• Tidak ada hasil yang ditemukan

ʇ|ÀÆ» ®Ì¿Z°»

N/A
N/A
Protected

Academic year: 2024

Membagikan "ʇ|ÀÆ» ®Ì¿Z°»"

Copied!
10
0
0

Teks penuh

(1)

mme.modares.ac.ir

:

Please cite this article using:

*1

2

- 1

- 2

* 19395

- 1999 [email protected]

: 07 1394

: 26 1394

: 24 1394

. . .

. 617

-

oC

1170 7500

Nmm

.

.

. .

-

Numerical and Experimental Analysis of Thermal Barrier Coatings Delamination under Cyclic Thermal Loading

Soheil Nakhodchi

*

, Hossein Ebrahimi

Department of Mechanical Engineering, K. N. Toosi University of Technoogy, Tehran, Iran.

* P.O.B. 1999-19395, Tehran, Iran, [email protected]

A

RTICLE

I

NFORMATION

A

BSTRACT

Original Research Paper Received 28 November 2015 Accepted 15 February 2016 Available Online 14 March 2016

Thermal Barrier Coatings (TBC) are used as thermal protective for components operating at high temperature. These coatings normally have three layers of: ceramic top coat, thermally grown oxide and the bond coat layer. Due to the manufacturing process and the special structure of a TBC system, failure mechanisms of these coatings are affected by both thermal and mechanical loads introduced to the coated part. In this paper delaminations of TBC layers subjected to the cyclic thermal loads have been numerically and experimentally studied. A rectangular specimen made of Inconel 617 coated by air plasma spray (APS) method was loaded in a specific design test setup with capability of simultaneously applying a constant four point bending load and thermal cyclic loadings. The thermal cycles were carried out until the coating was spalled out. The temperature of the specimen surfaces was measured and recorded during the test. Finite elements modeling was also performed using ABAQUS to simulate the the experiment. A cohesive zone model was used to simulate the top coat delamination. Finally, using a trial and error approach on the cohesive properties, finite elements results have been adapted on the experimental results and interfacial cohesive properties have been estimated.

Keywords:

Thermal Barrier Coating Failure Mechanisms

Thermomechanical Cyclic Experiment Cohesive Zone Model

- 1

1

.

.

1 Thermal Barrier Coatings (TBCs)

1 ] . [

50

[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]

(2)

.

1

1960 .

. 70 . .

1 ] . [

.

2

3

4

-

. 5 m

0 .

100 µm

500 µm ZrO

2

-8wt%Y

2

O

3

- ]

5

2 [

]

6

3 . [

MCrAlY (Pt,Ni)Al

100 µm 200 µm

MCrAlY M

.

7 8

]

9

4 . [

5 ]

- 8 . [

. 9 ] - 11 . [

1 Flame Sprayed Coatings

2 Top Coat (TC)

3 Bond Coat (BC)

4 Substrate

5 Air Plasma Spraying (APS)

6 Electron Beam Physical Vapour Deposition (EB-PVD)

7 Vacuum Plasma Spray (VPS)

8 Low-Pressure Plasma Spray (LPPS)

9 High Velocity Oxy-Fuel (HVOF)

.

o

C 1170

o

C . 20

. .

- 2

617

100 mm 10 mm

2 mm 6 .

) .( 1

"

-

"

. Ni22Cr10Al1Y

ZrO

2

-8wt%Y

2

O

3

.

2

. 3

-

Fig. 1 Illustrate coating and substrate in specimen with dimensions 1

Fig. 2 Microstructure and thickness of TBC layers before tests 2

Bond Coat

190 µm Top Coat

540 µm

Substrate 6200 µm Length 100 mm

Thickness 6.9 mm

Width 10 mm

Top Coat Substrate

[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]

(3)

287

Fig. 3 Schematic figure of air plasma spraying process

-

3

12 ] [

. .

120 mm

×

× 120 80

15 mm

2800 rpm .

. .

.

. K

o

C

o

0 1370 C

4

. 500 N .

5

. 30 mm

.

500 N ) 5

7500 Nmm = M

B

) 9 mm 6 .

× ( 10

2

x

. 6

Fig. 4 Thermo-mechanical test setup

-

4

4

5

.

- 2 - 1

7 A

B C D E

F G c

s 15 mm

. 5 mm

. 360

-

. 8 8

A

c

B

c

F

c

G

c

D

c

D

s

9

. 7

9 . 8 9

.

- 2 - 2

.

% - 20 10

13 ] . [ 10

20

13 ] . [

Coated Specimen Heat Element

Bending Pins

Water-Cooler Anode

Work Piece Coating Cathode

Plasma Gas

Insulator Powder Port

[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]

(4)

Fig. 5 (a) Geometry of 4-point mechanical bending load, (b) Bending moment of applied load along the length of specimen

( )

5

( )

Fig. 6 Curve of longitudinal stress between two bending pins along thickness due to load of 500 N

6

N

500

Fig. 7 Points of temperature measurement on the specimen by considering placing on the pins

7

.

7500 Nmm 64

)

. ( 9

10

10 .

Fig. 8 Maximum temperature in points on the coating and outer surface of substrate along the length of specimen

8

Fig. 9 Temperature changes during a thermal cycle at points of

D

c

and D

s

9

D

c

D

s

. .

.

.

1

20 01 mm

0 . .

.

-1

1 m 0 . ) m

( 10

01 mm 0 . .

) ( 1

.

y

6 997 0 . = .

R

1 Shadow Projection Profilometry

-120 -60 0 60 120 180 240

0 1 2 3 4 5 6

Longitudinal Stress (MPa)

Thickness (mm) Substrate

Oxide Layer Bond Coat

Top Coat 450

650 850 1050 1250

0 15 30 45 60 75 90

Temperature (oC)

Distance from Point of A

s

(mm) Substrate Coating

A

c

B

c

C

c

D

c

E

c

F

c

G

c

G

s

F

s

E

s

D

s

C

s

B

s

A

s

0 200 400 600 800 1000 1200

0 150 300 450 600 750 900

Temperature (oC)

Time (s)

Dc Ds

670

o

C 1170

o

C

Coating

Pin A Substrate

c

B

c

C

c

D

c

E

c

F

c

G

c

D

s

C

s

B

s

A

s

G

F

s

E

s s

250 N 250 N

( ) (b)

250 N (a) ( ) 250 N

30 mm 30 mm 30 mm

5 mm 5 mm

6.9 mm Substrate

Coating

7500

30 60 90

MB (Nmm)

x (mm)

[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]

(5)

289

) ( 1

= 4 × 10 + 8 × 10 + 2 × 10 8 × 10 7 × 10 + 0.0017 + 0.793

- 3

-

1

2

.

o

C 20 1170

910 s

10

)

o

C

Max =

10 10 s

Max =

(

.

...

- 3 - 1

( ) 11

14 15 ] . [

( ) 11 .

3

. 8

) CPE8T .(

. ) 10 .

Fig. 10 Tested specimen after 64th cycle

10

64

1 Coupled Temperature-Displacement

2 Transient

3 Cyclic Symmetry

Fig. 11 (a) Schematic figure of different layer with dimensions, (b) Section of created model and mesh in ABAQUS

( )

11

)

1 5

11

- 3 - 2

)

o

C ( 20 .

9 9

12 .

12

4 T

.

) 5 .

.

- 3 - 3

5

1

2

3

4 Time period

5 Hybrid Method

[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]

(6)

Fig. 12 Schematic figure of applied thermal cycles on the top and bottom walls of model

12

16 ] . [ .

.

4

. -

. ...

16 ] . [

-

5

. 13

- .

.

- .

-

) ( 2

= ( )

-

. -

6

7

8 9

10

11

. )

( 3

1 Damage

2 Micromechanical Processes

3 Phenomenological

4 Evolution Law

5 Traction-Separation Law (TSL)

6 Damage Initiaion

7 Damage Evolution

8 Maximum Stress (MAXS)

9 Quadratic Stress (QUADS)

10 Maximum Separation (MAXU)

11 Quadratic Separation (QUADU)

Fig. 13 Traction-separation curve in general form

-

13

) ( 3

+ = 1

1

(NiCoCrAlY)

] 17 [

Table. 1 Specific heat capacity, conductance and density of bond coat (NiCoCrAlY) [17]

T

(°C)

Cp

(J/kgK)

T

(°C)

k

(W/mK)

T

(°C) (kg/m

3

)

21.3 542.9

28.1 4.3042 24.9

6189

251.7 659.2

299.5 5.9646 300.3

5664

499.6 712.1

500.4 6.9534 500.3

5844

698.6 738.5

700.5 9.7197 710.9

6423

901.1 757.5

899.9 10.6836 900.5

6479

1000.8 746.9

1100.0 13.1745 1100.9

6521

1198.8 772.0

1200.7 16.1223 1200.3

6590

2

(ZrO

2

-8wt%Y

2

O

3

(YSZ)) ]

18

[

Table. 2 Specific heat capacity, conductance and density of top coat (ZrO2-8wt%Y2O3 (YSZ)) [18]

T

(°C)

Cp

(J/kgK)

k

(W/mK) (kg/m

3

)

25.00 455.60

1.4998 4820

126.85 516.14

1.4998 4820

326.85 568.08

1.4998 4820

526.85 595.67

1.4998 4820

726.85 616.77

1.4998 4820

926.85 635.44

1.4998 4820

1126.85 652.48

1.4998 4820

1156.85 655.73

1.4998 4820

1176.85 719.84

1.4998 4820

3

-Al

2

O

3

)

] 19

[

Table. 3 Specific heat capacity, conductance and density of oxide layer -Al2O3) [19]

T

(°C)

Cp

(J/kgK)

k

(W/mK) (kg/m

3

)

20 755

33.00 3984

500 1165

11.40 3943

1000 1255

7.22 3891

1200 1285

6.67 3863

Traction

Separation Damage Evolution

Damage Initiation

….

Time

Temperature T

T

2T 3T

ts t

f

TL

TH

[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]

(7)

291

4

]

11

[

Table. 4 Module of elasticity, Poisson’s ratio and thermal expansion coefficient of coating layers [11]

T

(°C) (NiCoCrAlY)

-Al

2

O

3

) (ZrO

2

-8wt%Y

2

O

3

(YSZ))

E (MPa)

(1/°C)

E (MPa)

(1/°C)

E (MPa)

(1/°C)

20 151857 0.3189

1.2358×10

-5

380365

0.27 5.0794×10

-6

17500.0 0.2

9.6800×10

-6

220 150746

0.3271 1.3041×10

-5

369060 0.27

5.9040×10

-6

16340.9

0.2 9.6748×10

-6

420 145253

0.3343 1.3912×10

-5

361225 0.27

6.7285×10

-6

15181.8

0.2 9.7058×10

-6

620 132337

0.3409 1.4970×10

-5

351876 0.27

7.5531×10

-6

14022.7

0.2 9.8098×10

-6

820 108921

0.3466 1.6217×10

-5

336032 0.27

8.3776×10

-6

12863.6

0.2 1.0024×10

-5

1020 71890

0.3515 1.7652×10

-5

308708 0.27

9.2022×10

-6

11704.5

0.2 1.0384×10

-5

5

617

] 20

[

Table. 5 Mechanical and thermal properties of substrate Inconel 617 [20]

T

(°C)

E (MPa)

(1/°C)

Cp

(J/kgK)

k (W/mK)

(kg/m

3

)

25 211000

0.30 -

420 13.5

8360

100 206000

0.30 1.16×10

-5

440 14.7

8360

300 194000

0.30 1.31×10

-5

490 17.7

8360

500 181000

0.30 1.39×10

-5

536 20.9

8360

700 166000

0.30 1.48×10

-5

586 23.9

8360

900 149000

0.30 1.58×10

-5

636 27.1

8360

1000 139000

0.31 1.63×10

-5

662 28.7

8360

1100 129000

0.32 -

- -

8360

1

-

2

.

) ( 4

) ( 4

+ = 1

.

. 14 .

12 ] [

.

- 4

- 3 3 .

. .

6

1 Power Law

2 Benzeggagh-Kenane (BK)

.

- 4 - 1

.

Fig. 14 Picture provided by the Scanning Electron Microscope from

layers interface, without oxide layer formation

14

[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]

(8)

6

Table. 6 Results of estimation of cohesive zone properties Ts

(MPa)

Tn

(MPa)

28.25 56.5

- 1 - 2

64 .

15

S22

( )

20 35

50 . 64

. 64

15 20

64 16

S22

64 910

20

17

. 50

15 17

- 5

7500 Nmm 617

o

C

o

1170 20 C

64

.

Fig. 15 Contour of S22 Stress in first model at: (a) 20th cycle, (b) 35th cycle, (c) 50th cycle, (d) 64th cycle

15 S22

( ) : ( ) 20

( ) 35 ( ) 50

64 +1.994e+4

-1.665e+3 -4.370e+3 -7.076e+3 -9.782e+3 -1.249e+4

)

(a) (b) )

)

(c) (d) )

S22

(MPa)

S22

(MPa)

S22

(MPa)

S22

(MPa)

+2.051e+4 -1.709e+3 -4.471e+3 -7.233e+3 -9.995e+3 -1.276e+4

+5.751e+3 +2.041e+2 -1.657e+2 -5.355e+2 -9.054e+2 -1.275e+3

+1.710e+3 +3.883e+2 +2.486e+2 +1.090e+2 -3.067e+1 -1.703e+2

[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]

(9)

293

Fig. 16 Contour of S22 Stress in second model after 64 cycles 16 S22

64

Fig. 17 Contour of S22 Stress in second model after 64 cycles, near the region of delamination

17 S22

64

.

.

7500 Nmm

9 64

. .

- 6

( )

.

- 7 )

J/kgK (

CPE8T

8

) ( MPa

) ( W/mK )

( MPa

)

)

) K ( °C ) K ( °C

) K ( °C

) ( 1/°C

) ( s

) ( K

) mm

-1

(

) mm

-1

(

) kg/m

3

(

s

- 8

[1] R. A. Miller, History of Thermal Barrier Coatings for Gas Turbine Engines - Emphasizing NASAs Role From 1942 to 1990, NASA/TM—215459-2009, Cleveland, Ohio, 2009.

[2] Herman H, Berndt CC. Plasma spray processing of TBCs. National Aeronautics and Space Administration, Cleveland, United States, Lewis Research Center; 1995.

[3] C. Leyens, U. Schulz, M. Bartsch, M. Peters, R&D status and needs for improved EB-PVD thermal barrier coating performance, in Materials Research Society Symposium Proceedings, Vol. 645, pp. M10-1, Cambridge University Press. 2000.

[4] J. Stringer, Coatings in the electricity supply industry: past, present and opportunities for the future, Surface and Coatings Technology, Vol. 108-109, pp. 1-9, 1998.

[5] D.J. Kim, I.H. Shin, J.M. Koo, C.S. Seok, et al., Failure mechanisms of coin- type plasma-sprayed thermal barrier coatings with thermal fatigue, Surface and Coatings Technology, Vol. 205, pp. S451-S458, 2010.

[6] Z. Lu, S.W. Myoung, Y.G. Jung, G. Balakrishnan, et al., Thermal fatigue behavior of air-plasma sprayed thermal barrier coating with bond coat species in cyclic thermal exposure, Materials, Vol. 6, No. 8, pp. 3387-3403, 2013.

S22

(MPa) +1.670e+3 +1.173e+2 -4.810e+1 -2.135e+2

S22

(MPa)

+1.670e+3 +1.173e+2 -4.810e+1 -2.135e+2

[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]

(10)

[7] K. Sláme ka, L. elko, P. Skalka, J. Pokluda, et al., Bending fatigue failure

of atmospheric-plasma-sprayed CoNiCrAlY+ YSZ thermal barrier coatings, International Journal of Fatigue, Vol. 70, pp. 186-195, 2015.

[8] Moridi, M. Azadi, G.H. Farrahi. Thermo-mechanical stress analysis of thermal barrier coating system considering thickness and roughness effects, Surface and Coatings Technology, Vol. 243, pp. 91-99, 2014

[9] W. Zhu, L. Yang, L.W. Guo, Y.C. Zhou, et al., Determination of interfacial adhesion energies of thermal barrier coatings by compression test combined with a cohesive zone finite element model., International Journal of Plasticity, Vol. 64, pp. 76-87, 2015.

[10] P. Bednarz, Finite element simulation of stress evolution in thermal barrier coating systems, PhD Thesis, Fakultät für Maschinenwesen, 2006.

[11] M. Bia as, Finite element analysis of stress distribution in thermal barrier coatings, Surface and Coatings Technology, Vol. 202, No. 24, pp. 6002-6010, 2008.

[12] H. Ebrahimi, A Failure Investigation in Thermal Barrier Coatings (TBCs), M. Sc. Thesis, Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, 2015, (In Persian ).

[13] A.C. Karaoglanli, K. Ogawa, Thermal Shock and Cycling Behavior of Thermal Barrier Coatings (TBCs) Used in Gas Turbines, in Progress in Gas Turbine Performance, NITECH, pp. 237-261, 2013.

[14] A.G. Evan, D.R. Mumm, J.W. Hutchinson, G.H. Meier, et al., Mechanisms controlling the durability of thermal barrier coatings, Progress in Material Science, Vol. 46, No.5, pp. 505-553, 2001.

[15] K. Sfar, J. Aktaa, D. Munz, Numerical investigation of residual stress fields and crack behavior in TBC systems, Materials Science and Engineering, Vol.

333, No. 1, pp. 351-360, 2002.

[16]K.H. Schwalbe, I. Scheider, A. Cornec, Guidelines for Applying Cohesive Models to the Damage Behaviour of Engineering Materials and Structures, New York, Springer Science & Business Media, 2012.

[17]K.A. Khor, Y.W. Gu, Thermal properties of plasma-sprayed functionally graded thermal barrier coatings, Thin Solid Films, Vol. 372, No. 1, pp. 104- 113, 2000.

[18]U. Hermosilla, Mechanical modeling of thermal barrier coatings at high temperatures, PhD thesis, University of Nottingham, 2008.

[19] M. Munro, Evaluated material properties for a sintered -Al2O3, Journal of the American Ceramic Society, Vol. 80, No. 8, pp. 1919-1928, 1997.

[20] Special Metals Corporation Catalog, Inconel 617, Accessed 05 Mar 2005;

http://www.specialmetals.com/documents/Inconel%20alloy%20617.pdf.

[ Downloaded from mme.modares.ac.ir on 2023-12-10 ]

Referensi

Dokumen terkait

Li, Type synthesis, kinematic analysis, and optimal design of a novel class of Schönflies-Motion parallel manipulators, Automation Science and Engineering, IEEE Transactions on, Vol..

The study of the flow pattern visualization, velocity values and vorticity shows, at first, the flow separation shear layer forms and the clockwise vortex generate at the rear edge of

167651719 Tehran, Iran, [email protected] ARTICLEINFORMATION ABSTRACT Original Research Paper Received 04 January 2016 Accepted 12 March 2016 Available Online 30 April 2016 In

Modeling and optimization of the quasi-steady operation of Solar Power Plant equipped with thermal energy storage system Vahid Khalilzadeh Bavil, Javad Mahmoudimehr Department of

Bahiraee, Experimental and numerical study on unsteady natural convection heat transfer in helically coiled tube heat exchangers, Heat an Mass Transfer, Vol.. Rani, Transient natural

Ramakrishnan, Comparison of Morphing Wing Strategies Based Upon Aircraft Performance Impacts, 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics Materials Conference, 19 22

10 Experimental buckling shapes together with force-time curveat different velocities for cylindrical shells with uniform thickness and functionally graded thickness distributions

The obtained results showed that the reduction of the horizontal distance between the metal fibers in the longitudinal direction improves the distribution of the peel stress and shear