Ascidian Zic Genes
6.4 Conclusions
Two ascidian Zic genes, which are likely to have arisen by duplication in the tuni- cate lineage, are expressed in mesodermal and neural lineages during embryogen- esis. These Zic genes are essential for specification of these cell lineages. Maternally expressed Zic-r.a activates target genes immediately after the zygotic genome is activated at the 16-cell stage. These Zic-r.a target genes are required for specifica- tion of mesenchyme and muscle. At the 32-cell stage, Zic-r.b begins to be expressed in the marginal cells of the vegetal hemisphere. These cells contribute to mesoder- mal tissues and part of the nerve cord. In the posterior marginal cells, Zic-r.b works cooperatively with targets of Zic-r.a to specify mesenchyme and muscle fate. In the anterior cells, it plays a role in specifying the notochord fate. In the animal hemi- sphere, Zic-r.b expression is repressed until the 64-cell stage. Precocious expression of Zic-r.b at the 32-cell stage ectopically activates the notochord fate, and preco- cious expression at the 64-cell stage expands the brain region in expense of the placode-like region. The expression of Zic-r.b is transient and becomes undetectable before differentiation. Thus, Zic genes work first for segregating mesodermal cells within endomesodermal cells and then for segregating neural cells within ectoder- mal cells.
References
Anno C, Satou A, Fujiwara S (2006) Transcriptional regulation of ZicL in the Ciona intestinalis embryo. Dev Genes Evol 216(10):597–605. https://doi.org/10.1007/s00427-006-0080-9 Aruga J (2004) The role of Zic genes in neural development. Mol Cell Neurosci 26(2):205–221.
https://doi.org/10.1016/j.mcn.2004.01.004
Aruga J, Kamiya A, Takahashi H, Fujimi TJ, Shimizu Y, Ohkawa K, Yazawa S, Umesono Y, Noguchi H, Shimizu T, Saitou N, Mikoshiba K, Sakaki Y, Agata K, Toyoda A (2006) A
103
wide-range phylogenetic analysis of Zic proteins: implications for correlations between pro- tein structure conservation and body plan complexity. Genomics 87(6):783–792. https://doi.
org/10.1016/j.ygeno.2006.02.011
Brunetti R, Gissi C, Pennati R, Caicci F, Gasparini F, Manni L (2015) Morphological evidence that the molecularly determined Ciona intestinalis type A and type B are different species: Ciona robusta and Ciona intestinalis. J Zool Syst Evol Res 53(3):186–193. https://doi.org/10.1111/
jzs.12101
Caputi L, Andreakis N, Mastrototaro F, Cirino P, Vassillo M, Sordino P (2007) Cryptic speciation in a model invertebrate chordate. Proc Natl Acad Sci U S A 104(22):9364–9369. https://doi.
org/10.1073/pnas.0610158104
Chiba S, Jiang D, Satoh N, Smith WC (2009) Brachyury null mutant-induced defects in juvenile ascidian endodermal organs. Development 136(1):35–39. https://doi.org/10.1242/dev.030981 Conklin EG (1905) Mosaic development in ascidian eggs. J Exp Zool 2(2):145–223. https://doi.
org/10.1002/jez.1400020202
Corbo JC, Fujiwara S, Levine M, Di Gregorio A (1998) Suppressor of hairless activates brachy- ury expression in the Ciona embryo. Dev Biol 203(2):358–368. https://doi.org/10.1006/
dbio.1998.9067
Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM, Harafuji N, Hastings KE, Ho I, Hotta K, Huang W, Kawashima T, Lemaire P, Martinez D, Meinertzhagen IA, Necula S, Nonaka M, Putnam N, Rash S, Saiga H, Satake M, Terry A, Yamada L, Wang HG, Awazu S, Azumi K, Boore J, Branno M, Chin-Bow S, DeSantis R, Doyle S, Francino P, Keys DN, Haga S, Hayashi H, Hino K, Imai KS, Inaba K, Kano S, Kobayashi K, Kobayashi M, Lee BI, Makabe KW, Manohar C, Matassi G, Medina M, Mochizuki Y, Mount S, Morishita T, Miura S, Nakayama A, Nishizaka S, Nomoto H, Ohta F, Oishi K, Rigoutsos I, Sano M, Sasaki A, Sasakura Y, Shoguchi E, Shin-i T, Spagnuolo A, Stainier D, Suzuki MM, Tassy O, Takatori N, Tokuoka M, Yagi K, Yoshizaki F, Wada S, Zhang C, Hyatt PD, Larimer F, Detter C, Doggett N, Glavina T, Hawkins T, Richardson P, Lucas S, Kohara Y, Levine M, Satoh N, Rokhsar DS (2002) The draft genome of Ciona intestina- lis: insights into chordate and vertebrate origins. Science 298(5601):2157–2167. https://doi.
org/10.1126/science.1080049
Hashimoto H, Enomoto T, Kumano G, Nishida H (2011) The transcription factor FoxB medi- ates temporal loss of cellular competence for notochord induction in ascidian embryos.
Development 138(12):2591–2600. https://doi.org/10.1242/dev.053082
Haupaix N, Stolfi A, Sirour C, Picco V, Levine M, Christiaen L, Yasuo H (2013) p120RasGAP mediates ephrin/Eph-dependent attenuation of FGF/ERK signals during cell fate specification in ascidian embryos. Development 140(21):4347–4352. https://doi.org/10.1242/dev.098756 Hudson C, Lemaire P (2001) Induction of anterior neural fates in the ascidian Ciona intestinalis.
Mech Dev 100(2):189–203
Hudson C, Darras S, Caillol D, Yasuo H, Lemaire P (2003) A conserved role for the MEK signal- ling pathway in neural tissue specification and posteriorisation in the invertebrate chordate, the ascidian Ciona intestinalis. Development 130(1):147–159
Hudson C, Kawai N, Negishi T, Yasuo H (2013) β-catenin-driven binary fate specification seg- regates germ layers in ascidian embryos. Curr Biol 23(6):491–495. https://doi.org/10.1016/j.
cub.2013.02.005
Hudson C, Sirour C, Yasuo H (2016) Co-expression of Foxa.a, Foxd and Fgf9/16/20 defines a transient mesendoderm regulatory state in ascidian embryos. elife 5:e14692. https://doi.
org/10.7554/eLife.14692
Ikeda T, Satou Y (2017) Differential temporal control of Foxa.a and Zic-r.b specifies brain versus notochord fate in the ascidian embryo. Development 144(1):38–43. https://doi.org/10.1242/
dev.142174
Ikeda T, Matsuoka T, Satou Y (2013) A time delay gene circuit is required for palp formation in the ascidian embryo. Development 140(23):4703–4708. https://doi.org/10.1242/dev.100339 6 Ascidian Zic Genes
Imai K, Satoh N, Satou Y (2002a) Early embryonic expression of FGF4/6/9 gene and its role in the induction of mesenchyme and notochord in Ciona savignyi embryos. Development 129(7):1729–1738
Imai KS, Satoh N, Satou Y (2002b) An essential role of a FoxD gene in notochord induction in Ciona embryos. Development 129(14):3441–3453
Imai KS, Satou Y, Satoh N (2002c) Multiple functions of a Zic-like gene in the differentiation of notochord, central nervous system and muscle in Ciona savignyi embryos. Development 129(11):2723–2732
Imai K, Satoh N, Satou Y (2003) A twist-like bHLH gene is a downstream factor of an endogenous FGF and determines mesenchymal fate in the ascidian embryos. Development 130(18):4461–
4472. https://doi.org/10.1242/dev.00652
Imai KS, Hino K, Yagi K, Satoh N, Satou Y (2004) Gene expression profiles of transcription fac- tors and signaling molecules in the ascidian embryo: towards a comprehensive understanding of gene networks. Development 131(16):4047–4058. https://doi.org/10.1242/dev.01270 Imai KS, Levine M, Satoh N, Satou Y (2006) Regulatory blueprint for a chordate embryo. Science
312(5777):1183–1187. https://doi.org/10.1126/science.1123404
Imai KS, Stolfi A, Levine M, Satou Y (2009) Gene regulatory networks underlying the compart- mentalization of the Ciona central nervous system. Development 136(2):285–293. https://doi.
org/10.1242/dev.026419
Imai KS, Hudson C, Oda-Ishii I, Yasuo H, Satou Y (2016) Antagonism between beta-catenin and Gata.a sequentially segregates the germ layers of ascidian embryos. Development 143(22):4167–4172. https://doi.org/10.1242/dev.141481
Imai KS, Hikawa H, Kobayashi K, Satou Y (2017) Tfap2 and Sox1/2/3 cooperatively specify ectodermal fates in ascidian embryos. Development 144(1):33–37. https://doi.org/10.1242/
dev.142109
Jolma A, Yan J, Whitington T, Toivonen J, Nitta KR, Rastas P, Morgunova E, Enge M, Taipale M, Wei GH, Palin K, Vaquerizas JM, Vincentelli R, Luscombe NM, Hughes TR, Lemaire P, Ukkonen E, Kivioja T, Taipale J (2013) DNA-binding specificities of human transcription fac- tors. Cell 152(1–2):327–339. https://doi.org/10.1016/j.cell.2012.12.009
Kobayashi K, Sawada K, Yamamoto H, Wada S, Saiga H, Nishida H (2003) Maternal macho-1 is an intrinsic factor that makes cell response to the same FGF signal differ between mesenchyme and notochord induction in ascidian embryos. Development 130(21):5179–5190. https://doi.
org/10.1242/dev.00732
Kondoh K, Kobayashi K, Nishida H (2003) Suppression of macho-1-directed muscle fate by FGF and BMP is required for formation of posterior endoderm in ascidian embryos. Development 130(14):3205–3216
Koyabu Y, Nakata K, Mizugishi K, Aruga J, Mikoshiba K (2001) Physical and functional interac- tions between Zic and Gli proteins. J Biol Chem 276(10):6889–6892. https://doi.org/10.1074/
jbc.C000773200
Kubo A, Suzuki N, Yuan X, Nakai K, Satoh N, Imai KS, Satou Y (2010) Genomic cis-regulatory networks in the early Ciona intestinalis embryo. Development 137(10):1613–1623. https://doi.
org/10.1242/dev.046789
Kugler JE, Gazdoiu S, Oda-Ishii I, Passamaneck YJ, Erives AJ, Di Gregorio A (2010) Temporal regulation of the muscle gene cascade by Macho1 and Tbx6 transcription factors in Ciona intestinalis. J Cell Sci 123(14):2453–2463. https://doi.org/10.1242/jcs.066910
Kumano G, Yamaguchi S, Nishida H (2006) Overlapping expression of FoxA and Zic con- fers responsiveness to FGF signaling to specify notochord in ascidian embryos. Dev Biol 300(2):770–784. https://doi.org/10.1016/j.ydbio.2006.07.033
Kumano G, Takatori N, Negishi T, Takada T, Nishida H (2011) A maternal factor unique to ascidians silences the germ line via binding to P-TEFb and RNAP II regulation. Curr Biol 21(15):1308–1313. https://doi.org/10.1016/j.cub.2011.06.050
Lemaire P (2011) Evolutionary crossroads in developmental biology: the tunicates. Development 138(11):2143–2152. https://doi.org/10.1242/dev.048975
105
Nakatani Y, Nishida H (1994) Induction of notochord during ascidian embryogenesis. Dev Biol 166(1):289–299. https://doi.org/10.1006/dbio.1994.1315
Nishida H, Sawada K (2001) Macho-1 encodes a localized mRNA in ascidian eggs that specifies mus- cle fate during embryogenesis. Nature 409(6821):724–729. https://doi.org/10.1038/35055568 Nydam ML, Harrison RG (2007) Genealogical relationships within and among shallow-water Ciona
species (Ascidiacea). Mar Biol 151(5):1839–1847. https://doi.org/10.1007/s00227-007-0617-0 Nydam ML, Harrison RG (2011) Introgression despite substantial divergence in a
broadcast spawning marine invertebrate. Evolution 65(2):429–442. https://doi.
org/10.1111/j.1558-5646.2010.01153.x
Oda-Ishii I, Kubo A, Kari W, Suzuki N, Rothbacher U, Satou Y (2016) A maternal system ini- tiating the zygotic developmental program through combinatorial repression in the ascidian embryo. PLoS Genet 12(5):e1006045. https://doi.org/10.1371/journal.pgen.1006045
Ohta N, Satou Y (2013) Multiple signaling pathways coordinate to induce a threshold response in a chordate embryo. PLoS Genet 9(10):e1003818. https://doi.org/10.1371/journal.pgen.1003818 Paix A, Yamada L, Dru P, Lecordier H, Pruliere G, Chenevert J, Satoh N, Sardet C (2009) Cortical
anchorages and cell type segregations of maternal postplasmic/PEM RNAs in ascidians. Dev Biol 336(1):96–111. https://doi.org/10.1016/j.ydbio.2009.09.001
Picco V, Hudson C, Yasuo H (2007) Ephrin-Eph signalling drives the asymmetric division of notochord/neural precursors in Ciona embryos. Development 134(8):1491–1497. https://doi.
org/10.1242/dev.003939
Rothbächer U, Bertrand V, Lamy C, Lemaire P (2007) A combinatorial code of maternal GATA, Ets and β-catenin-TCF transcription factors specifies and patterns the early ascidian ectoderm.
Development 134(22):4023–4032. https://doi.org/10.1242/dev.010850
Sanchez-Ferras O, Bernas G, Laberge-Perrault E, Pilon N (2014) Induction and dorsal restriction of paired-box 3 (Pax3) gene expression in the caudal neuroectoderm is mediated by integration of multiple pathways on a short neural crest enhancer. Biochim Biophys Acta 1839(7):546–
558. https://doi.org/10.1016/j.bbagrm.2014.04.023
Sasakura Y, Ogasawara M, Makabe KW (1998a) HrWnt-5: a maternally expressed ascidian Wnt gene with posterior localization in early embryos. Int J Dev Biol 42(4):573–579
Sasakura Y, Ogasawara M, Makabe KW (1998b) Maternally localized RNA encoding a serine/
threonine protein kinase in the ascidian, Halocynthia roretzi. Mech Dev 76(1–2):161–163 Sato A, Satoh N, Bishop JDD (2012) Field identification of ‘types’ A and B of the ascidian Ciona
intestinalis in a region of sympatry. Mar Biol 159(7):1611–1619. https://doi.org/10.1007/
s00227-012-1898-5
Satoh N, Satou Y, Davidson B, Levine M (2003) Ciona intestinalis: an emerging model for whole-genome analyses. Trends Genet 19(7):376–381. https://doi.org/10.1016/
S0168-9525(03)00144-6
Satou Y (1999) Posterior end mark 3 (pem-3), an ascidian maternally expressed gene with local- ized mRNA encodes a protein with Caenorhabditis elegans MEX-3-like KH domains. Dev Biol 212(2):337–350. https://doi.org/10.1006/dbio.1999.9336
Satou Y, Satoh N (1997) Posterior end mark 2 (pem-2), pem-4, pem-5, and pem-6: maternal genes with localized mRNA in the ascidian embryo. Dev Biol 192(2):467–481. https://doi.
org/10.1006/dbio.1997.8730
Satou Y, Yagi K, Imai KS, Yamada L, Nishida H, Satoh N (2002) Macho-1-related genes in Ciona embryos. Dev Genes Evol 212(2):87–92. https://doi.org/10.1007/s00427-002-0218-3 Shimauchi Y, Yasuo H, Satoh N (1997) Autonomy of ascidian fork head/HNF-3 gene expression.
Mech Dev 69(1–2):143–154
Shirae-Kurabayashi M, Matsuda K, Nakamura A (2011) Ci-Pem-1 localizes to the nucleus and represses somatic gene transcription in the germ line of Ciona intestinalis embryos. Dev 138(14):2871–2881. https://doi.org/10.1242/dev.058131
Stolfi A, Sasakura Y, Chalopin D, Satou Y, Christiaen L, Dantec C, Endo T, Naville M, Nishida H, Swalla BJ, Volff JN, Voskoboynik A, Dauga D, Lemaire P (2015) Guidelines for the nomenclature of genetic elements in tunicate genomes. Genesis 53(1):1–14. https://doi.
org/10.1002/dvg.22822 6 Ascidian Zic Genes
Tsagkogeorga G, Turon X, Hopcroft RR, Tilak MK, Feldstein T, Shenkar N, Loya Y, Huchon D, Douzery EJP, Delsuc F (2009) An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models. BMC Evol Biol 9:187. https://doi.org/10.1186/1471-2148-9-187 Turon X, Lopez-Legentil S (2004) Ascidian molecular phylogeny inferred from mtDNA data
with emphasis on the Aplousobranchiata. Mol Phylogenet Evol 33(2):309–320. https://doi.
org/10.1016/j.ympev.2004.06.011
Vinson J, Jaffe D, O’Neill K, Karlsson E, Stange-Thomann N, Anderson S, Mesirov J, Satoh N, Satou Y, Nusbaum C, Birren B, Galagan J, Lander E (2005) Assembly of polymorphic genomes: algorithms and application to Ciona savignyi. Genome Res 15(8):1127–1135.
https://doi.org/10.1101/gr.3722605
Wada H (1998) Evolutionary history of free-swimming and sessile lifestyles in urochordates as deduced from 18S rDNA molecular phylogeny. Mol Biol Evol 15(9):1189–1194
Wada S, Saiga H (2002) HrzicN, a new Zic family gene of ascidians, plays essential roles in the neural tube and notochord development. Development 129(24):5597–5608. https://doi.
org/10.1242/dev.00156
Wagner E, Levine M (2012) FGF signaling establishes the anterior border of the Ciona neural tube.
Development 139(13):2351–2359. https://doi.org/10.1242/dev.078485
Yagi K, Satoh N, Satou Y (2004a) Identification of downstream genes of the ascidian mus- cle determinant gene Ci-macho1. Dev Biol 274(2):478–489. https://doi.org/10.1016/j.
ydbio.2004.07.013
Yagi K, Satou Y, Satoh N (2004b) A zinc finger transcription factor, ZicL, is a direct activator of Brachyury in the notochord specification of Ciona intestinalis. Development 131(6):1279–
1288. https://doi.org/10.1242/dev.01011
Yagi K, Takatori N, Satou Y, Satoh N (2005) Ci-Tbx6b and Ci-Tbx6c are key mediators of the maternal effect gene Ci-macho1 in muscle cell differentiation in Ciona intestinalis embryos.
Dev Biol 282(2):535–549. https://doi.org/10.1016/j.ydbio.2005.03.029
Yamada L, Kobayashi K, Degnan B, Satoh N, Satou Y (2003) A genomewide survey of develop- mentally relevant genes in Ciona intestinalis. IV. Genes for HMG transcriptional regulators, bZip and GATA/Gli/Zic/snail. Dev Genes Evol 213(5–6):245–253. https://doi.org/10.1007/
s00427-003-0316-x
Yamada L, Kobayashi K, Satou Y, Satoh N (2005) Microarray analysis of localization of maternal transcripts in eggs and early embryos of the ascidian, Ciona intestinalis. Dev Biol 284(2):536–
550. https://doi.org/10.1016/j.ydbio.2005.05.027
Yasuo H, Satoh N (1993) Function of vertebrate T gene. Nature 364(6438):582–583. https://doi.
org/10.1038/364582b0
Yasuo H, Satoh N (1998) Conservation of the developmental role of Brachyury in notochord for- mation in a urochordate, the ascidian Halocynthia roretzi. Dev Biol 200(2):158–170
Yasuo H, Kobayashi M, Shimauchi Y, Satoh N (1996) The ascidian genome contains another T-domain gene that is expressed in differentiating muscle and the tip of the tail of the embryo.
Dev Biol 180(2):773–779. https://doi.org/10.1006/dbio.1996.0345
Yoshida S, Marikawa Y, Satoh N (1996) Posterior end mark, a novel maternal gene encoding a localized factor in the ascidian embryo. Development 122(7):2005–2012
107
© Springer Nature Singapore Pte Ltd. 2018
J. Aruga (ed.), Zic family, Advances in Experimental Medicine and Biology 1046, https://doi.org/10.1007/978-981-10-7311-3_7