNR o f the system has been shown t o be r _ 5 / s ) i

SNR » 2 0 log

. . (

2

)

w h ich i s s im ila r to e q n . ( i ) except fo r the fa c t o r which Is the a f f e c t i v e frequency o f the input spectrum d efin e d by

2 K t m

aJ to* s(« )d a

2

jrf

J s (b t ) m

where s(co ) Is the power spectrum o f tha i n p u t . For a s i n u ­ s o i d a l s i g n s ! e q n . (

2

) w i l l bs s im ila r t o e q n . ( t ) .

Copyright

IIT Kharagpur

(6)

(V i )

For a 8 0 0 Hi a in ewave, at a clock r a t e o f 32 KHs, the

t h e o r e tic a lly calculated dynaaic raogt la 38 dB (fo r SNR ^ 26 dB) w h ile tha e x p e r ia e n t a lly aeaaured va lu e la 33 dB* I t haa a la o baan aatabllahad that tha numbar o f b it a M, that are to b a chockeda depende upon the eloek r a t a . K eeping the frequency raaponaa aa tha c r i t e r i o n , tha v a lu e of M ■ k y ia ld a good r a a u lt a fo r clock rataa o f 25 Kite and upwards upto 8 0 K H z . Below 25 KHz M - 2 gives a v a s t ly inproved perform ance. Tha a n p litu d a va frequency raaponaa of tha elo p e co n tro lled ayaten la b a tte r than that o f the a a p lit u d e con trolled a y s te n . The SNR lnprovenent ia aga in about 9 dB par octave in c rea se in the clock ro te* SNR aaasurenents fo r a narrow band n o is e s ig n a l have bean nade and tha r a a u lt a are only s l i g h t l y

poorer than tha r a a u lt a fo r a 8 0 0 Hm s in u s o id * Speech t e a t s have been made and tha alopa con trolled ayaten la found to g iv e good q u a l it y o f apeech even at

16

K b /a . But th ia ayaten a t i l l haa tha d e fe c ta o f lower SNR at the higher input fr e q u e n c ie s and no change

in the r a t e of loq>roveaent o f SNR w it h b it r a t e haa baan achieved*

Aa aentio nad abo ve, tha SNR and a a p lit u d e at h ig h er ueasaga freq u e n c ie s is poorer than tha SNR at lower fr e q u e n c ie s even in the alopa co n tro lled two loop ADM* In s i t u a t io n s l i k a t e la a e t r y ,

f a c e l n i l e , e t c * , where i t Is e a a e n t ia l that both a a p lit u d e and SNR r a a a in conatant ovar the a n t lr e aaasage baud* nona o f tha ayataaa d iacu a sed above w i l l work a a t ia f a c t orily* A F la t S p e c t r in ADM haa baan developed w it h t h ia purpoee In v ie w and tha ayaten haa baan daaign ed to o p t ia la e the SNR ovar tha aaaaago b an d . Tha f l a t spectru a ADM la o s a e n t l a l l y a alopa c o n tr o lle d two loop ADM w it h a w d ific a t Io n a * Tha a a p lit u d e o f the feed back pulae la c o n tr o lle d through *a n u l t i p l i e r as b e f o r e , but the o u tp u t , In stea d of b e in g

Copyright

IIT Kharagpur

(7)

(vii)

Integ rated i s passed through a second order lowpass f i l t e r w ith a cut o f f frequency equal to the aessa gs bandw idth f ^ * The input s ig n a l and t h is f i l t e r e d s ig n a l ore d if f e r e n c e d in a

d if f e r e n c e a a p l i f i e r and a forward in t e g r a to r is used to saoothen the error s ig n a l* T h is error e ig n s l is the input to the b a s i c DM c ir c u it whose output has bsen used to control the second loop*

The SNR o f the s y s t s a has been shown to be independent o f the s ig n a l frequency* but is found to be lower than that the othc*r two loop ADM system s. The SNR of the f l a t s p e c tr u a ADM can be w ritten as

f

3/2

SNR • 2 0 log It", ;--~ . . ( * * )

( « . » h ' p • *

9

6

t b e in g the In te g r a t o r oorner frequency and k is a const an t.

The SNR o f the p r a c t ic a l l y instrum ented s y s t e a is* at 40 JUfe, the saa e as the SNR o f the slope c o n tr o lle d sy e te a o p eratin g at

32 KHa, but w ith a d iffe r e n c e now that the SNR Is constant over the aessage band* The SNR c h a r a c t e r is t ic s o f t h is sy s te a at kO KHs is a la o s t e q u iv a le n t to that of a 7 b i t PCM. Here a g a in , the SNR In c r e a s e s by 9 dB esch t la e the clock r a t e is doubled*

M u lt id ig it A daptive D e lta a o d u la t lo n i

Even though the SNR has been o p t la ls e d over the taeaaage b a n d , a l b e i t at a h ig h e r b i t r a t e , the r a t a o f In c r e a s e o f the SNR w it h clock r a t e has r e a a in e d unchanged* In order to ob tain a b e t t e r SNR at the eaae b i t r « t e and a l s o t * laprove the r a t e of In c r e a s e o f SNR the a u l t l d i g i t ADM s y s te a [C-3] has besn

Copyright

IIT Kharagpur

(8)

( v i i i )

proposed* In t h is aystem, ths error s ig n a l forced between the Input end tha reconetructed s i g n s ! st tha encoder is encoded in an a u x i l i a r y ADM and tranamltted* By t h is proceea an approximate fo ra of the error le a v a ia b le st the decoder and s b e tte r

approxim ation of the input cen be obtslned* T h is p r in c ip le csn be extended fu r th e r such thst the erro r in the e u x i l i s r y coder is coded in another ADM and so on upto N coders* The d l g i t s l streams of s l l coders are in terlesv ed end at th e r e c e iv e r they ere

d em u ltip lex ed , decoded a ep arately and the a nalo g e ig n a ls a r e f i n a l l y added. The o v e ra ll SNR w i l l be the sun of th e SNR o f each co d er, b u t with a d iffe r e n c e * Since the error e ig n a l

occupiea a wide bandwidth it has to b e b an d lim ite d * However, i f we are to reproduce the overload erro rs w e l l , the bandwidth o f the f i l t e r must be s l i g h t l y la rg er than the ae sa a ge b andw idth. Becauee o f the f a c t that the input to the e u x il is r y coder hss s f l a t*

spectrum and i t s bandw idth is more, the SNR o f the a u x i l i a r y coder has been estim ated to be about 9 dB poorer ae compared to the

main c o d e r .

The SNR o f an AIM can b e w r itte n la t h e form

SNR - 2 0 l o g j k , f £ ]

* * , r # w<* ere dependent upon the aystem ussd and o( i s u s u a lly 3 / 2 or 5 / 2 . Prom th le the SNR o f a N- digit ADM the system can be w r it t e n as

.f A

(

8

H R )m . 2 0 N lo g k , (S & ) - 9 (N - 1) . . ( J )

where t R i s the o v a r a ll transm ission r a t e , the clock

Copyright

IIT Kharagpur

(9)

I

( i x )

r a t * o f each oo der, and a 9 dB d egrad ation f o r eaoh a u x ilia r y

eodor haa b **n aaauaed* U sing aquation (*») i t haa b#*n ahoi*i that for a p a r t ic u la r t r a n # »ia *io n r a t a f R» tha SNR la maximvm for an optiaum v a iu * o f N given by

"o p t * ( 0 -368 f R ) ( ° ‘ 355 k 1 )l/c( • • ( 6 ) T h ia fu rth er i a p l i e s that t h * o p tia u a c o n d it io n w i l l occur only i f eech in d iv id u a l coder operatee at a ra te d e f i n e d aa the b a e lc p r f f rB where

f R 2 ,7 1 8 ________ (rj\

t au * Z, * \\/M ** '

HB opt ( 0 . 3 5 5 k , )

f r o a Eqn. ( 4 ) the SNR iaproveaent w ith tra n a a ie s io n r a t e can be c a lc u la te d aa

(SN R )N ■ 9N d B /o c ta v e .« (

8

)

f o r

0

( - 3 /2

Thus f o r N m 1 ,2 * 3 » •« * the i a p r o v c M n t w i l l b e 9# 1 8 , 27» • • • dB each t ia e fR ia d o u b le d . I t should be reae a b e red that th e SNR at any v a lu e o f f n cannot exceed the v a lu e achieved fo r N ■ N

k opt

I t has b een shown that a bound e x ia t s on the SNR o f the N d i g i t ayetea and t h ia bound haa been shown to b e of the f o r a

f

(S N R )n ^ 5»9n ♦ 9 where n * ~ ia the a o r a a lis e d trans-

M is s io n r a t e . O 'N e a l £0-23 haa d e r iv e d the SNR bouade fo r PCM, DPCM and a g e n e r a l p r e d ic t iv e c o d e r . The r e s u l t s are

Copyright

IIT Kharagpur

(10)

<*)

SNR*£ 6m ♦ 13*6 5 fo r a P r a d ic t iv * cod«r

6

n ♦ 8 . 5 fo r DPCM

^

6

n -

7 . 3

f o r UO“ PCH

Tha SNR bound la alaoet the aane as fo r DPCM and la b e t t e r than that of PCM eyetem*

An experim ental dual-ADM eyatem has been implemented u s in g s s lo p e c o n tro lled 2 loop ADM aa the b ae ic coder* , The meaoure*

vents on the eyetem show that at 32 K b /a th e ay a tea hae a peak SNR of

33

dB and s SNR g reater than 2 6 dB over an input r a n g * of 38 d B . The SNR v a r ia t io n over the meeeage band ia auob le s s than thst o f th e slop e controlled two loop ADM* The exp erim en tally aeaaured SNR improvement ie 15 d B /o c ta v e change o f b i t r e t e as ag a in s t the expected re ts of

18

d B /o c t a v e . T h s dyaam ic range improvement 1s abo ut 5 dB w h ile the p r e d ic t e d in cre a e e i s

6

d B .

COMPARISONS

1

The v a rio u s systems hsve been instrum ented and tested as d esc r ib e d e a r l i e r . In c o n clu sio n the f o l l o w i n g comparisons can be made w ith other system s. T h s two loop ADM coder I s b e t t e r than most o f the other ADM codere [j-

8

] , and the s lo p e som trolled

two loop ADM i s o n ly s l i g h t l y i n f e r i o r to the Adaptive D i f f e r e n t i a l PCM (ADPCM) [c-

8

] . They are a l s o s u p e rio r t o FCN up to t r a n s *

a l a s ion r a t e a of 7 0 K b / s . The d u a l ADM system o f f e r s s b e t t e r perform ance than ADPCM up to a b i t r a t e of 4 5 K b / s . I t is a ls o soon th at a d ual ADM is no t s u i t s b l e f o r low b i t r a t e w o rkin g, p a r t ic u l a r l y b e lo w

30

K b / s .

Copyright

IIT Kharagpur

(11)

(*i)

A ll the t y s t m have beeo teeted in the presence o f channel n o ise* The two loop codere a re found to be h ig h ly

r a e ls t a n t to channel erro rs and good epeech q u a l i t y i s obtained even at error r a t e e of t /2 0 0 * At 16 K b /s i n t e l l i g i b l e speech is ob tained at er ro r r a t e * of 1 /1 0 0 * The d ual ADM has been shown to b e le s e r e s is t a n t to channel errors and beyond a p a r t ic u la r rate i s poorer ae compared to a s in g l e ADM. The speeoh q u a l it y o f the two loop a ysteo haa been found to be o o aparable to o r b e t t e r than the e x i s t i n g aystens on the b a s i s of coaparison w ith speech saa p le s o f other systeos Demonstration records a v a il a b l e along w ith r e f * £ j~

8

t G-iQ •

Copyright

IIT Kharagpur

(12)

COMPARISONopTH£ PROPOSEDSCHEMESWITHVAKIOUSDIGITALINCODINGSCHEMES

a

• •

B 4* >

• 0

* b 0 0 0 0

0 > 0 > > > 4*

fa +* 0 0 0 0 <*4 «H

a -n 4* \ 4* w

B JO « o O S3 o U o •H

«4 0 0 o •o 0 0 o •o

£ s . V. 'N, \ V. V. \

as ** n n a fi fi a fi

T, -H T) •o V ■o V •o T)

W » 1

9s <h o\ CM *\ Os NO

fa fa CM

0 o 1

fa * O

C tm

• O M

O ^ M

H C 0 >» N CM CM ^r r> J9

CM 1 1 1 i i i 1

fi fa O O o o o o o

Q 1 f H 0 »“

I H O I

r o « 3 M

u < » i o * 7

o CM

s*0 NO 4»

0 CM 9

h a. so a CD fi fi n fi fi

8 & A S •o *0 *0 *0 TJ

c c as o r\ •9 ri ao O oo CM 1

£ j j s a n r\ rs r\ n -*

oo

40 S3 to a a fi o a fi fi

b <0 Tl * T> *0 V V

0 « o

• r. ^ o O * rv 00 cn »ry CM

a. tA w n r* r\ n CM r> N

o ou

4* V . 0 0 0 0 0

0 0 V. S \ \ V.

fa 0 fi fi A fi fi fi fO p

.1 • & fi X tt * C S

♦* M

•H • M CM O CM O O CM vO

a) a o r* n r> ir> CM

<0

o

fa 4*

0 0

M 8 £

u x 1 H 0

4* *■4 o o 0 1

e < U l fa

0 o 4*

0 fa B X 6 «4 X

X 4 » X S Q 3 jO P

• a c a fa o i p— \

« < o * 4* 00

3 e O S #l

*» a a 9 Hr-i xs X i

•* e • 0 a 3 h r- c u l

H 0 0. 0 C 0 1 ■W e

0 *4 4* O 9 r-n 0 X

1 4* «<UJ H & 9

< cm » cm

p4 8 * S

X TQ n 0

3 8 . a,

•0 •a ft. u Q 5 Q O

0 A

M m M w 00 «*

CM r> & Ift oo

Copyright

IIT Kharagpur

Referensi

Dokumen terkait

Copyright IIT Kharagpur RF SEM SIP SI-ATRP SFRP SPR TEA THF TPE TGA UV Wt.% Reinforcement factor Scanning electron microscopy Surface-initiated polymerization Surface-initiated ATRP

Copyright IIT Kharagpur ABSTRACT With the increased popularity and wide spread use of the grid connected Double Output Induction Generator in the Variable Speed Constant Frequency

Copyright IIT Kharagpur vii Abstract The thesis entitled “Synthesis and Electrocatalytic Activity of Pt and Pt-Pd Bimetallic Nanoparticles for Low Temperature Fuel Cell

Copyright IIT Kharagpur ix 2.2.2 Limitations of thermodynamic modelling 35 2.2.3 Prediction of microalloy precipitation during solidification 36 2.2.3.1 Nucleation of precipitates

Copyright IIT Kharagpur CONTENTS Title Page i Certificate of Approval v Certificate vii Acknowledgement ix Declaration xii List of Symbols xiii Abstract xv Contents xvii

Copyright IIT Kharagpur iii CONTENTS Title Page i Certificate of Approval iii Certificate iv Acknowledgements v Declaration vi List of Abbreviations vii List of Symbols ix

Copyright IIT

Copyright IIT Kharagpur Abstract The dissertation entitled “Syntheses of Mesoporous Materials through Soft Template Assisted Routes” attempts to prepare mesoporous Fe3O4@mZrO2