12 2
1401
373 - 359
DOI: 10.22059/jwim.2022.339537.972
: ! " #$
1 2
* 3
4
1 .
! " #! $ %& " #' ()
'*+ '*+ ", #+ ( -. / ) .$ ( 0.
1 .
2 . , 1 '*+ '*+ ", #+ ( -. / ) .$ ( 0. %& " #' () .
3 1 '*+ '*+ ", #+ ( -. / ) .$ ( 0. %& " #' () 1 , . .
4 .
! " #! $ %& " #' ()
'*+ '*+ ", #+ ( -. / ) .$ ( 0.
1 .
:34 5 67 1 81 9 3
/ 12 / 1400 :34 5 < 1=> 81 9
10 / 04 / 1401
! " #$ % &'
!( )*% + ,- . / ) ) 01 & 23
4 ( 5 6 . / " '8 ) )
9 )6 3 #3 : )*% ;3 . ) !
5 . - < & 23 " '8 )*% + = 2>? @
/ / 5 . ) + ! 3 )- ? A B .
) * . = 3 C - " '8 . /
)/ 5 = 5 ? D! EF? G
)*% )6 /
C H *? I $ 5C& J ) - . &
5
< 8' 4 ( 5 @ )/ K
) / ! LM' )GL/ ! LM' )GL/ -
!( G . / N 0 0 O% 5C& J 5 #? P
) M>
H C$ 5 + Q+ H6 ; ? =G/ $ ? !
, N . / R ' @ + ,-
< S6 ) T < . @U N? @ + ,- 24
)/ + H *? 5C& ) ) : )*% @ C ) T ) ' X Y
0 Z K . + D )GL/ T 3 6
)/ [>L ! LM' . . /
H % 0 B " ,? \ ] 5 ^
) 5 % \ ? ?
56 / 15 39 / 24
< ) L )6 / 1 A
= 3 ? &#
. 0 Z e- ?
)*% + = 2>?:
$ ? ! @I $ C& @0 @ .
Investigation of the performance of neural gas networks in hydrological clustering
Mohammadreza Mahmoudi1, Saeid Eslamian2*, Alireza Gohari3 , moein tahanian
1. M.Sc., Department of Water Engineering, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
2. Professor, Department of Water Engineering, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
3. Assistant Professor, Department of Water Engineering, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
4. M.Sc., Department of Water Engineering, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
Received: February 22, 2022 Accepted: July 01, 2022
Abstract
The design of many infrastructures and construction projects requires the extensive studies in the area's geographical conditions and climatic characteristics. The effectiveness of this research itself depends on the information and data required. In many cases, the project area is in a situation where no climatic information such as rainfall is available. Hence, regional frequency analysis has been received much attention. In this way, having specific conditions and mechanisms, the available information in other sites can be expanded and transferred to the other areas. In this research, clustering is one of the most effective steps that divide the existing stations into the hydrologically homogeneous areas. Therefore, in this study, in addition to the common methods in clustering, two new models, neural gas network and growing neural gas network, were used to determine the homogeneous regions in Khuzestan province, Iran. One of the unique features of these algorithms is learning the topology or shape of the distributions that governs the data space. Using the variables of longitude, latitude, altitude, mean annual rainfall, and maximum 24-hour rainfall of the station, the design area was divided into two hydrologically homogeneous areas, and the clustering process was performed. The results show that the neural gas networks has a high efficiency and accuracy in view of clustering.
The Mean Percentage Difference and Coefficient of Variation of Root Mean Square Error in neural gas were estimated to be 15.56 and 24.39 percent, respectively, which showed a considerable advantages over the conventional methods.
Keywords: Clustering, Hydrological homogeneity, Khuzestan, Regional Frequency Analysis, Topology learning.
+ & $ " #$ %
: H
0 ^
S6 . /
) " #$ % 5 )2
X Y I $
) )6 / G 3 & 23
He . \
5 5 ? ) 0 ?
> - " A )6 6 / ! C \ ! 6 =S
1
H ? 6 Y \- @X T G 3 5 / 5 ^
" L > 5 &f? % G2&'
/
)
Chaubey et al., 1999; Goovaerts, 1999
(i D$
X T
)6 \ G 3 <
5 N e- . / ) e?
He G !
) ^ 5 ?
H 01 E )6 $
0 ^
j1 ! $1 @j8 4 + @ >%
j U 3 ) D!
4 < . 5 ?
" ,?
&6 G 01 0 6
4 ( )- ? 0 0 G #k l2 f 0 !
.
H ! 6 5 ^
C G
= 2>? + 6 l2 f
) . \ )*% ; ? 5 &f? @ 8'
)GL/ ) <
" B eY? &6
. / ) B )6
3 : )#$ % )*% m P C )6 )Y ! 5 &f? "8GZ
Y ) 6
Lee & Maeng, 2003
.(
e- O%
!
!
C /
)
&' = / C
@I 0 $ ? & 26 Y
N / .
T ) Z6
= f $ ; L&6 )2&- N2 H
6 ? 5G& $ e X ' 5 ^ H
C 0
Y H6 ? 0 B /
.
) L/ #] 5 C 3 + n * <
( &
j1 ; ) n " #$ %
. )
o P
)*% = 2>? =GZ 5 0 &
I $ . / e Z
)*% = 2>?
) - N I
!( 1 C
C !
H N + 4 ( . 6
N l2 f
<
)*%
<
01 6
I G? 5 )6 1 ) ?
) C ! /
B+
4 6
)
Lee & Maeng, 2003
.(
Z (
Durrans & Kirby (2004)
; ? ; ?
١GEV
)
< C$ P )
)/ = 2>? P 5 . 6 j f '
5 &f?
)*% ) X 3 <
5 0 6
<
p2 < 6 T1 0
)*%
3 + J K < ! 0 6
. 6 \ C
C Z (
Soltani et al.
(2017)
N
, ) N < q * " A M < " / # o > @) < " / 5 C
> @q * ) & ) )*% IDF
< 5 J2% % 0 B H ? 0 0 ) &' 25
= 3 K A L3
. 6 X8'
H 5 ^
Ariff et al.
(2016)
N
)*% % Z!
@ * ; ? 0 &
)*% IDF
5 )
B$ T
) )- ? < 5 6 m f !
. & \ C 3 + J 01 6
4 ( K
Alemaw & Chaoka (2016)
)6
!( N
? @ ! I + ! ?
)/
K-Means 5C& )*% ) )
r $ ! & ; ? ; ? H *?
) ! J&' 5 &f? P
? Z!
100 t J
\ @ & N / 6
. /
4 (
0 ! l2 f
)/
N
6 5 I
H C$ @
N2 f )/ I X eN . )u 0 ?
0 &
H C$ . ? )6 + l2 f
/
) A
!(
" N?
. 9
*+ ? 0
4 ( 0 ! 0 ?
I - v <
.
)/
) B &? f q 0 ? )
)*L . 6 )/
f )6 w /
) J2#
I )/
X . / )/
X
( + )/ ) )6
w / )
J2# A 0 B
. / )/ I )
) )- ?
=G/
U " E J
!(
) n )*% )6 l2 f
$ I j - D e j f @
5
<
He )
Alemaw & Chaoka, 2016
.(
+ = 2>? K . &' "8GZ G )*% C& X ' @)*% I ) C ^ I
I $ P
\ - . /
0
= 2>?
)/
!
!(
5C& @I $
& =A x8 6 J 0 . /
e Z \ ? ? 5 ) )/ = 2>? K /
<
C ! 3 0 1
)
Rousseeuw, 1987
.(
= &? 5 xT &# 5C& J y fZ?
)*% + = 2>?
He f 5 ? X ! 5 ?
4 + = 2>? ) ] + )2 5 . /
C ) )6
; ? ; ? U q * = ' B-
! / z Z . /
)GL/ L / 4 ( 5 LM'
2 ! / ! ) 3
)/ P
)u 5C& J 5 #? I $ )GL/ .H
! LM' )GL/ U G
3 LM'
" P { < 1 / N /
. 6 )GL/ 5
. ? )L? 5 f
Martinetz & Schulten (1991)
!( G . / + # ) M>
H C$ 5 +
Q+ H6 ; ? =G/ $ ? ! )6 5 H C$ 5 "8GZ G . /
6 ) U / A ' #?
)6 6 [' /
# e^ y* 5 . 6 =&' 6 H C$
. ? / ! LM' )GL/ )u
Fritzke (1995)
#? / ! LM' )GL/ . / o 0 4 5 + ! P 0 ! +
H6 2L3 4 B+
) 6
Fink
& Weidmann, 2015
.(
)#$ %
Abdi et al.
(2017)
)GL/ ?
)*% / ! LM'
y / 0 &
IZ $ 40
0 I C
q C& =A K
0 Z % Z!
C$ 5 *+
H
< ) L . 5C& J 5 #? C
)GL/ N )/ ! LM'
) / ) I ? &2' C
Carlevarino et al.,
2000; Ferrer, 2014
) G/B @(
Angelopoulou et al.,
2015; Cselényi, 2005; Oliveira Martins, 2009
(
M 3 )
Decker, 2005; Lisboa, 2000
)- ? H (
5 @ ) + ! 3 H C$ 5
0 ?
)/
. & N
Modarres (2010)
4 ( S6
IZ
$ . X Y 0 eNA 0 5
4 (
# \ )/ #? j f
R2
N
*? )/ ) 0 eNA 0 H
. /
C 0 eNA 0 j { )*% !
C 3 / J X !
j - 3 /
3 0 + ! )
Reza Modarres, 2010
.(
Adib et al.
(2021)
y / IZ
$ - 0
) ) " / N (SDI
IZ
$
$ G =A + ) @4/ @)
12 )
)*%
6 . q
* q @) )
0 0 0
*? )*% ) ) H
@ /
* q
@ C 5
*? )*% ) 0 H
/
)
Adib et al., 2021
.(
Ghadami et al.
(2020)
? #$ % o
)*%
" / y / & 0 6 IZ
$ /
) (SD
0 X Y .
5 4 (
12 ) / < y / ) (SPI
C )#$ %
2>? &' )L >
=
/ ) ) (CA
C
@ )*%
)#$ % )
e^
) )*L / )
Ghadami et al., 2020
.(
)GL/ 6 # C ! LM'
)/
/ = GZ? J X T
C C& P ) -
5 . / &
0 1 P
% Z! L )6 p $ | G )
= 2>? < 5 e 0 ' )*%
) /
/ ) / N
Masselot et al., 2017
.(
LM' )GL/ - N 4 ( 5
0 0 @ / ! ! #? P
N =A K p} 5C& J 0 1
< % Z! L X
)/
)2&- 6 @4
-
55 C ;GL/ @
)Z* LM' + 6
-
75 C
) p} . / ) * 5 6 e P
)*% + = 2>?
> @
" / -
"
-
)*% + . / m f 5 <
0 0
4
=6 A
; @ Z6 Z6 { )& 0 5 ?
5 .
5 0 47 )- 41 ? )* 3 50 )- 39 )* 3
3 / 29 )- 58 ? )* 3 33 )- 4 R ' )* 3
. 3 . $ &/
HY 0
4 33 0 j1 \#G 2 3
t j1 \#G 2 N /
@
4 0 5 . Z6 & #3 30 j1 A - Z6 >%
" 2 1 0 ! 5 C . 3 / 284 2 4 . ) n ) T < 0 B 5 ?
D C 8
/ 614 2 H6 5 ? ) T < 0 B
0 1 7 / 149 2 . / LE
#?
21
= / / C
17 C
0 C e^ Y fL?
=3 . / j f Y
C ) n 1 =
16
C ) n 1 S6
e/
42 C 1 5 C . /
4 / j f 29
+ ,- #3 . /
C ) =G/
1 . / 0 Z (
Figure 1. Study area and location of the stations
= &? 5 xT &# 5C& J y fZ?
)*% + = 2>?
He f 5 ? X ! 5 ?
4 + = 2>? ) ] + . /
)
" N = $ p - 0
" N
01 =L3 X T 01 0 6
)
)/
H 5 ^ #? 5 #? ) n
@) e )/
0 G P /
&C )% P 5 ) . / : / ) 8
. / N
)% ) 1 (
0.05 0.95
@01 )6
* @ /
2A * ) $
)
S6 =3 * \ ? ?
. /
) 4
! 6 )/
X T
. / 5 &f? )*% - ) e )/ #?
y / P 5 ^
) ) (CS Chou et
al., 2004
H @(
) •
Rousseeuw, 1987
G $ 6 (
) B
Caliński & Harabasz, 1974
. / N (
N $ & 5C& J p}
)/
= / H C$
+ -
5 C
@
)Z*
@ 6 @ p =3 -
@5 C
! LM' )GL/
/ ! LM' )GL/
. / 5 #? /
PoleShalu Ize
h Susan Andika
Lali Abasspoor Gotvand
Ahvaz TangePanj
SadeDez
Sade Tanzimi Chamgaz
Paye pol
Abdolkhan
Bagh Malek
Idanak Machin
Sade Shohada KampJarahi
Dehmolla Arabahasan
Weather stations
)2 5 )6 )/ F? # X ! C&
- 9
C 10
1 )/
% Z! \ . /
!"# !$
! LM' )GL/
)GL/ U G 3 LM'
{ < 1 /
" P N / . 6
5 H C$ 5 @ )/ 0 ?
H 5 ^
4f
11 M?
. & N
=G/ ) ! LM' )GL/ ! ' 3 :
) )%
2 (
!
) )%
3
"#$%& (
01 )6 Q+ / Y ! G$
G$ 5 #? . / R + * I
) e /
*% 6 6 P ) e ?
?
:8A H C$
H . / ) A ' 5 5 ^
" A
) 3 N?
j f 2A . /
yfZ ! • )6 6
) )
'
! )6 " A 5 ) . / λ ) λ
&
0 )& ! 6 = e H
I B 6 = NA & ) ! 0 5 ?
! ) U /
$ . 6 X Gƒ λ
& \ e ? ) /
01 5 $ T &#
j f
' . / 0 Z ) L ? 0 #?
( 0 / X
" .
• )6 E ' B
6 ! . 6
) 0 5 5 $ 5 C & Y P
Y I G B P
H 0 . /
).*+,0.1.
0 Z )6 - X ' -
H C &
5 ^
/.*+,0.1.2 … . .
0 Z )6 Y? 5 1 (5 ) )2A +
4 I ! )6 ) G/ C & / ?
I&6 G 5 . / LM' )GL/ ? 6
$ ? . C
H C$
0 ? NG
= )A8 : 6
NA )2 -
#3 + M?
Q+
Y / .
)2 1 -
X ) I
P x
j f /
. )2 2 -
12 )L?
@
= / 5 )2A + )L >
x
B6
wi
' )L?
B6 .
)2 3 -
! J L%?
13
) )%
4 (
"#$%& !
< 1 )6 5 He ) G @ / ) 6 ! ' H C$ 5 + ? 2-
5 { ) ^ / G? ^ LM' )GL/ " A
* P 5 . / Y
" λ
4 ; ? P 5 . 4 6 ! 5 +
. / N
) )%
5 (
G(t)=2 334!5 5 6 768 ,
" 7 "8 , 9 : 98
p 01 )6 0 Z i
*
p !
e * CZ & f
! +
. / )
! S 0 ' / t=0
6 /! 6 ()Y 0 ^
/ / )^
)Y /
6 /! 6 ;
.
)2 4 - )L? 5 $ ( C & Y )
Y G B P NA 5 5 /
) + ! P . /
)2 5 - )& 5 4 B+
/.* → /.* 1) .(
)2 6 - R +
' 0 / )
= )6
/.*7 9
@ /
).* 0
) + ! P 5 . /
) B )2 @) )2 / 6t = $
T
f 0 B ? 4 B+ ! ) 6 !
- # / /
4 . / ) / X ?
)2 7 - 1 " A )&? . / 0 Z
) ) S6 @ S 0 '
0 #?
( G2&' G? I )2 @ { @ /
5
" A
0 H C$ = .
%& ' $ !"# !$
I GNG
C$
H )/
) )6 " A
X 3 ) 6 X 3 @ 6
#
0 #?
+
4 N 0 < 1 Z
5
C$
@ B+
4 )
Fink et al., 2015;
Angelopoulou et al., 2015
.(
C$ o8 H
)/
86
@I C$
H I GNG
01 )6 ! )GL/
!
$ ?
)' &Y r B #
\ )
Linda
& Manic, 2009; Zaki & Yin, 2008
.(
2A )GL/
5 GNG
)6 ) )
! -
) 0 ( ) I )GL/
I^ 6 I
/ )+ ] . 6
@ GNG
0 )GL/
5 #?
01 )6 4
5 ? L/
) )' &Y
@ 3 6 )
Moreli et al., 2014
.(
H C$
0 ? GNG
= )A8
: 6 )2 1 - 0
a
#3 b
+ M?
wa
wb
Q+
U / . /
)2 2 - I )
(x
)' &Y
P )u / . )2
3 - I B 5 ? 0
S1
B I ? 5
01 # 0
S2
. /
)2 4 - 4 B+
5 X &?
)L$
)6
S1
)
0 C &
.
)2 5 -
% 2>
s1
N )2A +
23 5
4 B+
/ :
) )%
6 (
∆?@A B @A BC
)2 6 -
S1
&
C
$ ? I
* H 01
& ) • x
"D !
"
6 /
. ) :=6 )2A + \ ? ?
) )%
7 (
∆ @A "D @A!
) )%
8 (
∆ " !
)6
@. 5 0 Z n
&
0 C
* H
s1
. )2 7 - !
s1
s2
I 5 @ / =M )L$
5 P ? NA )L$
H . /
^ ! 5 )L$
) / -
01 @ /
& Y .
)2 8 - )L$
5 r B ? oD amax
/ .
! 5 K n * 0 )L$
„
@ / 01
B oD / .
)2 9 -
#? ! )u
/
0 6 ? I
>A ' O
I @ λ
I
- 0 )
" A /
:
0 • r B q
? 5 ,
#? % 5 . /
0 • r B f
? 5 , % 0
&
0 C
0 . / q
I • - 0
) )&
5
q f
)
E 0.5 F 8!0 ' 3
/ .
Y • )L$
0 M?
0 r q f
2A )L$ oD 5
q
f
, •
%
q
f
01 j ] I
6
) @(a
4 6 /
, .
% - * r
,
% P ?q
H / .
)2 10 - , X &?
01 j ] %
6 4 6β
/ .
)2 11 -
# ! ) ) l3 ?
S6 @ S 0 '
0 #?
Z X Y ( G2&'
)2 ) @ Z!
/ .
) 5 @)A8 ) + ! P
)2 /
X e^
0 Z n L? )6
5 0 3 *^
. )2 HY
% @ 2>
LM' /
* 0 )6 + 6 )
!
@ N . /
! Q+ )GL/
)2 HZ/
… N?
+ .
0 3
)L$
)2 )
H N ( 5 I B ? 5 0 C$
@
Zf 0 &
$ ? I . )L$ oD
)2 ) H Z ( 5
)L$ 0 5
0 )6
C #+
] .
)2 He 0
- Q+ J
% N ) / L
)2 ) HY
( . /
e
@ ? )GL/
)6
/ . 0 ) 1 )
)
Fišer et al.,
2013; Quintana-Pacheco et al., 2014
.(
$ ( % ) *
C& 0 B )L >
GH
)% N
) 9 ( ) ? Z
. 1
) )%
9 (
VH ∑ nLMtL! t̅PC/ ∑ nR L
R LSH LSH
) )%
10 (
t̅ ∑ NR LtL!!/ ∑ nRLSH L! LSH
01 )6 C ) & U
@i tL!
Z!
) & % )
(L-CV /̅ @ )%* 5 C ) & Z!
) (L-CV
. / L 4 6 )L > # )2
) % Z!
) L/ ) X 3
)*%
# ; ? ; ? P 5 . /
) #3 1 N ) + ! P L @
. / 5 #? ) f ; ? ) L/ )
VH / )L >
H . / 5 ^
) L/
5 C @ /
µW
o >
XW
) )% J C& { # 5 #?
11 (
yfZ . /
) )%
11 (
Y Z µ\[[!
Z (
Hosking & Wallis (1993)
e Z
3 ) I )6 6
= 3 5C& ) ? L3
)6 / H6 @Y
/ I ? x L ) ?
! / 5C& { ) / I 5 Y
0 '
) ) ! 5C& { yfZ
Y
r B 0 ' =&' . / ? )6 /
#
H1
\ . ?
1 8' ) * )6 % Z!
)/
) 0 o8 / ) + ! 6
>
)*% IDF
=A )/
)*% ; ? ; ? q )6 /
>
? ; ? L )6 C IDF
X ? ;
C l2 f \ ] @)% ) @ /
% ; 5 C D- " ,?
)14 CVRMSE
5 C @(
o8 A )15
K o > (Δ )16
N (MBE
* *^ . /
CVRMSE
H6 Δ @ / ?
0 Z 4 3
) ? )/ ) + 6
H . / N * 5 ^ 0 Z MBE
5 &f?
4 0 Z LS * ? H6 5 &f?
* ?
)*%
< C * ) L . /
) )%
12 (
CV^_`a
bcdceA ∑cddiA∑ceeiAfd.e gd.e!h .
cdceA ∑diAcd ∑ceeiAfd.e j 100
) )%
13 ( Δ =kH
lkm∑ ∑ | l.m ol.m|
l.m j 100
km kl pSH
SH
) )%
14 (
qr? ∑slliA∑smmiAklkml.m ol.m!
T . @
t .p .p
) S6 " / \ ? ?
X ? ! Z! Xd
C XT
01 C 01 )6 C& )*% P / ) + ! 3 H . /
5 ^
u up
) #? @\ ? ?
X ? Z!
. N
+,& -' .
% /& $ (
N
@) T < 5 C S6 @U N?
<
24 X 3 + ,- R ' + ,- @) '
X P 5 . / ) e )/ #? 5 #? ) B+
Matlab
)
2016 a
=G/ 01 K )6 / ) + ! I&6 ( )
2 (
y / . / 1
y / * *^ CS
H6 ' y / ? G $ 6
- H B •
* )^
4 y / )/ #? / ?
P
\ / ) + ! < ) 5 )Y ) )- ? . ?
. / ) + ! P )/ @) e )/ #?
Figure 2. Calinsky-Harabasz values versus the number of clusters. Sillhouette values versus the number of clusters CS values versus the number of clusters.
0.7 0.8 0.9 1 1.1
2 3 4 5
CS Values
CS Index
15 17 19 21
2 3 4 5 6 7
Calinski-Harabasz Values Calinski-Harabasz Index
0.52 0.57 0.62
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
Silhouette Values
Number of Clusters
Silhouette Index
0 1 23.4
$ ( $
& %&
5 .3 5 #? p
< ) e J #?
)/
) ! LM' )GL/
/ @(NG
/ ! LM' )GL
) ) LM' )GL/ @(GNG
+ (SOM
) 5 C
X (FCM
B+
< \2
6 - 5 C )
K-Means
) ( X (Ward
B+
R
(3.5.0)
) C J2#? )Y . /
=G/ ) ! J )
3 ) ( 4 / )u (
.
Figure 3. Location of stations in the cluster identified by NG
Figure 4. Location of stations in the cluster identified by GNG
Arabahasa
PoleShalu Ize
Susa Andik
Lal
Abasspoo Gotvan
Ahva TangePan SadeDe SadeTanzim Chamga
Paye
Abdolkha
Bagh
Idana Machi
Sade KampJarah
Dehmoll
Cluster 1 Cluster 2
Arabahas Pole Shalu
Izeh Sus Andi
La Abasspo Gotva
Ahv TangePa SadeD
Sade Chamg
Paye
Abdolkh
Bagh
Idan Mach
Sade KampJara
Dehmol
Cluster 1 Cluster 2
$ ( % 4 2& -' .
.6' 7
) )*% C& P C -
) )*% - 1 \ ? ?
H Di
)6
0 1
% Z! q
. / N /
< " / S6 * 5 ) T
X ? H l2 f 5 ^
) U ) + 6
)/
) - )6 / 5 #?
1 . / )u (
$ ( 8 '2./& 4 2& -' .
%&
) )/ 5 e 5 #? P ' * @
>
)*%
01 P *
>
) - K / ) * C 2
/ )u (
0 & . ) )- ? yfZ - )6
)L > % *
)/ @ /
)GL/
H6 ! LM' ?
y / % 0 B 5 0 Z )6 @ /
C ) L < 5 ?
<
H . / N 5 ^ y / 0
MBE
' * )6 U ] 5 C & 5
>
)*% IDF
) L < 5 =A
? C *
r B * ?
H . y / ) 5 + ! P 5 ^ 0 ?
) / ! LM' )GL/
5 0 '
5 % * 5 + ! P . + ! P \ )*% IDF
) - )6 C IDF
3 1 (
)Y 5 ) @ / C )6 H
)6 6 4 B+ % 0 B ? 6 1 C 5 oD " A e G2&' 0 ?
)/
N ) * . / P /
)*% > U 5 C e^ C
) =G/ l2 f 5
. / 4 & (
Table 1. Results of heterogeneity and discordancy measures for 24hr rainfall duration
Heterogeneity situation Heterogeneity measure
Discordant stations Number of
stations Clustering
models Cluster
H3
H2
H1
Definitely homogeneous -1.04
-1.13 -1.12
- 11
NG
1
Definitely homogeneous -1.63
-1.91 -0.91
- 8
GNG
Definitely homogeneous -1.81
-2.01 -1.11
- 9
SOM
Definitely homogeneous -1.59
-1.79 -0.64
- 9
FCM
Definitely homogeneous -1.81
-2.01 -1.11
- 9
Kmeans
Definitely homogeneous -1.81
-2.01 -1.11
- 9
Ward
Definitely homogeneous -2.33
-1.28 0.17
- 10
NG
2
Definitely homogeneous -1.3
-0.12 0.23
- 13
GNG
Definitely homogeneous -1.21
-0.04 0.39
- 12
SOM
Definitely homogeneous -1.09
-0.01 0.12
- 12
FCM
Definitely homogeneous -1.21
-0.04 0.39
- 12
Kmeans
Definitely homogeneous -1.21
-0.04 0.39
- 12
Ward
Table 2. Average values of goodness-of-fit indices of the difference between IDF curves based on regional and at-site probability distributions for used clustering models
Values of goodness-of-fit indices Model
∆ MBE CV^_`a
-0.04 15.56
24.39 NG
0.23 16.03
24.41 GNG
0.32 16.35
25.19 FCM
0.31 15.91
24.67 SOM, K-Means, Ward
Table 3. Values for goodness-of-fit indices of the difference between IDF curves based on regional and at-site probability distributions at 21 rainfall stations for NG clustering model
Values of goodness-of-fit indices
Stations CVvwxy MBE ∆
10.75 -2.11
29.46 1
24.84 -6.61
42.46 2
11.67 -2.89
26.38 3
10.04 -1.42
14.68 4
9.14 -1.77
15.61 5
8.51 -2.05
23.07 6
14.29 0.28
17.49 7
10.32 -0.11
23.38 8
5.91 1.43
13.59 9
28.14 6.85
21.3 10
8.33 1.58
18.67 11
13.06 0.80
16.27 12
20.99 -1.38
23.36 13
28.56 9.48
46.52 14
14.41 -2.34
27.05 15
18.87 -3.71
26.02 16
19.62 0.27
29.19 17
22.00 2.13
15.55 18
21.42 -3.70
35.81 19
14.33 5.12
30.17 20
11.72 -0.69
16.11 21
15.56 -0.04
24.39 Mean
Figure 5. IDF curves for four rainfall stations in Khuzestan province (Note: The values on each curve is the return period T for the curve)
0 20 40 60 80 100 120
0 50 100 150 200 250 300 350
Rainfall intensity(mm/hr)
Rainfall duration(min) Ahvaz station
At-site Regional
2 5 10 20
50 100
0 20 40 60 80 100 120
0 50 100 150 200 250 300 350
Rainfall intensity(mm/hr)
Rainfall duration(min) Sade Tanzimi station
At-site Regional
100 50 20
10 2 5 20
0 20 40 60 80 100 120 140 160
0 50 100 150 200 250 300 350
Rainfall intensity(mm/hr)
Rainfall duration(min) Susan station
At-site
2 5 10 20 50 100
0 20 40 60 80 100 120 140 160
0 50 100 150 200 250 300 350
Rainfall intensity(mm/hr)
Rainfall duration(min) Lali station
At-site Regional
2 510 20 50 100
9 . 2
)GL/ - 4 ( 5 ! LM'
) / !
)*% P
> 0 &
IDF
)MfZ 5 + ! P P 5 ) . / )u @) T ! 5 C @ + ,- R ' @ + ,-
< S6 O% U N?
24 ) T ) '
^ y / ) N C ) n ) H @(CS
) •
Silhouette
G $ 6 ( -
B
) (CH
) e 0 0 )6 / yfZ 5 ?
5C& xT & BY )*% $ . /
N p}
)/ l2 f ) L
)*%
C 0 &
)/ . / X 3 -
) @ )Y 0 + D! EF? = $
He G ?
2A 5 4 ( 5 X Y = 5 ?
5 . " 2&' " N 4/ N @
)/
< . / X Y )/
@
) ) 5 C 6 @(Ward K-Means
5 C + @(
) ) LM' )GL/ (FCM
)2&- (SOM
<
) )6 Y !
N
- @ / 6t < e^ 8' . / ) ! LM' )GL/
/ ! LM' )GL/ (NG
) ) (GNG
)/ P ) . / N
P
H / Y )*% C&
0 - 5 ^
C 0 L 4/ @)*% -
X ? 0 1 @) !
) C&
% Z! q )6 - 0 1 /
S6 . / N X ?
J @l2 f
)/ E / Y . L C&
yfZ p C X 6 #3 0 /
y fZ? 5C& ) ! J @) 0 /
)*% ; ? ; ? 5 #? ) L m f 01 p
)*% IDF
% Z! < N
> . / X 3 )*% IDF
)
) 1
>
) C IDF
J 0 & 1
X &? )6 0 Z K . + ! 3 ) * C
> @
IDF
)*%
J %? C
4 & ) G ) / T 5 . D!
5 $ 4 ( )GL/ 6
! LM'
)*% [>L
> 0 &
IDF
3 5 .
)*% IDF
m f @ /
>
m f J =A /
@ / ! LM' )GL/ ! LM' )GL/
4 4 3 5 ?
> J %? 5 ?
0 Z )6 C
5 6
)*% + = 2>? [>L 5 . /
N 6 @
)GL/ G2&'
! LM' Le \- ?
j1 ) n [ L l2 f "8GZ =u ) . / j1 ; B
:
;$
1. Generalized Extreme Value Distribution 2.Neural Gas Network
3. Growing Neural Gas Network 4. Ward
5. K-Means
6. Self-Organizing Map (SOM) 7. Fuzzy C-Means
8. Sigmoid 9. Homogeneity 10. Discordancy 11. Image Segmentation 2. Aging
3. Adaptation
4. Coefficient of Variation of Root Mean Square Error 5. Mean Percentage Difference
6. Mean Bias Error
<= % >
9 . - 0 ! . ? ;+ R #? ) !
<& %
1. Abdi, A., Hassanzadeh, Y., & Ouarda, T. B.
(2017). Regional frequency analysis using Growing Neural Gas network. Journal of Hydrology, 550, 92-102.
2. Adib, A., Kashani, A., & Ashrafi, S. M. (2021).
Merge L-Moment Method, Regional Frequency Analysis and SDI for Monitoring and Zoning Map of Short-Term and Long-Term Hydrologic Droughts in the Khuzestan Province of Iran. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 45(4), 2681-2694.
3. Alemaw, B. F., & Chaoka, R. T. (2016).
Regionalization of Rainfall Intensity-Duration- Frequency (IDF) Curves in Botswana. Journal of Water Resource and Protection, 8(12), 1128.
4. Angelopoulou, A., Psarrou, A., Garcia- Rodriguez, J., Orts-Escolano, S., Azorin- Lopez, J., & Revett, K. (2015). 3D reconstruction of medical images from slices automatically landmarked with growing neural models. Neurocomputing, 150, 16-25.
5. Ariff, N. M., Jemain, A. A., & Bakar, M. A. A.
(2016). Regionalization of IDF curves with L- moments for storm events. International Journal of Mathematical and Computational Sciences, 10(5), 217-223.
6. Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics-theory and Methods, 3(1), 1-27.
7. Carlevarino, A., Martinotti, R., Metta, G., &
Sandini, G. (2000, July). An incremental growing neural network and its application to robot control. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, 5, 323-328). IEEE.
8. Chaubey, I., Haan, C. T., Grunwald, S., &
Salisbury, J. M. (1999). Uncertainty in the model parameters due to spatial variability of rainfall. Journal of Hydrology, 220(1-2), 48-61.
9. Chou, C. H., Su, M. C., & Lai, E. (2004). A new cluster validity measure and its application to image compression. Pattern Analysis and Applications, 7(2), 205-220.
10. Cselényi, Z. (2005). Mapping the dimensionality, density and topology of data: The growing adaptive neural gas. computer methods and programs in biomedicine, 78(2), 141-156.
11. de Oliveira Martins, L., Silva, A. C., De Paiva, A.
C., & Gattass, M. (2009). Detection of breast masses in mammogram images using growing neural gas algorithm and Ripley’s K function.
Journal of Signal Processing Systems,55(1),77-90.
12. Decker, R. (2005). Market basket analysis by means of a growing neural network. The International Review of Retail, Distribution and Consumer Research, 15(2), 151-169.
13. Durrans, S. R., & Kirby, J. T. (2004).
Regionalization of extreme precipitation estimates for the Alabama rainfall atlas. Journal of Hydrology, 295(1-4), 101-107.
14. Ferrer, G. J. (2014). Creating Visual Reactive Robot Behaviors Using Growing Neural Gas.
In MAICS (pp. 39-44).
15. Fink, O., Zio, E., & Weidmann, U. (2015).
Novelty detection by multivariate kernel density estimation and growing neural gas algorithm. Mechanical Systems and Signal Processing, 50, 427-436.
16. Fišer, D., Faigl, J., & Kulich, M. (2013). Growing neural gas efficiently. Neurocomputing,104, 72-82.
17. Fritzke, B. (1995). A growing neural gas network learns topologies. Advances in neural information processing systems, 7, 625-632.
18. Ghadami, M., Raziei, T., Amini, M., &
Modarres, R. (2020). Regionalization of drought severity–duration index across Iran. Natural Hazards, 103(3), 2813-2827.
19. Goovaerts, P. (1999). Using elevation to aid the geostatistical mapping of rainfall erosivity. Catena, 34(3-4), 227-242.
20. Hosking, J.R.M., & Wallis, J.R. (1993). Some statistics useful in regional frequency analysis.
Water resources research, 29(2), 271-281.
21. Lee, S. H., & Maeng, S. J. (2003). Frequency analysis of extreme rainfall using L‐
moment. Irrigation and Drainage: The journal of the International Commission on Irrigation and Drainage, 52(3), 219-230.
22. Linda, O., & Manic, M. (2009, June). GNG- SVM framework-classifying large datasets with Support Vector Machines using Growing Neural Gas. In 2009 International Joint Conference on Neural Networks. (pp. 1820- 1826). IEEE.
23. Lisboa, P. J., Edisbury, B., & Vellido, A.
(2000). Business applications of neural networks: the state-of-the-art of real-world applications (Vol. 13). World scientific.
24. Martinetz, T., & Schulten, K. (1991). A"
neural-gas" network learns topologies.
25. Masselot, P., Chebana, F., & Ouarda, T. B.
(2017). Fast and direct nonparametric procedures in the L-moment homogeneity test. Stochastic Environmental Research and Risk Assessment, 31(2), 509-522.
26. Modarres, R. (2010). Regional dry spells frequency analysis by L-moment and multivariate analysis. Water resources management, 24(10), 2365-2380.
27. Moreli, V., Cazorla, M., Orts-Escolano, S., &
Garcia-Rodriguez, J. (2014, July). 3d maps representation using gng. In 2014 International Joint Conference on Neural Networks (IJCNN) (pp. 1482-1487). IEEE.
28. Quintana-Pacheco, Y., Ruiz-Fernández, D., &
Magrans-Rico, A. (2014). Growing Neural Gas approach for obtaining homogeneous maps by restricting the insertion of new nodes. Neural networks, 54, 95-102.
29. Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20, 53-65.
30. Soltani, S., Helfi, R., Almasi, P., & Modarres, R. (2017). Regionalization of rainfall intensity- duration-frequency using a simple scaling model. Water Resources Management, 31(13), 4253-4273.
31. Zaki, S. M., & Yin, H. (2008). A semi- supervised learning algorithm for growing neural gas in face recognition. Journal of Mathematical Modelling and Algorithms, 7(4), 425-435.