• Tidak ada hasil yang ditemukan

۱۲ هرود ١٤٠١ راهب - ۱ هرامش - ٥٨-٤٥ یاه هحفص

N/A
N/A
Protected

Academic year: 2024

Membagikan "۱۲ هرود ١٤٠١ راهب - ۱ هرامش - ٥٨-٤٥ یاه هحفص"

Copied!
14
0
0

Teks penuh

(1)

12 1

1401

58 - 45

DOI:10.22059/jwim.2022.333974.945

:

1 2

*

3 4

1 .

#$ %& $ . ' ( $ )* + ,%& $ - . ./' 0 1 23 0 3 4 + 5%& $

2 . . ' % 6 + ,%& $ 78 ) 9 / 0 :* 3 4 + 5%& $ $

3 . . ' ( $ )* + ,%& $ - . ./' 0 1 23 0 3 4 + 5%& $ $

4 .

$ ; 4 #

< & 6

= (#

:*

0 . ' 0 & - )0 6*

:< . 7 $ ? ' 24

/ 08 / 1400 :< . C DE ? '

07 / 01 / 1401

!" # $ % &' () * + '

%, -."SWAT RCP4.5

RCP8.5

-

% / 0

%1 2 3 %1 . 5

' 6

5 7

' 8 " 9 . 5 : ;"

& <= 5 -

9 7 ? ;"

69 / 0 65 / 0 8 " 7

;"

E2E : 67

/ 0 59 / 0 %1 2 3 %1 GH . / -

&

I * "

&

E

% -."

,

% RCP8.5 ' = 25 .

-." ' J K / '

5 LM LARS-WG

N 5 O '

KSWAT

/ 25 . 5 P

& ) %

& % L $ Q H * & I 5 & I NR J S 6 L T "

&

"

&' UL

U ' = -5 .

&

* 7 &' L * "

9 /

RCP4.5 I '

O 91 / 21 26 X RCP8.5

Y " "

19 36 / 22

% ) [ 5 -2 X 1 . 5

&

"

*

&' L

) [ 5 -2

' T RCP4.5

% 5 .

/ :

: K

!"

K K \

/ Q H .

Projection of the Effects of Climate Change on the Inflow to Maroon Dam

Mostafa Mirmehdi1, Mojtaba Shourian2, Ahmad Sharafati3, Saeed Lotfi4

1. Ph.D. Student, Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2. Assistant Professor, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran.

3. Assistant Professor, Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

4. Bureau of Water and Wastewater Macro-Planning, Ministry of Energy, Tehran, Iran.

Received: November 15, 2021 Accepted: March 27, 2022

Abstract

The purpose of this study is to investigate the effects of climate change on the inflow of Maroon Dam using the SWAT model under two climatic scenarios RCP4.5 and RCP8.5 in the next three twenty-year periods. Flow data measured at Idnak and Tang-e-Takab stations were used to calibrate and validate the model. The Nash-Sutcliffe index of Idnak station was equal to 0.69 and 0.65 and Tang-e-Takab station of Behbahan was equal to 0.67 and 0.59 in the calibration and validation stages. The highest temperature increase will be in the final period and under the RCP8.5 climate scenario.

To simulate the flow in future periods, precipitation and air temperature under the two scenarios were micro-scaled using the LARS-WG model and by entering the data into the SWAT model, the inflow to the dam was simulated for the next three periods. The results of forecasting the inflow to the dam showed that although the amount of rainfall in the area has increased, but increasing the temperature in this basin will have a greater effect and efficiency in reducing the amount of flow. The highest decrease in the average inflow to the Maroon Dam in the near future is in the middle scenario of RCP4.5 with 21.91 and 26 percent and in the pessimistic scenario of RCP8.5 with 19 and 22.36 percent in February and March respectively. As a result, the maximum reduction of the inflow to the Maroon Dam compared to the baseline conditions is in the RCP4.5 release scenarios.

Keywords: Climate change, Reservoir inflow, Runoff estimation, Watershed modeling.

(2)

%I ! 6 !"

YH X * ]

3 = 5 K

G ^ %1 " !" & ) _ E

' 70 ' ! * 7 N _ ," -T6

% ` a b T K%, / % cRN #

? d"

% ' ! %1 " & I $ L 5

* L # H K 7

(% E & 6)

) g h3 I & I K%, 6 '

% :/ - dQ %,]

J K% ' '

G

%0 ;T= K / I a K '

' ," '

%;T=

% ... ' 5

2020) , Sourinejad

E (

* 0

%

!"

) (IPCC

a 1

% 5 6 i K%

L - L _j3 -

; 2

0 dI - '

% ' ' 3

/ 0 0

% 6 / 0

% 6 I

&

' = 1 / .

% L

I

&

I Y

&

5 :/ \

; ,3 ' = S

k 0

;

%

" :/

c

% K T\

% "

H -5 ]

% Q H ? \ '

/

] G

=

= l d R

&

"

% 6 .

'

* S

. Houghton et al (2001)

!" L N d

,L - L - / c

%

$m"

n6 ] %Na

. % / c L N I/ ,5 = K '

&

"

' = :/ * m" Y / *

)

IPCC, 2013

. (

TL

G 0 6

/ L H 9T= _ 6 %;T= ,L

% / c . % - E

d " K

L :/ c - '

Q H - 0 / ' I 6 '

' * * .- = % ` - H 3 L E

$o =M '

:/ % % ; Y c " ] " &N K:/

* d L

* )

% - ' - %; K 7 %I a . L

E %' / 1H # !" K !" P * "

=

% ' L 5 % ,3 J 6 '

LARS-WG

25 E "

' !

%, ' S 25 J

Q H %' /

/ '

'

J - .- :

SWAT2

3 %;

%; k 0 ' G ." ' * "

K I

25 Q H :

' _ 1 /

Q H

% ] / I p) L % ' 5

K

- Y

(Gassman et al., 2001)

. a L

%H a q = G= NN.

I 6 E * !" ' .

. Khalilian et al (2018)

!" # $ %

* -5 Q H :/ c K !" %5 $/ / . = ) SWAT

9,L : J

LARS-WG

& ) %"/ ' , %

-." SWAT

%, '

KA1B KA2

. I 6 9,L B1

P

&' () GX H /

' ) GrI : K T

% & I E &' L * L

%

%5 : % rI

$m"

!" #

# X

%5 ' 70 !" K & I .- ...

Didovets et al.

(2019)

= d0 R

% $

9 G dR _ 3 NR -

[2"

' k 0 K J ' N

O ,

% '

,

% . ,

* / ] P )

GCM3

'

* S . I 6 E SWIM

Rabezanahary Tanteliniaina et al.

(2021)

%T' ()

%

$m"

= k 0 ' / !"

(3)

= ) ; 6 %L 7 '

ANP

I 6 E SWAT

% T / P . L '

& I * I & I / G H sL H = 21

-3

&

"

* . ' = t

% E6 # !"

/ %6

: K:/ c % L a

$m"

' = 7,TS

.-5 n6

Saade et al.

(2021)

, Q H 9T=

20 Y L

$m"

%.R :/ % !"

/ %L H P . L SWAT

L 7

*

% / Y L = `

9 ) 2021 - 2040 H ( 28

- 29 X -."

' = &' LRCP

-I ) .

&

% ' )

) 2081 - 2100 ( T L

Y " "

23 K 28

45 X -."

RCP2.6

K

RCP4.5

K

RCP8.5

&' L

% .

Touseef et al (2021)

O :/

'

-." %.R

$m"

!"

SWAT-WEAP

- * S % T7 ' = 5

25 P . % L T /

K%6 %i & I # X " :/ c

2050 cI

' I L

% ' = .

!" 6 20 :/ 2,L S K 5 [ L

5 ' \ K

:/ # !" & I [ 5 K% '

. ' = :/ 2,L / Q H

Fang

&

Li (2021)

0 N K !" # $

% 5 / 8 ; = 25 SWAT

-." . L

GrI & I L 1 * %, 9T=

&

"

&' L h3 : a GrI

% = % rI L - %0 H * 5

& I h3 I & I : a GrI %6 * P . 5 ' = =

&' () b 2"

= # !" %, # !" 9

% T

% L '

"

2 , 3

%

-E / -

2R"

N . , ' I %

"

!" &N ` N k 0 ' = S

J # !"

$m"

/

* + ' K

&' () %

$m"

!"

c

% =

* L 5 3

E %;

* "

* m" c K TL k L S = '

/ Q H / 1H 5 :/ 2,L

5 %T' L \ -,

& " " .- Q H % / 5 '

* Q H * %N G L # d0 R L " L

* Q H * K I 7 # X

&' () d0 R

.- I 6 P

*

&' ()

%

"

$m"

n6 Q H !"

%

6 [ 5 * L

' " a

E " G 1H L M \" [ "

.

/ Q H H

% w0 3808 L Kc

L / = L '

G ,TS '

L ' ' I 6 ,TS O 6 #

E 6 5

%

% 5 . #`

- `

* / Q H

,TS I

'

L

% 6(

% ' / ,5

% / g " &' L .

H

% )

* -

* K Q H 9T=

, 9T=

5 L H 7

* 6

% 250

% L "

0

%

% , . 7

6(

% '

* 7EL / 23 K =

(4)

,H

=

% 5 . 1 '

.R

%

I

* Q H / G 0

)

= 5 ' 3 I

% g "

350 E2E -5

# 3 "

&

1000 20

X

.- d0 R Q H -H '

* S G 0 2,L

&5 ) 6 '

% # 3 "

* / Q H K

5 Y

= `

* 5

%

\2" # YL

I x .0 K

&

/ Y n)

1

I

&

= # G,H

2

% /

)

2011 , et al.

Maroufi

.(

) G;5 1 . - d (

T %" d0 R

% . '

! " #" $%

.SWAT

SWAT

%d " , K ) '

% %; I 2 ) 5

DolatAbadi Demirel et al., 2009;

et al., 2013

% * .(

= S "

0 I Q H k 0 ' %; I ' I _ ," L

k 0 ' y ) H ' K /

# X

* d 6 Q H GL / N z{

]

2 . ) ,

Arnold et al., 2009; Neitsch et al., 2011

.(

25

; k 0 ' = S

% KSWAT

TN ? d" - \ H - Dem

30

H O K = [ " ;25 0 "

/ 13000 ;' %T;' |R G H 3

<\T

7 ,

8 " 9 ' ' : ;"

E2E / Q H K Q H ' % = 3

15 N" Q H } = TN K d H . 5

4FAO

- 10 %Q L TN ,' L

5GLCC

1992 Y 5 # N2a 5

? d"

/ Y L " 5 & L ' H '

) k 0 ' (HRU

. 5 0 " Q H ' 6

) Y 5 OjL &' () * 21

- 0 K 41 - 21 K 41

>

) G;5 . 5 %I d ( X 2

# 3ja (

TN %3 " % TN } = K%Q L '

.- 5 T

Figure 1. Location of the study area in Iran

(5)

? d" - d _ 6 %, '

# H J b # 3ja .- 6 ' J 5 -

%

.- 5 G ) ~ d" \2" 2 .

! =M Y Q J %

5 .

'

* S K-5 L , % # 3ja

Y0 ^ #` r. -5 / K%' L P 1 K K_ 6 G 5 d0 R Q H 3

#` r.

6 Y %3 3

%I d %^ #` r.

5 K% ) _ 6 .

25 ' :

1357 "

1397

* I 6 ] J /

. 5 K

'

* S

1 -E

% 1 2 3

% /

'

% 7 ' 9 8 "

: ;"

E2E

5 . )

1 ( # r\T 7

' % 5 '

L I 6 5 - 5 i SWAT

.

Table 1. The character of meteorological stations in the Maroon catchment area

Rank Weather Station Station Type Longitude latitude Elevation Years

1 Idenak Climatological 50° 25' 39" 30° 56' 57" 612 1981-2018

2 Idenak Hydrometric 50° 25' 39" 30° 56' 57" 612 1981-2018

3 Tang-e-Takab Hydrometric 50° 00' 13" 30° 00' 40" 308 1981-2018

Figure 2. a) Land Use, b) Soil map and c) DEM of the Maroon catchment area

Table 2. The attribute table of land use

Class Name Area (km2) Percentage Type

CRDY 340.38 8.9 Dryland Cropland

CRIR 29.88 0.78 Irrigated Cropland

CRGR 37.15 0.97 Cropland/ Grassland mosaic

CRWO 401.08 10.53 Cropland/Woodland mosaic

GRAS 1246.87 32.74 Grassland

SHRB 1752.62 46.02 Shrubland

a b c

(6)

Table 3. The character of soils in soil map

Rank Soil Type to SWAT Soil Type Hydrologic Type

1 Rc33-3bc-3254 LOAM D

2 Xh7-2-3ab-3297 CLAY-LOAM D

3 I-Rc-YK-c-3508 LOAM D

!' ( ) !' SWAT

_ [ " d0 R * I

SWAT-CUP

_ 1

& L % ' ) K- H G ."

% $m" * "

K 5 Q H % = L / -

34

-2 K&' () * % ) 20

T - H )

$o ' ! 3

25

<\T / Q H

. 5

- H G ." H J ) z) _ 9,L

I

SWAT-CUP

70 P ) K

* _ I

_ 1 # d0 R "

[ " 5

Abbaspour et al.

(2007)

K

Schuol et al.

(2008) Shokouhifar et al.

(2021)

J

SUFI-2

%1 . E % L

J *

SUFI-2

- H G ." 1"

. 5 %1 2 3 %1 K ' ) %1 _ 1 ' % '

6 5

) 9 7 1378

- 1360 8 " 7 ( : ;"

) 1378 - 1360 7 %1 2 3 ( ) 9

1397 -

1379 8 " 7 ( ) : ;"

1387 - 1379 5 (

& Y Q -

? ;"

+ ' c " 3

E 25 P - dR _ 3 . 5

* ,\" - dR _ 3 [ "

95 ) X 95ppu

2 . (

<= 5 . 5 ) * 2" Y Q '

& Y Q (

-

) ? ;"

% L % -E (N-S SWAT

H . 5 %1 2 3 %1 '

!* + "

*

&' () K

& )

% J ) '

J 6 % ,3 J 6

IPCC

" L -.

1 ) J 6 3

7CMIP

q \ K 5 5

.- * % = -I

: \ '

' T

% 5 -." 1 ) J 6 L ES

5 i T -

K* *

RCP2.6

25 =

RCP8.5

% 5

, 2006) . Massah Bavani et al

.(

* &' ()

KJ !" $ % ]

)

2021 - 2040 K(

) 2041 - 2060 ) ( 2061 - 2080 J 6 P ) (

% ,3

MIROC-ESM

K

MPI-ESM-MR

K

HadGEM2-ES

K

EC-EARTH GFDL-ESM2M

K

-."

$m"

\ 6 6 T

RCP4.5

RCP8.5

* . 5

&' () J

/ 5 LM '

3

[ " K /

J % = %' KNN

' _ 1 GCM

L J * .- I 6 O

N +j =

' ! %,

%\ "

%" ' T G,3

% J # !" ' K L

-2 /

% : Q ) Y " " * . 5

/ J # !"

-

% * • /

J E € R" L GCM

'

%" ' T

&

"

% ' )

Moghadam et

al., 2019; Devak et al., 2016

.(

Y L "

P )

KGCM

P ) %

J ' %'

% G 2" % 9 5

L # X * P )

%

J '

%' -k

(7)

9 "

* ,' ) (KNN

n6 5 - E

% G 2" % 9 . 5

J '

% -k

9 "

* ,' 7 ) (KNN

O # "

*

7

*

! ' :/

'

% )

&

% 5 a

) 7

* ' ' T 5

% G,3 ' K L

-2 / J # !"

)

% : Q J # !" Y " " * . 5

/

% - / )

Moghadam et al., 2019

(.

) 1 (

Wm,i

,

,

0 d * L

CVm,i

* +j = 7

*

! ' ,

%

6 )

% ( 25 5

) [ 5 7 i

* a

m

7

* ' ' T 5

Wm,i

' b i

7

* #

- m

• ' GL d" I

.- GCM

P -

= /

% '

GCM

!" E "

# T J

% '

*

%6(

a =

• N O - GCM

)

Doulabian et al.,

(2021

.

"

• O N P

- /

=

% ' '

O N GCM

% ,

% . 5 O N

d * b 2" 1

& )

% L

• '

' ! O N

& )

%

‚ ,3) 5 H O N (J

.-

*

&' () K

LARS-WG

3

;

%

* " ET

weather generator

'

* ]

. 5

LARS-WG

/ O N 9

- L

* )

" c "

c , 1"

% 1

5 ) L

&

% ' : a 9T=

/ ' -.X

* 0 "

/ i '

KKS t

_j3 F

% L

(Semenov et al., 1998)

.

*

!"

# KG H sL H

%6 -."

'

RCP4.5 RCP8.5

LARS-WG

I d

% * I 6 ] '

" ' T

% )

) 1982 2005-

K(

' / ) 2021 - 2040 K(

) 2041 - 2060 ) ( 2061 - 2080 ( ' 0 "

5 .

Table 4. The character of GCM models

Model Resolution Developer

EC-EARTH 1.125°×1.125° EC-Earth consortium

HadGEM2-ES 1.25°×1.25° MOHC (UK)

MIROC-ESM 2.8°×2.8° MIROC (Japan)

GFDL-ESM2M 2.02°×2.5° NOAA GFDL (USA)

MPI-ESM-MR 1.875°×1.875° MPIfM (Germany)

,- ." /

0 $ 1 2 34 5 -6

!' ( ) !'

- H 0 / GX H P O KSWAT

20 ) 3

O H 5 % 5 ' ) * "

/ P L )

5 ( - 5 i ƒ ,5 ).

.

% 5 M

a [ [

) % (CN2

&

"

*

$m"

%

=

% Q H - 5

K * L

-." )

$m"

g %Q L

= } K* .- NR

$m"

,3 0o '

j :/

. z) ) ' ) KCN2

SMTMP

SMFMN

K L Y " "

+ : M ) L I

+ : M 2" K '

' d

% 6 .

% ' L d0 R NR L * "

% K 5

' )

SMTMP SMFMN

- H K

&

"

) * !" L T ' ) -2

# X E N %1 %a %

- . /

N

` ) * "

' %) + : M & I

N %1 %a ) * n0 .

&

"

% T d .

." „ H H G

K- L , 9

_ I

SWAT CUP

'

* S ' /

%

7 ' 9 8 "

: ;"

1 K

% 1 2 3

%

(8)

-I 6 # X E

-

%

) * 2" Y Q <= 5

& Y Q (

- ? ;"

) (N-S

5 _ 1 L

/ P )

6 ( T

P .- 5 25

L - / 7

25 G % " :

5 %0 2

%1 H # !"

25 % = .- 5

'

* S T P L

E"

5

25 €

' H L .- s - 3

'

25 ?dQ sL H

%…d

'

% 25 "

+ : M ? dQ

Q H * SWAT

L

% ' L

2, 7

'

%1

# /

5 L .

Table 5. Model sensitivity analysis results

Rank Parameter Minimum Maximum Fitted Description

1 r__CN2.mgt -0.864 -0.284 -0.503 SCS runoffcurve number 2 v__SMTMP.bsn -1.854 3.445 -1.276 Snow melt base temperature

3 v__SMFMN.bsn 3.822 5.303 4.146 Minimum melt rate for snow during the year (occurs onwinter solstice) 4 v__REVAPMN.gw 196.877 294.428 215.509 Threshold depth of water in the shallow aquifer for"revap"to occur (mm) 5 v__RCHRG_DP.gw 0.699 0.9 0.858 Deep aquifer percolation fraction

6 v__SLSUBBSN.hru 13.101 40.857 20.845 Average slope length 7 v__GW_DELAY.gw 5.646 42.167 28.69 Groundwater delay (days)

8 v__CH_K2.rte 29.616 105.522 66.43 Effective hydraulic conductivity in main channelalluvium 9 v__ESCO.hru 0.228 0.683 0.409 Soil evaporation compensation factor

10 r__HRU_SLP.hru 0.324 0.714 0.499 Average slope steepness 11 v__ALPHA_BF.gw 0.635 0.878 0.642 Baseflow alpha factor (days) 12 r__SOL_BD().sol 0.442 0.884 0.505 Moist bulkdensity

13 r__SOL_AWC().sol -0.446 0.083 -0.185 Available water capacity of the soil layer 14 r__SOL_K().sol -0.050 0.601 0.442 Saturated hydraulic conductivity 15 v__SFTMP.bsn 3.279 6.009 4.122 Snowfall temperature

16 v__ALPHA_BNK.rte 0 0.182 0.044 Baseflow alpha factor for bank storage 17 v__LAT_TTIME.hru 0 37.56 18.066 Lateral flow travel time

18 v__PLAPS.sub 90.983 142.258 132.567 Precipitation lapse rate 19 v__TLAPS.sub -5.931 -0.840 -4.561 Temperature lapse rate

20 r__PCPMM().wgn 0.111 0.491 0.34 Average amount of precipitation falling in month(mm/dd)

Table 6. Values of model performance evaluation indicators in runoff simulation in implemented models

Idenak station Tange-takab station

calibration validation calibration validation

NS 0.69 .65 0.67 0.59

R2 0.7 0.73 0.68 0.61

r-factor 0.79 0.72 0.99 0.79

p-factor 0.81 0.78 1.3 0.89

Figure 3. Results of calibration and validation of Idenak station using SUFI-2 algorithm

0 50 100 150 200 250 300 350 400 450 500

Discharge (m3/s)

Time

95 PPU Observation Best Simulation

Calibration Validation

(9)

Figure 4.Calibration and validation results of Tang-e-Takab Behbahan station using SUFI-2 algorithm

7 + $ 86 9 $

!: $;

GCM

) 9 / J ' * 7

2021 - 2040 K(

) % / 2041

- 2060 ) / ( 2061

-

2080 -." (

RCP8.5

,' '

% & I ) [ 5 -2 (*,E ) I .

a

& L & I * "

2 K k '

( M/ / K ) 2 Y " "

5 / 7 K 4 / 18 4 / 5

K9 / X

2 / 8 K 8 / 18 8 / 5 X

% / 9

K 19 / 19 32 / 6 / X

' .- I & I ) [ 5 -2 S

*

-." ' J * 7

RCP4.5

[ 5 -2

,' ) '

% & I k .

a L

&

& I * "

( / E ) 2 2 L '

Y " "

15 5 / 11

K9 / X

54 / 15 66 / 11 / X %

16 12

I & I ) [ 5 -2 / X -." ` * 7 .-

RCP4.5

RCP8.5

,' ' [ 5 -2 / '

.- I & I ) & I

RCP8.5

-2

RCP4.5

&

"

% 5 -." # H * "` .

RCP4.5 RCP8.5

Y " "

36 37 O

.- " GrI `

&

"

& I * * 7

2 O K I K k '

( M/ K*,E K ) Y " "

85 / 14 K

57 / 15 K 13 88 / 16

K9 / X

14 / 25 K 82 / 24 K 66 / 20 55 / 22

/ X

% 35 / 34 K 34 K 38 / 28 21 / 28 X

.- I & I ) [ 5 -2 / '

* S

&

"

* 7 & I *

RCP4.5

I K k ' K ) 2 O K

( M/ K*,E Y " "

85 / 14 K 77 / 13 K

74 / 9 39 / 13

K9 / X

19 K 47 / 17 K

13 72 / 15

% / X

22 K 20 / 20 K

15 43 / 17

[ 5 -2 / X

.- I & I )

!"

# * 7 ' #

T

% L '

&

"

I N * &

' . ' = t GrI 0 H *

% -

Q H L

/

&

"

* 1H J

' GrI

% . 5

< < "$: $ 7 + $ 86 $=

% z)

%; k 0 '

SWAT

%

P - -

K / !" $ % ]

K

'

. 5

0 50 100 150 200 250 300 350 400 450 500

Discharge (m3/s)

Time

95 PPU Observation Best Simulation

Calibration Validation

(10)

Figure 5. Changes in the average monthly precipitation of Idenak station in future periods under RCP4.5 and RCP8.5

climatic scenarios 0

20 40 60 80 100 120 140 160 180

jan feb mar apr may jun jul aug sep oct nov dec

Percipitation (mm)

Time

2021-2040 Obs RCP4.5 RCP8.5

0 20 40 60 80 100 120 140 160 180

jan feb mar apr may jun jul aug sep oct nov dec

Percipitation (mm)

Time 2041-2060

Obs RCP4.5 RCP8.5

0 20 40 60 80 100 120 140 160 180

jan feb mar apr may jun jul aug sep oct nov dec

Percipitation (mm)

Time

2061-2080 Obs RCP4.5 RCP8.5

(11)

Figure 6. Changes in the average monthly temperature of Idenak station in future periods under RCP4.5 and RCP8.5

climatic scenarios

5 O N J '

2 0 L 5

/ KSWAT

& ) 5 LM ' $m" -."

. 5 %

L T ' * 7

_ 6 '

` )

# "

( -2 ' S # !"

) [ 5

& .- 5

% * 7 &' L * "

9 /

RCP4.5

'

O I

&' L 91 / 21 26 X

RCP8.5

&' L Y " "

19

36 / 22 ' . 5 % X / * S

% /

&

% * 7 &' L * "

RCP4.5

O I '

% ' T . 5

' * 7 % 2 " 2 { ' T ' -." /

RCP4.5

RCP8.5

I &' L ) [ 5 -2 .-

# !"

' #

% T

& L ' & I N * "

' %0 H * . ' = t GrI

Q H L -

/

&

N * "

J ' '

% GrI

-." * . 5

GrI & I %R 5 * S &' L 1

0 20 40

jan feb mar apr may jun jul aug sep oct nov dec

Temperature (°C)

Time

2 0 2 1 - 2 0 4 0 Obs

RCP4.5 RCP8.5

0 20 40

jan feb mar apr may jun jul aug sep oct nov dec

Temperature (°C)

Time

2 0 4 1 - 2 0 6 0 Obs

RCP4.5 RCP8.5

0 20 40

jan feb mar apr may jun jul aug sep oct nov dec

Temperature (°C)

Time

2 0 6 1 - 2 0 8 0 Obs

RCP4.5 RCP8.5

(12)

+ U =M

# 3 "

* 5 ' = Q H *

& :/ 2,L #j;T ] / -2 "

[ U5

% ] ) .

%

% T ' S 6 L '

Y ^ T ' -." UNR J U U - 5 & I K

"

: & I

:/

&' L I

&

* "

&' UUL UU

b \

T

RCP4.5

- & 6 " .

,d K% E

‚`

&5 ) % / ' %' 6

\2" N * S

& I ~ d"

% . k ~ d" \2"

_ 6 -

& N k * ' 5 "

"

L -I 6 ' = = ~ d" \2" I _ 1 = % &' L / % E 1

% % &' L L - * 7 - 3 9 . 5

E

% "

-, -TL GrI %

' a * S

`

% L 1 / . 5 1 -TL 5

` r.

%"

P

% -TL Q H * K 5

P -TL = %6 / = ' % L a

/ N = L -TL *

I

& # 5 / * ' = "

% n0 K-5 %; "

` G [ 5 : &' L

. 5 /

Figure 7. Changes in the average simulated monthly inflow to the Maroon Dam under climatic and baseline conditions

0 100 200

jan feb mar apr may jun jul aug sep oct nov dec Discharge (m3/s)

Time

2 0 2 1 - 2 0 4 0 Obs

RCP4.5 RCP8.5

0 100 200

jan feb mar apr may jun jul aug sep oct nov dec Discharge (m3/s)

Time

2 0 4 1 - 2 0 6 0 Obs

RCP4.5 RCP8.5

0 100 200

jan feb mar apr may jun jul aug sep oct nov dec Discharge (m3/s)

Time

2 0 6 1 - 2 0 8 0 Obs

RCP4.5 RCP8.5

(13)

' /

$ >

!" $ &' () * . 5 / %, -."

]

P ) Q H J !" $ % 6 T $m" -." % ,3 J 6

\ 6

RCP4.5 RCP8.5

) 2040 - 2021 ) K(

2060 - 2041 ) ( 2080

- 2061 (

. 5

,

d "

%

SWAT

25

z) .-I 6 _ 1

%1 %

%1 2 3

U' )

K%; k 0 ' J '

2 0 L 5 O N 5

KSWAT

' $m" -." /

& ) 5 LM . 5 %

$ L T !" P

& I h3 # U NR T '

% J

& . 5

& I * "

RCP8.5

* # M L 5 ' T

& UL T

\ 6 ' 6 T U * "

5 -N R - * L L .-

P

& ) %

[ "

SWAT

-."

& I NR J S 6 L T - 5 K

% L $ Q H * & I

&

U &' UL "

-U 5 .

&

% * 7 &' L * "

9 /

RCP4.5

O I '

&' L 91 / 21 26 X

RCP8.5

L &' Y " "

19 36 / 22 X

% ' . 5

/ % / * S

&

% * 7 &' L * "

RCP4.5

O I '

% ' T . 5

' * 7 % 2 " 2 { ' ' -." /

T

RCP4.5

RCP8.5

.- I &' L ) [ 5 -2 1

&

&' L * "

-2

) [ 5 '

T

RCP4.5

% 5 * .

&' L :/ c 2,L & I h3 /

* ) €a -

:/ . 5 ' =

L ' = T"

% T * P .

L '

% ' ;

% E

T ' !"

5 L .

!1 2% /

1. Intergovernmental Panel on Climate Change 2. Soil & Water Assessment Tool

3. Global Circulation Model

4. Food and Agriculture Organization of the United Nations

5. Global Land Cover Characterization 6. Hydrological Response Unit

7. Coupled Model Intercomparison Project

?@ A 6

† ' 6 [ " cI l d" 6 .

?

1. Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., & Srinivasan, R. (2007). Modelling hydrology and water quality in the pre- alpine/alpine Thur watershed using SWAT.

Journal of Hydrology, 333(2-4), 413-430.

2. Arnold, J.G., Kiniry, J.R., Srinivasan, R., Williams, J.R., Haney, E.B., & Neitsch, S.L.

(2011). Soil and water assessment tool input/output file documentation version 2009.

Texas Water Resources Institute.

3. Demirel, M.C., Venancio, A., & Kahya, E., (2009). Flow forecast by SWAT model and ANN in Pracana basin, Portugal. Advances in Engineering Software, 40(7),467-473.

4. DolatAbadi, S., & Zomorodyan, M.A., (2013).

Hydrological simulation of Firoozabad basin using SWAT model. Journal of Irrigation and Water Engineering.. (In Persian).

(14)

5. Devak, M., & Dhanya, C.T., (2016).

Downscaling of precipitation in Mahanadi Basin, India using support vector machine, K-nearest neighbour and hybrid of support vector machine with K-nearest neighbour. In Geostatistical and geospatial approaches for the characterization of natural resources in the environment (pp. 657- 663). Springer, Cham.

6. Didovets, I., Krysanova, V., Bürger, G., Snizhko, S., Balabukh, V., & Bronstert, A., (2019). Climate change impact on regional floods in the Carpathian region. Journal of Hydrology: Regional Studies, 22, 100590.

7. Doulabian, S., Golian, S., Toosi, A.S., &

Murphy, C., (2021). Evaluating the effects of climate change on precipitation and temperature for Iran using RCP scenarios. Journal of Water and Climate Change, 12(1),166-184

8. Gassman, P.W., Reyes, M.R., Green, C.H., &

Arnold, J.G., (2007). The soil and water assessment tool: historical development, applications, and future research directions.

Transactions of the ASABE, 50(4),1211-1250.

9. Houghton, J.T., Ding, Y.D.J.G., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., & Johnson, C.A., (2001). Climate change 2001: the scientific basis. The Press Syndicate of the University of Cambridge.

10. IPCC-Intergovernmental Panel on Climate Change, (2013). Annex I: Atlas of Global and Regional Climate Projections Supplementary Material RCP4. 5.

11. Khalilian, S., shahvari, N., Mosavi, N., &

Mortazavi, S.A., (2018), Assessment of Climate Change Impacts on Water Resources in Varamin Plain Basin Using SWAT Model, Iranian Journal of Irrigation and Drainage, 13(2), 354-366. (In Persian).

12. Li, C., & Fang, H., (2021). Assessment of climate change impacts on the streamflow for the Mun River in the Mekong Basin, Southeast Asia: Using SWAT model. CATENA, 201, p.105199.

13. Massah Bavani, A., & Morid, S., (2006). Study effects of climare change on zayande rood discharge. Journal of Water and Soil Science, 4,17-27. (In Persian).

14. Maroufi, S., & Tabari, H., (2011). Detection of Maroon River discharge trend using parametric and non-parametric methods, Geographical Research Quarterly, 26(2),939. (In Persian).

15. Moghadam, S. H., Ashofteh, P.-S., & Loáiciga, H.A. (2019). Application of Climate

Projections and Monte Carlo Approach for Assessment of Future River Flow:

Khorramabad River Basin, Iran. Journal of Hydrologic Engineering, 24(7), 05019014 16. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., &

Williams, J.R., (2011). Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute.

17. Rabezanahary Tanteliniaina, M.F., Rahaman, M., & Zhai, J., (2021). Assessment of the Future Impact of Climate Change on the Hydrology of the Mangoky River, Madagascar Using ANN and SWAT. Water, 13(9), p.1239.

18. Schuol, J., Abbaspour, K. C., Yang, H., Srinivasan, R., & Zehnder, A. J. B. (2008).

Modeling blue and green water availability in Africa. Water Resources Research, 44(7).

19. Semenov, M.A., Brooks, R.J., Barrow, E.M.,

& Richardson, C.W., (1998). Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Climate research, 10(2),95-107.

20. Sourinejad, A., (2020), Assessment of Climate Change Effects on Renewable Surface Water Resources due to 30 Basins in IRIR, Natural Geography Research, 52(3), 351-373. (In Persian).

21. Shokouhifar, Y., Zarei, H., Akhondali, A. M.,

& Khoramian, A. (2021). Assessment of effects of changes of land-use on the water balance components using SWAT (Case study:

Doroudzan dam basin). Irrigation Sciences and Engineering.

22. Saade, J., Atieh, M., Ghanimeh, S., &

Golmohammadi, G., (2021). Modeling Impact of Climate Change on Surface Water Availability Using SWAT Model in a Semi- Arid Basin: Case of El Kalb River, Lebanon.

Hydrology, 8(3), 134.

23. Touseef, M., Chen, L., & Yang, W., (2021).

Assessment of Surface Water Availability under Climate Change Using Coupled SWAT- WEAP in Hongshui River Basin, China.

ISPRS International Journal of Geo- Information, 10(5), 298.

24. Vaghefi, S.A., Mousavi, S.J., Abbaspour, K.C., Srinivasan, R., & Arnold, J.R., (2015).

Integration of hydrologic and water allocation models in basin-scale water resources management considering crop pattern and climate change: Karkheh River Basin in Iran. Regional environmental change, 15(3), 475-484.

Referensi

Dokumen terkait

Globally, in both irrigated and rain fed agriculture only about 10–30% of the available water (as rainfall, surface or groundwater) is used by plants as transpiration. In arid

In this study water balance model of the Bekasi River Sub Basin was built with several variables that affect water demand and availability, namely population growth rate,

The aims of this investigation are thus to: 1 calibrate and validate the water quantity in the Chao Phraya River basin using the Soil and Water Assessment Tool SWAT model; and 2 assess

This study conducts a systematic assessment of future streamflow under climate change in the data scarce Khowai river basin by using a semi-distributed, conceptual hydrological model