• Tidak ada hasil yang ditemukan

اﺻﻮل ﮐﻠﯽ اﻗﺘﺼﺎد ﻣﻬﻨﺪﺳﯽ

N/A
N/A
Protected

Academic year: 2024

Membagikan "اﺻﻮل ﮐﻠﯽ اﻗﺘﺼﺎد ﻣﻬﻨﺪﺳﯽ"

Copied!
13
0
0

Teks penuh

(1)

ﯽﺳﺪﻨﻬﻣ دﺎﺼﺘﻗا ﯽﻠﮐ لﻮﺻا

دﺎﺑآ ﻒﺠﻧﺣاو ﯽﻣﻼﺳا دازآ هﺎﮕﺸﻧاد / قﺮﺑ هﺪﮑﺸﻧاد / يژﺮﻧا ﺖﯾﺮﯾﺪ / ﺎﺿرﺪﻤﺤ

ﯽﺳﺪﻨﻬﻣ دﺎﺼﺘﻗا ﯽﻠﮐ لﻮﺻا

• content

• The Basics of Interest Rates : Simple and Compound Interest

• The Basic Discount Factors : Present Value, Future Value, Annual Value

• Economic Equivalence and Net Present Value

(2)

دﺎﺑآ ﻒﺠﻧﺣاو ﯽﻣﻼﺳا دازآ هﺎ / قﺮﺑ هﺪﮑﺸﻧاد / يژﺮﻧا ﺖﯾﺮﯾﺪ / نﺎﯾداﺮﻣ ﺎﺿرﺪﻤﺤ

The Importance of Time

• A dollar in hand now is worth more than a dollar received in the future, because of its earning power, i.e., it can be invested to generate income.

• The purchasing power of money, i.e., the amount of goods that a certain amount can buy, changes with time also.

• Objective: To develop methods for establishing the equivalence of sums of money. It depends on the amounts, the time of occurrence of the sums of money, and the interest rate.

3

دﺎﺑآ ﻒﺠﻧﺣاو ﯽﻣﻼﺳا دازآ هﺎﮕﺸﻧاد / قﺮﺑ هﺪﮑﺸﻧاد / يژﺮﻧا ﺖﯾﺮﯾﺪ /ﺎﯾداﺮﻣ ﺎﺿرﺪﻤﺤ

Simple Interest

P: Principal amount

n: Number of interest periods

i : Interest rate

I : Interest earned

• Interest and principal become due at the end of n periods :

• The earned interest is proportional to the length of time and the principal amount was borrowed.

I  P n i  

(3)

دﺎﺑآ ﻒﺠﻧﺣاو ﯽﻣﻼﺳا دازآ هﺎﮕﺸﻧاد / قﺮﺑ هﺪﮑﺸﻧاد / يژﺮﻧا ﺖﯾﺮﯾﺪ / نﺎﯾداﺮﻣ ﺎﺿرﺪﻤﺤ

Compound Interest

5

• Interest is payable at the end of each interest period.

• If the interest is not paid, the borrower is charged interest on the total amount owed (principal plus interest).

• Example: $1,000 is borrowed for two years at 6% (compounded). A

single payment will be made at the end of the second year.

• Amount owed at the beginning of year 2 : $1,060

• Amount owed at the end of year 2: $1,060×1.06 = $1,000× (1.06)²=

$1,123.60

• For simple interest, the amount owed at the end of year 2 would be: $1,000 + 1,000 × 2 × 0.06 = $1,120.00

دﺎﺑآ ﻒﺠﻧﺣاو ﯽﻣﻼﺳا دازآ هﺎﮕﺸﻧاد / قﺮﺑ هﺪﮑﺸﻧاد / يژﺮﻧا ﺖﯾﺮﯾﺪ / ﺎﺿرﺪﻤﺤ

The Basic Discount Factors

P

A F

• F (future value) : Value of money in future

• P (present value) : Amount of money in present

• A (annual value or “annuity”) : A series of amounts that will be paid at the end of each year

• These three factors can be converted to each other

(4)

دﺎﺑآ ﻒﺠﻧﺣاو ﯽﻣﻼﺳا دازآ هﺎ / قﺮﺑ هﺪﮑﺸﻧاد / يژﺮﻧا ﺖﯾﺮﯾﺪ / نﺎﯾداﺮﻣ ﺎﺿرﺪﻤﺤ

Cash Flow Diagram over Time

7

• Up arrow = we receive $ ; Down arrow = we pay $

Example: Amount borrowed : $1,000

• Interest is paid at the end of each year at the rate of 10%

• The principal is due at the end of the fourth year.

$1,000

$100 $100 $100

$1,100

1 2 3 4

0

• Each unit in cash flow diagram shows end of one period (usually one year)

• Cash flow is a diagram that shows flow of cashes through periods (years)

دﺎﺑآ ﻒﺠﻧﺣاو ﯽﻣﻼﺳا دازآ هﺎﮕﺸﻧاد / قﺮﺑ هﺪﮑﺸﻧاد / يژﺮﻧا ﺖﯾﺮﯾﺪ /ﺎﯾداﺮﻣ ﺎﺿرﺪﻤﺤ

Single-Payment Compound-Amount Factor

P

P(1+i) P(1+i)²

F=P(1+i)ⁿ 2

1 n

• A single payment is made after n periods.

• The interest earned at the end of each period is charged on the total amount owed (principal plus interest).

• $1 now is worth (F/P, i, n) at time n if invested at i%

F P i n, ,

(1i)n
(5)

دﺎﺑآ ﻒﺠﻧﺣاو ﯽﻣﻼﺳا دازآ هﺎﮕﺸﻧاد / قﺮﺑ هﺪﮑﺸﻧاد / يژﺮﻧا ﺖﯾﺮﯾﺪ / نﺎﯾداﺮﻣ ﺎﺿرﺪﻤﺤ

Single-Payment Present-Worth Factor

9

• The reciprocal of the single-payment compound amount factor.

• Discount rate: i

• $1 n years in the future is worth (P/F, i, n) now.

, ,

1

(1 )n P F i n

i

دﺎﺑآ ﻒﺠﻧﺣاو ﯽﻣﻼﺳا دازآ هﺎﮕﺸﻧاد / قﺮﺑ هﺪﮑﺸﻧاد / يژﺮﻧا ﺖﯾﺮﯾﺪ / ﺎﺿرﺪﻤﺤ

Equal-Payment-Series Compound-Amount Factor

• Equal payments, A, occur at the end of each period.

• We will get back (F/A, i, n) at the end of period n if funds are invested at an interest rate i.

• F=A + A(1+i)¹ + A(1+i)² + … + A(1+i)ⁿ⁻¹

, ,

(1 ) 1

in

F A i n i

 

 2

1 n

0 n-1

F

A A A A

(6)

دﺎﺑآ ﻒﺠﻧﺣاو ﯽﻣﻼﺳا دازآ هﺎ / قﺮﺑ هﺪﮑﺸﻧاد / يژﺮﻧا ﺖﯾﺮﯾﺪ / نﺎﯾداﺮﻣ ﺎﺿرﺪﻤﺤ

Equal-Payment-Series Sinking-Fund Factor

11

• Used to determine the payments A required to accumulate a future amount F.

Example: We wish to deposit an amount A every 6 months for 3 years so that we’ll have $10,000 at the end of this period. The interest rate is 5% per year. Find A.

Solution:

n = 6 deposits , i = 2.5% per 6-month period

F= $10,000 (A/F, 0.025, 6)= 0.15655 ⇒ A= $10,000*0.15655 = $1,565.50

, ,

(1 )n 1 A F i n i

i

 

دﺎﺑآ ﻒﺠﻧﺣاو ﯽﻣﻼﺳا دازآ هﺎﮕﺸﻧاد / قﺮﺑ هﺪﮑﺸﻧاد / يژﺮﻧا ﺖﯾﺮﯾﺪ /ﺎﯾداﺮﻣ ﺎﺿرﺪﻤﺤ

Equal-Payment-Series Capital-Recovery Factor

• An amount P is deposited now at an annual interest rate i.

• We will withdraw the principal plus the interest in a series of equal annual amounts A over the next n years.

• The principal will be worth P(1+i)ⁿ (slide ١٣) at the end of n years. This amount is to be recovered by receiving A every year ⇒the sinking-factor formula applies (slide ١۶) ⇒

1 2 n

0 n-1

P

A A A A

(1 )

(1 ) 1

n n

A P i i i

 

     

(1 ) ( , , )

(1 ) 1

n n

i i A P i n

i

 

 

(7)

دﺎﺑآ ﻒﺠﻧﺣاو ﯽﻣﻼﺳا دازآ هﺎﮕﺸﻧاد / قﺮﺑ هﺪﮑﺸﻧاد / يژﺮﻧا ﺖﯾﺮﯾﺪ / نﺎﯾداﺮﻣ ﺎﺿرﺪﻤﺤ

Equal-Payment-Series Capital-Recovery Factor – cont.

13

• Example: Your house mortgage is $300,000 for 30 years with an nominal annual rate of 7%. What is the monthly payment?

n = 360 months , i = 0.583% per month (A/P, 0.00583, 360) = 0.006650339

⇒ A = 300,000× 0.006650339 = $1,995.10 per month

دﺎﺑآ ﻒﺠﻧﺣاو ﯽﻣﻼﺳا دازآ هﺎﮕﺸﻧاد / قﺮﺑ هﺪﮑﺸﻧاد / يژﺮﻧا ﺖﯾﺮﯾﺪ / ﺎﺿرﺪﻤﺤ

Equal-Payment-Series Present-Worth Factor

n annual payment in n periods with interest rate i is worth P now .

(1 ) 1 ( , , )

(1 )

n n

P A i n i

i i

 

 

2

1 n

0 n-1

P

A A A A

(8)

دﺎﺑآ ﻒﺠﻧﺣاو ﯽﻣﻼﺳا دازآ هﺎ / قﺮﺑ هﺪﮑﺸﻧاد / يژﺮﻧا ﺖﯾﺮﯾﺪ / نﺎﯾداﺮﻣ ﺎﺿرﺪﻤﺤ

Summary of the Formulas

15 Single-Payment Compound-Amount Factor

Single-Payment Present-Worth Factor

Equal-Payment-Series Compound-Amount Factor

Equal-Payment-Series Sinking-Fund Factor

Equal-Payment-Series Capital-Recovery Factor

Equal-Payment-Series Present-Worth Factor

F P i n, ,

(1i)n

, ,

1

(1 )n P F i n

i

, ,

(1 ) 1

in

F A i n i

 

, ,

(1 )n 1 A F i n i

i

 

, ,

(1 )

(1 ) 1

n n

i i

A P i n i

 

 

, ,

(1 ) 1

(1 )

n n

P A i n i

i i

 

 

دﺎﺑآ ﻒﺠﻧﺣاو ﯽﻣﻼﺳا دازآ هﺎﮕﺸﻧاد / قﺮﺑ هﺪﮑﺸﻧاد / يژﺮﻧا ﺖﯾﺮﯾﺪ /ﺎﯾداﺮﻣ ﺎﺿرﺪﻤﺤ

Economic Equivalence

Example: Consider the following cash flow:

You will receive $500 at the end of years 3 and 4 and $1,000 at the end of year 5. If the interest rate is 7%, what amount received at the present is equivalent to this cash flow?

• Solution: In all problems like this, the first step is to draw cash flows diagram:

1 2

0 3 4 5

$500 $500 $1000 P = ?

     

3 4 5

500 , 0.07, 3 500 , 0.07, 4 1000 , 0.07,5

500 500 1000

$1, 502.59 (1 0.07) (1 0.07) (1 0.07)

P P F P F P F

P

     

   

  

(9)

دﺎﺑآ ﻒﺠﻧﺣاو ﯽﻣﻼﺳا دازآ هﺎﮕﺸﻧاد / قﺮﺑ هﺪﮑﺸﻧاد / يژﺮﻧا ﺖﯾﺮﯾﺪ / نﺎﯾداﺮﻣ ﺎﺿرﺪﻤﺤ

Economic Equivalence – continued

17

•Example: Consider the following cash flow. If the interest rate is 6%, what amount received at the present is equivalent to this cash flow?

2 1

0 3 4 5

$500 $500 $1000 P = ?

6 7

$500 $500

n= 5 years , i= 6%

(P/A, 0.06, 5) = 4.212364

⇒P1= A×(P/A, 0.06, 5)= 500× 4.212364 = $2106.18

• Solution: at first, we calculate present worth of 5 years Equal-Payment-Series :

دﺎﺑآ ﻒﺠﻧﺣاو ﯽﻣﻼﺳا دازآ هﺎﮕﺸﻧاد / قﺮﺑ هﺪﮑﺸﻧاد / يژﺮﻧا ﺖﯾﺮﯾﺪ / ﺎﺿرﺪﻤﺤ

Economic Equivalence – continued

• Notice: P1is in end of year 2. So the equivalent cash flow is below diagram :

2 1

0 3 4 5

$500 P1=$ 2106.18

P = ?

6 7

   

1

2 5

, 0.06, 2 500 , 0.06,5

2106.18 500

$2248.12 (1 0.06) (1 0.06)

P P P F P F

P

    

  

 

(10)

دﺎﺑآ ﻒﺠﻧﺣاو ﯽﻣﻼﺳا دازآ هﺎ / قﺮﺑ هﺪﮑﺸﻧاد / يژﺮﻧا ﺖﯾﺮﯾﺪ / نﺎﯾداﺮﻣ ﺎﺿرﺪﻤﺤ

يژﺮﻧا ﺖﯾﺮﯾﺪﻣ ﺎﺑ ﻂﺒﺗﺮﻣ لﺎﺜﻣ ﺪﻨﭼ

19

دﺎﺑآ ﻒﺠﻧﺣاو ﯽﻣﻼﺳا دازآ هﺎﮕﺸﻧاد / قﺮﺑ هﺪﮑﺸﻧاد / يژﺮﻧا ﺖﯾﺮﯾﺪ /ﺎﯾداﺮﻣ ﺎﺿرﺪﻤﺤ

يژﺮﻧا ﺖﯾﺮﯾﺪﻣ ﺎﺑ ﻂﺒﺗﺮﻣ لﺎﺜﻣ ﺪﻨﭼ

MARR: Minimum acceptable rate of return

(11)

دﺎﺑآ ﻒﺠﻧﺣاو ﯽﻣﻼﺳا دازآ هﺎﮕﺸﻧاد / قﺮﺑ هﺪﮑﺸﻧاد / يژﺮﻧا ﺖﯾﺮﯾﺪ / نﺎﯾداﺮﻣ ﺎﺿرﺪﻤﺤ

يژﺮﻧا ﺖﯾﺮﯾﺪﻣ ﺎﺑ ﻂﺒﺗﺮﻣ لﺎﺜﻣ ﺪﻨﭼ

21

دﺎﺑآ ﻒﺠﻧﺣاو ﯽﻣﻼﺳا دازآ هﺎﮕﺸﻧاد / قﺮﺑ هﺪﮑﺸﻧاد / يژﺮﻧا ﺖﯾﺮﯾﺪ / ﺎﺿرﺪﻤﺤ

يژﺮﻧا ﺖﯾﺮﯾﺪﻣ ﺎﺑ ﻂﺒﺗﺮﻣ لﺎﺜﻣ ﺪﻨﭼ

(12)

دﺎﺑآ ﻒﺠﻧﺣاو ﯽﻣﻼﺳا دازآ هﺎ / قﺮﺑ هﺪﮑﺸﻧاد / يژﺮﻧا ﺖﯾﺮﯾﺪ / نﺎﯾداﺮﻣ ﺎﺿرﺪﻤﺤ

يژﺮﻧا ﺖﯾﺮﯾﺪﻣ ﺎﺑ ﻂﺒﺗﺮﻣ لﺎﺜﻣ ﺪﻨﭼ

23

دﺎﺑآ ﻒﺠﻧﺣاو ﯽﻣﻼﺳا دازآ هﺎﮕﺸﻧاد / قﺮﺑ هﺪﮑﺸﻧاد / يژﺮﻧا ﺖﯾﺮﯾﺪ /ﺎﯾداﺮﻣ ﺎﺿرﺪﻤﺤ

يژﺮﻧا ﺖﯾﺮﯾﺪﻣ ﺎﺑ ﻂﺒﺗﺮﻣ لﺎﺜﻣ ﺪﻨﭼ

(13)

دﺎﺑآ ﻒﺠﻧﺣاو ﯽﻣﻼﺳا دازآ هﺎﮕﺸﻧاد / قﺮﺑ هﺪﮑﺸﻧاد / يژﺮﻧا ﺖﯾﺮﯾﺪ / نﺎﯾداﺮﻣ ﺎﺿرﺪﻤﺤ

يژﺮﻧا ﺖﯾﺮﯾﺪﻣ ﺎﺑ ﻂﺒﺗﺮﻣ لﺎﺜﻣ ﺪﻨﭼ

25

دﺎﺑآ ﻒﺠﻧﺣاو ﯽﻣﻼﺳا دازآ هﺎﮕﺸﻧاد / قﺮﺑ هﺪﮑﺸﻧاد / يژﺮﻧا ﺖﯾﺮﯾﺪ / ﺎﺿرﺪﻤﺤ

يژﺮﻧا ﺖﯾﺮﯾﺪﻣ ﺎﺑ ﻂﺒﺗﺮﻣ لﺎﺜﻣ ﺪﻨﭼ

Referensi

Dokumen terkait