mme.modares.ac.ir
:
Please cite this article using:
*1
2
- 1
- 2
* 19395
- 1999 [email protected]
: 07 1394
: 26 1394
: 24 1394
. . .
. 617
-
oC
1170 7500
Nmm.
.
. .
-
Numerical and Experimental Analysis of Thermal Barrier Coatings Delamination under Cyclic Thermal Loading
Soheil Nakhodchi
*, Hossein Ebrahimi
Department of Mechanical Engineering, K. N. Toosi University of Technoogy, Tehran, Iran.
* P.O.B. 1999-19395, Tehran, Iran, [email protected]
A
RTICLEI
NFORMATIONA
BSTRACTOriginal Research Paper Received 28 November 2015 Accepted 15 February 2016 Available Online 14 March 2016
Thermal Barrier Coatings (TBC) are used as thermal protective for components operating at high temperature. These coatings normally have three layers of: ceramic top coat, thermally grown oxide and the bond coat layer. Due to the manufacturing process and the special structure of a TBC system, failure mechanisms of these coatings are affected by both thermal and mechanical loads introduced to the coated part. In this paper delaminations of TBC layers subjected to the cyclic thermal loads have been numerically and experimentally studied. A rectangular specimen made of Inconel 617 coated by air plasma spray (APS) method was loaded in a specific design test setup with capability of simultaneously applying a constant four point bending load and thermal cyclic loadings. The thermal cycles were carried out until the coating was spalled out. The temperature of the specimen surfaces was measured and recorded during the test. Finite elements modeling was also performed using ABAQUS to simulate the the experiment. A cohesive zone model was used to simulate the top coat delamination. Finally, using a trial and error approach on the cohesive properties, finite elements results have been adapted on the experimental results and interfacial cohesive properties have been estimated.
Keywords:
Thermal Barrier Coating Failure Mechanisms
Thermomechanical Cyclic Experiment Cohesive Zone Model
- 1
1.
.
1 Thermal Barrier Coatings (TBCs)
1 ] . [
50
[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]
.
1
1960 .
. 70 . .
1 ] . [
.
23
4
-
. 5 m
0 .
100 µm
500 µm ZrO
2-8wt%Y
2O
3- ]
52 [
]
63 . [
MCrAlY (Pt,Ni)Al
100 µm 200 µm
MCrAlY M
.
7 8
]
94 . [
5 ]
- 8 . [
. 9 ] - 11 . [
1 Flame Sprayed Coatings
2 Top Coat (TC)
3 Bond Coat (BC)
4 Substrate
5 Air Plasma Spraying (APS)
6 Electron Beam Physical Vapour Deposition (EB-PVD)
7 Vacuum Plasma Spray (VPS)
8 Low-Pressure Plasma Spray (LPPS)
9 High Velocity Oxy-Fuel (HVOF)
.
o
C 1170
o
C . 20
. .
- 2
617
100 mm 10 mm
2 mm 6 .
) .( 1
"
-
"
. Ni22Cr10Al1Y
ZrO
2-8wt%Y
2O
3.
2
. 3
-
Fig. 1 Illustrate coating and substrate in specimen with dimensions 1
Fig. 2 Microstructure and thickness of TBC layers before tests 2
Bond Coat
190 µm Top Coat
540 µm
Substrate 6200 µm Length 100 mm
Thickness 6.9 mm
Width 10 mm
Top Coat Substrate
[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]
287
Fig. 3 Schematic figure of air plasma spraying process
-
312 ] [
. .
120 mm
×
× 120 80
15 mm
2800 rpm .
. .
.
. K
o
C
o
0 1370 C
4
. 500 N .
5
. 30 mm
.
500 N ) 5
7500 Nmm = M
B) 9 mm 6 .
× ( 10
2
x. 6
Fig. 4 Thermo-mechanical test setup
-
44
5
.
- 2 - 1
7 A
B C D E
F G c
s 15 mm
. 5 mm
. 360
-
. 8 8
A
cB
cF
cG
cD
cD
s9
. 7
9 . 8 9
.
- 2 - 2
.
% - 20 10
13 ] . [ 10
20
13 ] . [
Coated Specimen Heat Element
Bending Pins
Water-Cooler Anode
Work Piece Coating Cathode
Plasma Gas
Insulator Powder Port
[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]
Fig. 5 (a) Geometry of 4-point mechanical bending load, (b) Bending moment of applied load along the length of specimen
( )
5( )
Fig. 6 Curve of longitudinal stress between two bending pins along thickness due to load of 500 N
6
N
500
Fig. 7 Points of temperature measurement on the specimen by considering placing on the pins
7
.
7500 Nmm 64
)
. ( 9
10
10 .
Fig. 8 Maximum temperature in points on the coating and outer surface of substrate along the length of specimen
8
Fig. 9 Temperature changes during a thermal cycle at points of
D
cand D
s9
D
cD
s. .
.
.
120 01 mm
0 . .
.
-1
1 m 0 . ) m
( 10
01 mm 0 . .
) ( 1
.
y6 997 0 . = .
R
1 Shadow Projection Profilometry
-120 -60 0 60 120 180 240
0 1 2 3 4 5 6
Longitudinal Stress (MPa)
Thickness (mm) Substrate
Oxide Layer Bond Coat
Top Coat 450
650 850 1050 1250
0 15 30 45 60 75 90
Temperature (oC)
Distance from Point of A
s(mm) Substrate Coating
A
cB
cC
cD
cE
cF
cG
cG
sF
sE
sD
sC
sB
sA
s0 200 400 600 800 1000 1200
0 150 300 450 600 750 900
Temperature (oC)
Time (s)
Dc Ds
670
oC 1170
oC
Coating
Pin A Substrate
c
B
c
C
c
D
c
E
c
F
c
G
c
D
sC
sB
sA
sG
F
sE
s s250 N 250 N
( ) (b)
250 N (a) ( ) 250 N
30 mm 30 mm 30 mm
5 mm 5 mm
6.9 mm Substrate
Coating
7500
30 60 90
MB (Nmm)
x (mm)
[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]
289
) ( 1
= 4 × 10 + 8 × 10 + 2 × 10 8 × 10 7 × 10 + 0.0017 + 0.793
- 3
-
12
.
o
C 20 1170
910 s
10
)
o
C
Max =10 10 s
Max =
(
.
...
- 3 - 1
( ) 11
14 15 ] . [
( ) 11 .
3
. 8
) CPE8T .(
. ) 10 .
Fig. 10 Tested specimen after 64th cycle
10
64
1 Coupled Temperature-Displacement
2 Transient
3 Cyclic Symmetry
Fig. 11 (a) Schematic figure of different layer with dimensions, (b) Section of created model and mesh in ABAQUS
( )
11)
1 5
11
- 3 - 2
)
o
C ( 20 .
9 9
12 .
12
4 T
.
) 5 .
.
- 3 - 3
51
2
3
4 Time period
5 Hybrid Method
[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]
Fig. 12 Schematic figure of applied thermal cycles on the top and bottom walls of model
12
16 ] . [ .
.
4. -
. ...
16 ] . [
-
5. 13
- .
.
- .
-
) ( 2
= ( )
-
. -
6
7
8 9
10
11
. )
( 3
1 Damage
2 Micromechanical Processes
3 Phenomenological
4 Evolution Law
5 Traction-Separation Law (TSL)
6 Damage Initiaion
7 Damage Evolution
8 Maximum Stress (MAXS)
9 Quadratic Stress (QUADS)
10 Maximum Separation (MAXU)
11 Quadratic Separation (QUADU)
Fig. 13 Traction-separation curve in general form
-
13) ( 3
+ = 1
1
(NiCoCrAlY)
] 17 [
Table. 1 Specific heat capacity, conductance and density of bond coat (NiCoCrAlY) [17]T
(°C)
Cp
(J/kgK)
T(°C)
k(W/mK)
T(°C) (kg/m
3)
21.3 542.9
28.1 4.3042 24.9
6189
251.7 659.2
299.5 5.9646 300.3
5664
499.6 712.1
500.4 6.9534 500.3
5844
698.6 738.5
700.5 9.7197 710.9
6423
901.1 757.5
899.9 10.6836 900.5
6479
1000.8 746.9
1100.0 13.1745 1100.9
6521
1198.8 772.0
1200.7 16.1223 1200.3
6590
2
(ZrO
2-8wt%Y
2O
3(YSZ)) ]
18
[
Table. 2 Specific heat capacity, conductance and density of top coat (ZrO2-8wt%Y2O3 (YSZ)) [18]
T
(°C)
Cp
(J/kgK)
k(W/mK) (kg/m
3)
25.00 455.60
1.4998 4820
126.85 516.14
1.4998 4820
326.85 568.08
1.4998 4820
526.85 595.67
1.4998 4820
726.85 616.77
1.4998 4820
926.85 635.44
1.4998 4820
1126.85 652.48
1.4998 4820
1156.85 655.73
1.4998 4820
1176.85 719.84
1.4998 4820
3
-Al
2O
3)
] 19
[
Table. 3 Specific heat capacity, conductance and density of oxide layer -Al2O3) [19]
T
(°C)
Cp
(J/kgK)
k(W/mK) (kg/m
3)
20 755
33.00 3984
500 1165
11.40 3943
1000 1255
7.22 3891
1200 1285
6.67 3863
Traction
Separation Damage Evolution
Damage Initiation
….
Time
Temperature T
T
2T 3T
ts t
f
TL
TH
[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]
291
4
]
11
[
Table. 4 Module of elasticity, Poisson’s ratio and thermal expansion coefficient of coating layers [11]
T
(°C) (NiCoCrAlY)
-Al
2O
3) (ZrO
2-8wt%Y
2O
3(YSZ))
E (MPa)
(1/°C)
E (MPa)(1/°C)
E (MPa)(1/°C)
20 151857 0.3189
1.2358×10
-5380365
0.27 5.0794×10
-617500.0 0.2
9.6800×10
-6220 150746
0.3271 1.3041×10
-5369060 0.27
5.9040×10
-616340.9
0.2 9.6748×10
-6420 145253
0.3343 1.3912×10
-5361225 0.27
6.7285×10
-615181.8
0.2 9.7058×10
-6620 132337
0.3409 1.4970×10
-5351876 0.27
7.5531×10
-614022.7
0.2 9.8098×10
-6820 108921
0.3466 1.6217×10
-5336032 0.27
8.3776×10
-612863.6
0.2 1.0024×10
-51020 71890
0.3515 1.7652×10
-5308708 0.27
9.2022×10
-611704.5
0.2 1.0384×10
-55
617
] 20
[
Table. 5 Mechanical and thermal properties of substrate Inconel 617 [20]T
(°C)
E (MPa)
(1/°C)
Cp
(J/kgK)
k (W/mK)
(kg/m
3)
25 211000
0.30 -
420 13.5
8360
100 206000
0.30 1.16×10
-5440 14.7
8360
300 194000
0.30 1.31×10
-5490 17.7
8360
500 181000
0.30 1.39×10
-5536 20.9
8360
700 166000
0.30 1.48×10
-5586 23.9
8360
900 149000
0.30 1.58×10
-5636 27.1
8360
1000 139000
0.31 1.63×10
-5662 28.7
8360
1100 129000
0.32 -
- -
8360
1
-
2.
) ( 4
) ( 4
+ = 1
.
. 14 .
12 ] [
.
- 4
- 3 3 .
. .
6
1 Power Law
2 Benzeggagh-Kenane (BK)
.
- 4 - 1
.
Fig. 14 Picture provided by the Scanning Electron Microscope from
layers interface, without oxide layer formation
14
[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]
6
Table. 6 Results of estimation of cohesive zone properties Ts
(MPa)
Tn(MPa)
28.25 56.5
- 1 - 2
64 .
15
S22
( )
20 35
50 . 64
. 64
15 20
64 16
S22
64 910
20
17
. 50
15 17
- 5
7500 Nmm 617
o
C
o
1170 20 C
64
.
Fig. 15 Contour of S22 Stress in first model at: (a) 20th cycle, (b) 35th cycle, (c) 50th cycle, (d) 64th cycle
15 S22
( ) : ( ) 20
( ) 35 ( ) 50
64 +1.994e+4
-1.665e+3 -4.370e+3 -7.076e+3 -9.782e+3 -1.249e+4
)
(a) (b) )
)
(c) (d) )
S22
(MPa)
S22(MPa)
S22
(MPa)
S22(MPa)
+2.051e+4 -1.709e+3 -4.471e+3 -7.233e+3 -9.995e+3 -1.276e+4
+5.751e+3 +2.041e+2 -1.657e+2 -5.355e+2 -9.054e+2 -1.275e+3
+1.710e+3 +3.883e+2 +2.486e+2 +1.090e+2 -3.067e+1 -1.703e+2
[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]
293
Fig. 16 Contour of S22 Stress in second model after 64 cycles 16 S22
64
Fig. 17 Contour of S22 Stress in second model after 64 cycles, near the region of delamination
17 S22
64
.
.
7500 Nmm
9 64
. .
- 6
( )
.
- 7 )
J/kgK (
CPE8T
8
) ( MPa
) ( W/mK )
( MPa
)
)
) K ( °C ) K ( °C
) K ( °C
) ( 1/°C
) ( s
) ( K
) mm
-1(
) mm
-1(
) kg/m
3(
s
- 8
[1] R. A. Miller, History of Thermal Barrier Coatings for Gas Turbine Engines - Emphasizing NASA’s Role From 1942 to 1990, NASA/TM—215459-2009, Cleveland, Ohio, 2009.
[2] Herman H, Berndt CC. Plasma spray processing of TBCs. National Aeronautics and Space Administration, Cleveland, United States, Lewis Research Center; 1995.
[3] C. Leyens, U. Schulz, M. Bartsch, M. Peters, R&D status and needs for improved EB-PVD thermal barrier coating performance, in Materials Research Society Symposium Proceedings, Vol. 645, pp. M10-1, Cambridge University Press. 2000.
[4] J. Stringer, Coatings in the electricity supply industry: past, present and opportunities for the future, Surface and Coatings Technology, Vol. 108-109, pp. 1-9, 1998.
[5] D.J. Kim, I.H. Shin, J.M. Koo, C.S. Seok, et al., Failure mechanisms of coin- type plasma-sprayed thermal barrier coatings with thermal fatigue, Surface and Coatings Technology, Vol. 205, pp. S451-S458, 2010.
[6] Z. Lu, S.W. Myoung, Y.G. Jung, G. Balakrishnan, et al., Thermal fatigue behavior of air-plasma sprayed thermal barrier coating with bond coat species in cyclic thermal exposure, Materials, Vol. 6, No. 8, pp. 3387-3403, 2013.
S22
(MPa) +1.670e+3 +1.173e+2 -4.810e+1 -2.135e+2
S22(MPa)
+1.670e+3 +1.173e+2 -4.810e+1 -2.135e+2
[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]
[7] K. Sláme ka, L. elko, P. Skalka, J. Pokluda, et al., Bending fatigue failure
of atmospheric-plasma-sprayed CoNiCrAlY+ YSZ thermal barrier coatings, International Journal of Fatigue, Vol. 70, pp. 186-195, 2015.
[8] Moridi, M. Azadi, G.H. Farrahi. Thermo-mechanical stress analysis of thermal barrier coating system considering thickness and roughness effects, Surface and Coatings Technology, Vol. 243, pp. 91-99, 2014
[9] W. Zhu, L. Yang, L.W. Guo, Y.C. Zhou, et al., Determination of interfacial adhesion energies of thermal barrier coatings by compression test combined with a cohesive zone finite element model., International Journal of Plasticity, Vol. 64, pp. 76-87, 2015.
[10] P. Bednarz, Finite element simulation of stress evolution in thermal barrier coating systems, PhD Thesis, Fakultät für Maschinenwesen, 2006.
[11] M. Bia as, Finite element analysis of stress distribution in thermal barrier coatings, Surface and Coatings Technology, Vol. 202, No. 24, pp. 6002-6010, 2008.
[12] H. Ebrahimi, A Failure Investigation in Thermal Barrier Coatings (TBCs), M. Sc. Thesis, Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, 2015, (In Persian ).
[13] A.C. Karaoglanli, K. Ogawa, Thermal Shock and Cycling Behavior of Thermal Barrier Coatings (TBCs) Used in Gas Turbines, in Progress in Gas Turbine Performance, NITECH, pp. 237-261, 2013.
[14] A.G. Evan, D.R. Mumm, J.W. Hutchinson, G.H. Meier, et al., Mechanisms controlling the durability of thermal barrier coatings, Progress in Material Science, Vol. 46, No.5, pp. 505-553, 2001.
[15] K. Sfar, J. Aktaa, D. Munz, Numerical investigation of residual stress fields and crack behavior in TBC systems, Materials Science and Engineering, Vol.
333, No. 1, pp. 351-360, 2002.
[16]K.H. Schwalbe, I. Scheider, A. Cornec, Guidelines for Applying Cohesive Models to the Damage Behaviour of Engineering Materials and Structures, New York, Springer Science & Business Media, 2012.
[17]K.A. Khor, Y.W. Gu, Thermal properties of plasma-sprayed functionally graded thermal barrier coatings, Thin Solid Films, Vol. 372, No. 1, pp. 104- 113, 2000.
[18]U. Hermosilla, Mechanical modeling of thermal barrier coatings at high temperatures, PhD thesis, University of Nottingham, 2008.
[19] M. Munro, Evaluated material properties for a sintered -Al2O3, Journal of the American Ceramic Society, Vol. 80, No. 8, pp. 1919-1928, 1997.
[20] Special Metals Corporation Catalog, Inconel 617, Accessed 05 Mar 2005;
http://www.specialmetals.com/documents/Inconel%20alloy%20617.pdf.
[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]