• Tidak ada hasil yang ditemukan

۱۲ هرود

N/A
N/A
Protected

Academic year: 2024

Membagikan "۱۲ هرود"

Copied!
12
0
0

Teks penuh

(1)

12 3

1401

614 - 603

DOI:10.22059/jwim.2022.340282.978

:

!" # $ % &' (

1 2

*

2

"# $ % 3 4

1 . (# ) * + ( -. " #) (# ) 0 12 34 5- 6 6 * 7- " -4 * .-

.

2 6 6 * 7- " -4 * .- (# ) * + 3) . .

3 ) 12 * 7- " -4 * .- (# ) * + 3) . .

4 . 638 # 6 6 * 7- " -4 * .- (# ) * + ( -. " #) (# ) 0 12 34 .

:6: ; <= > ? 23

/ 12 / 1400 :6: ; B CD > ?

02 / 04 / 1401

!"

# $%

&' ( ) * ., - -.&

/ 0 1 2 "

3 ( (

4. 5670 2 8 9 . : : ;

* 2 <%

= ( >6 ? @ & - AB :

C D 5670

- (E

* (: C F 9

( ,./

&' ( G -.&

H 6 @ I JK ' 8 4/ L "

7(/ - 20

2( D 9- ( 9 ( 20

40 G" D ( 5/

: P Q ( R! - E -/ S(S./ 0 .

T 3 ! -6" ,K U C V

G"

( 2(

(

9 1 5670 W/ 1 > W/ 9X1Y 3 1 I 92: % 3 1 &' 9 3

- W G .

- T Z *(

3 ( 3 /

4. 5670 S X 4 S 2 " " "

- 2 " -&B C D 2( .

G" * / 5670 * / 2( 7(/ 1

( 60

- ( D *(R ( J(/ /

4 / 30 9 / 19 5 */

Z . ,

T 92 <%

2 "

20 D X 4 ,;

( 9L "

I (Y W -

`S8 72 / 4 D 5670 2 "

(%

- "

, -K U * . 2 8 "

20 ( D 54

/ 10 5670 D

- 2 8 1

*( . 7(/

2(

( 20 D G"

( C D 3

&' 9 1 X1 B - W

! *( X1 B . !

*(R ( AB : > W/ I 9 1 5670

- W ( 7(/ P 7/ 1 . ,

&' ( :

# 9-.&

9 4. 5670 G"

(

* (: C F 9 .

Evaluation of different levels of subsurface irrigation on yield and morphological traits of sweet corn

Milad Ebrahimi1, Javad Behmanesh2*, Vahid Rezaverdinejad2, Vahid Varshavian3, Nasrin Azad4

1. Ph.D. Student in Water Engineering (Irrigation and Drainage), Department of Water Engineering, Faculty of Agriculture, Urmia University, Urmia, Iran.

2. Professor, Department of Water Engineering, Faculty of Agriculture, Urmia University, Urmia, Iran.

3. Assistant Professor, Department of Water Engineering, Faculty of Agriculture, Bu Ali Sina University, Hamadan, Iran.

4. Graduate Ph.D. in Water Engineering, Department of Water Engineering, Faculty of Agriculture, Urmia University, Urmia, Iran.

Received: March 14, 2022 Accepted: June 23, 2022 Abstract

Planning for the best use of water resources in agriculture is inevitable. In this regard, the method of subsurface drip irrigation can, in addition to reducing the amount of irrigation water, increase crop yield. This study was conducted to investigate the different levels of under-irrigation and over- irrigation on yield indices and plant traits of sweet corn cultivar CHASE, under subsurface drip irrigation system in a randomized complete block design with four treatments of 20 Percent over-irrigation, equal to water requirement, 20 and 40 Percent under-irrigation in four Repeated. The results showed that in general, the effects of under-irrigation and over-irrigation on cob yield, 1000-seed weight, uncovered cob diameter, pod-free cob length, number of cob rows and number of seeds were significant. Also, based on the results, it can be stated that by reducing the amount of water consumption, the yield of the product decreases linearly. The highest and lowest cob yields were obtained in over-irrigation treatments and 60 Percent of water requirement with an average of 30.4 and 19.9 tons per hectare, respectively. Accordingly, with a 20 Percent reduction in water consumption compared to full irrigation, only 4.72 Percent of the crop is significantly reduced. This is while with a 20 Percent increase in irrigation water, the yield of cob increases by 10.54 Percent. 1000-seed weight in full irrigation and 20 Percent low irrigation treatments was 375.7 and 372.6 g, respectively.

There was no significant difference between over-irrigation and 20 Percent under-irrigation treatment. There was a significant difference between the means of ear yield indices, length and number of seeds per ear row in all irrigation treatments.

Keywords: Crop yield components, deficit irrigation, subsurface drip irrigation, sweet corn.

(2)

5 - G /

* K / " . L 0 (

E ( 3 0 -

c!B dI (

7 9c!B ;7" 2 /

, : LU )

Harrison et al., 2014

( 2 / . - 9

I 8

d 3 :

( 3

"

( Vg , 1% 6" * "

- "

.

* : 2 /

! ' Vg/ ,./

( ' - , *57

E h i& 2 " j0 (

3 : )

Hüner &

Hopkins, 2008

.(

:

` 9 ;7"

) G"

( 5 - G /

* 8

2

4 ' , C F ,: "

)

Ashraf et al., 2012

.(

) G"

( ) 70 >6 ?

93 (

9 !" k -

/

8 2

" c7"

)

Soleymanifard et al.,

.(2011

6D X - )

G"

( 9

8 D

# - L ' S 2 " / 9 # /

(

E 5670 (

E * 8 E ' (

l W c

2 /

- 1 G " , - / ,;m C V ,

. (

&

-

: G

*(

E 5670 (

I d

$n/ ;

E ( :

! 8 2 )

Gheysari et al., 2017

.(

C F 3 # S C D

( G 3 0

$Y - (6

( 3 Y C D (

S(

G 0 3

c 8 60 4.

5 -

# o (

,

$Y -

# - . -

: )

Campos et al., 2004

.(

: C F (

* 5 -

$Y G Cp 4.

- " ,

70 I : " 1 =

- : ( 3

E ( 3 0 - "

; 3 0 S;I

: 9 K / ., 8 E ' (

* 4.

C D

D /

$Y -

;/

6 - 7 ( , )

Oktem et

al., 2005

.(

: C F ,: "

(

* 3

3 0 c

E ( 0 - 7 ; 7W (

* I B 2 <%

P Q :

* E ( ( , . G

*(

: C F (

* E ( - " , ( 3 3 5670

E ,; i& U (

3 ! J/

2(

/ ,

)

Afshari et al., 2011

.(

Moohamadi & Armin (2017)

= -

5!B 2 / C V -

# C F 5670 c

2

S./

( / S - 6q @ I JK ' (

, P Q 5/ C1%

/ . ( 7 (

70 : Z

?;/ S (

?;/ c !/

( Z1"

J(/ / A

9 ( W 70

(6 - ) 9( "

( W 90 (6 -

?;/

(

2 /) - 1 G ( ( W 110 130 (6 -

?;/

( 2 /) - : . ( T

3 V " 3 !

2 / -

W/ C D

>

3 9 1

3 c!B 3 9 ,

/

"

W L -

S . (

! ( D 7 C ( 3 : / r

( 7

(

?;/ W (

70 (6 -

?;/ c !/

( .

>6 ? @ & C V (

: LU

-E<

s K 8 5 -

# C F 5670

c

WK &

( - Z 8 3 3 Q S&

- P Q WK & .,8 E ' @ I :

6q ( , P Q 5/ C1%

/ : ( 7 (

: 6U

! - 9 :

! - 70 3 : %

/ . : ( 7 Z

P Q (

?;/ t%

( 3 :

S 40 (6 - )

I1

( 9 70 (6 - )

I2

( 100 (6 -

)

I3

?;/ c !/ ( (

Z1"

W/ A

>

d;I . : T

G" 70 (

# 7

;' 5670 (

L AB :

E k / 9h i&

( 9 3 9 1 I 9 c!B 3

Y 1 c!B (

Vg/

( W - ,:

* C D

I1

2(

/

* S

I3

G"

/

* : B S

Vg/ = ( G"

(

# LU 5670

>6 ? :

* ( Q 9LU 7 " : LD U

(3)

G"

( S 2 " j0

# 9 : 5670

7 3 : % 6U 2 " C : 2(

/

: 6U

! - 7 G"

/ )

., et al Azarpanah

.(2013

2 <%

C F 5670 2 " 3 E (

Q

2 / - 6U

! -

" 2 "

-

,; : I 3 : / " 8 )

Earl & Davis, 2003

.(

B - 2 <%

3 E 7 ( ,

g/

(

* 8 "

- : 6U

! -

"g/ C F (

"

S 0 9 3

: 6U 2S

! -

E L;'

!8 - Vg/ E ( G"

/ 5670 -

6E 6U ;7" ,;

- 3 : %

* ' W / h ) E " =

Vg/

( : $E (

3 7Q/

* P C :

n/

((

- 7

( , D B - , )

Lobell et al,

.(2014 Scot & Aboudrare

) (2009

* "

) G"

( 4. 5670 ,8 9C F (

G"

/ ( 3 8 D

# - , : .

Basaki et al.

) ( (2018

3 : C F P ' "

(

*

Basin

Obsession

:

` G"

- RK 9 S&

&' ( 6U 2 "

29 D

8 4 - ,8 (

D S& 9 5670

(

#1

" 3 D / L '

( .,

Kara & Ertick

) (2013

- @ &

( C F 5670

: (

* ( 3 " "

2(

/

* / 1 5670 (

7

( 6&

G"

/

* / 1 5670 (

7 60

D ( - E ( J(/ / W 8 / 14 5 / 11 */

5 ,

.

Ghazian Tafrishi et al.

) (2013

- @ &

( K / ( : C F ( 9*

( 3

"

1 5670 2 " "

, / 9 X 4

: C F (

* K 9 2 "

- (

* @ &

(

- 100 80 W X1 B D -

R ! X 4

.

Farajee

&

Fereidooni

) (2017

( 3 " "

G 2 "

@ &

(

) 5670 9 1 5670 C D ,!"

"

4 '

( s K 5 - X 4

: C F 8 60 5670 (

* W - 9 : G

*(

T

2 3

G" " 3 ! (

2 " J;

: C F 1 5670 (

* . :

Afshar & Sadrghaen

) I (2014

- -! <%

0 I

- 3 !

Vg/ ,./ 5670 / "

( / ( 7

( 3 ( / ,8 E ' (

7 R

* , D

Vg/ ,./

(

. '

2(

/

* 5670 S

# I

/ r @ I (

7 100 D

g/

(

* ( - G"

/

* / 3 ( 7 50 g/ D (

* (

-

! : / V . ( 7 @ &

(

"

-

X 4 #

R X1 B

W - i&

c . 3 ! B D E

V (

v P "

/ ( 7

"

- X 4

W -

! 9 /p

* ( 3 "

-

/ X 4 (

7 100 g/ D (

* ( - LD U

k / . : 7/ /

- Vg/ ,./

( S

.,8 E ' 2(

/

* / / k / (

7 100 D

( - G"

/

* / 3 ( 7 50 D ( - .

3 300

(

* / ( 7 P >6 ?

Vg/ ,./

( P ,8 E ' ,: " )

@ &

( (

* Vg/ ,./ , D (

. '

Lawson

) (2006

! - 17 (;

: C F (

*

B (6 - : (

* S /p . "

* ; 1 5670

(;

BSSO977

282 J(/ / A

( 3 17450

17263 "

( P E 6 5

G"

/

* 1 5670

(;

Surpass

Mirai

J(/ / 11063 12150

"(

P E 6 . 7 ) E 5

(

&'

(4)

.&

- : ,./

` 4?!

- /

* )

( E ( 3 , k )

Elmaloglou &

Diamantopoulos, 2009

.(

( G (

&'

.&

- %

( L GQU 2 "

(

B i& 2 "

( t : H B (

Q C 6/ 2 "

?;/

( S )

( .,

, (

G (

&' .&

-

. (

` 9, H B -

3 / / "

2 " # /

?;/ X$U (

9H B i&

.&

- " : F C 6/

)

Palacios-Diaz

et al., 2009

.(

( G (

&' .&

- ) 67#

( S 3 " " , )

( 67#

( .&

- 9 ( -

(

&' .&

- 2 " 10 (

3

8 9 0 2 4. 5670

; , : )

Albasha et al., 2015

.(

* ( G

c ) (

"

(

L' U (

3 I C 6/

d

?;/

( 9H B i&

S70 F 2 "

- ( Q BF w U c7"

(

$n w U E

( ., G

*(

!" X 4 % Cp 4.

3 " C F Lm

i&

p ,!"

- ( , B -

/

x 2S V ( 31 : : !"

K ;' L ' - , .

Dehghansanij et al.

) (2017

( G

&' .&

- (

K / (

y 4.

- "

- 3 /

, : : S G"

/

$n S

( G (

&' .&

- 9 9 4. /p 5670

c!B H B i&

>60 " ;

1 - / 4.

-

$n "

W8 /

* S& 2?

!

" : )

Enciso et al.,

.(2015 . et al Khashaei

) (2019

&

WK

E ( ./ C F , (

&' .&

- P Q

. T 3 3 ! 2(

/

* 5670

, / C F J(/ / 92

/ 14 85 / 39 */

/ 5 (

7 ( L "

, . 2(

/

*

( 3 98 / 2 "

( P E 6 70 5

G"

( (

3 75 D ( - E AK B ( ,

.

Mohammadkhani et al.

)

! <% (2020

-

Vg/ 3 0 ( (

.&

- .&

-

G" >6 ? @ &

( (

3

# 9 5670

5670 " 3 ! 9C F

2(

/

* 5670 (

3 22 / 33 5 */

21 / 31 5 */

J(/ / /

( 7 (

.&

- .&

- " : LD U

* / ( 9 7

W X1 B -

5 R . : T

-

" 5670 -

4 8 60 C F X c

K H B -

S&

( 7 c!B z "

3 ,./

( G (

&' .&

-

.&

- /p " 3 !

*

" 5670 -

X 4

C F (

G

&' .&

- { 4 B ,8

)

Kanani et al., 2016

.(

-! <%

8 #

C F 5670 (

,./

( G

(

&' .&

- ( 3 E ( 6D 8

K (

) 120 160 - (

$E "

K K

&' d70 3 5 35

- i&

H B -

.,8 E ' T

2 " " 3 !

S (

( 3 15 / 20 ` / D (

G

(

&' .&

- ( 3 8 2 8 D

( S

( G ( 3 E

S : ! 3

/ 6 4 "

( P E 6

(5)

JW5 J(/ /

( G (

&'

.&

- 3 E ,

)

Albasha et al., 2015

.(

Naderi Bani et al.

) (2019

= -

" V

( Wo - .&

- .&

- ,

(

: C F 5670 (

* / " 3 ! (

7 (

.&

- 5670 (

s K 5 - 8 / 27 9 5 */

; 1 5670 7

/ 42 1 5670 9 5 */

c!B 6 / 9 9 5 */

2(

/

* . 5670

Afshar & Sadrghaen

) (2014

- i&

( E ,!"

( C F (

G

&'

.&

- 8 "

2(

/

*

r 5670

( 2 / 3 L "

- .,

Karimi et al.

) i& (2015

( 80 9 100 120 D ( -

C F (

G (

&' -

. "

3

* ( Q ( "

@ &

c D T %

W C / -

(

* / 4. 5670 (

7

>6 ? (

# C D #

. , 2 / 70 9 80

D ( - D / (

- : . c!B # / K

- : 2 " S&

i&

( )

-

; - 2 "

X 4 (

o .,

G

*(

( G (

&' .&

- 3 0 c ) (

#

X 4 2 " , # Vx (

- /

# R

* )

(

o U) WK & S&

( . : (

: C F (

* ( 3 0 c H B) = 4.

/ X 4 P B

(3 - /

>

,!"

E ' S&

( .

*

*

2 <%

S X

# 5670 5670

: C F 4.

(

* G' ( t >6 ? @ & ,./

2 / -

( G (

&' .&

-

S&

( E P Q .

2 0 - R!

= -

( >6 ? @ & (Vg/

C F (E -.&

* (:

W/

67000 5 /

-/ S(S./ 0

I . : P Q ( R! - E i& 3 k / S& - (8 n# l 0 J(/ / 58'

44°

9-' : 39'

37°

-K 7:

1364

&

, i

. 0 92 <% P Q L;'

d70 9- ? 0

- 30 9 30 - 60 60 - 90 -

- (W GQU ( ) 6( ) H B -W(;I ` : H B C D

, B : :

.,8 E ' 3 R!

# )

1 (

) 2 ( J(/ /

0 H B ( 2 T

3 ! 4. ,!" ,./

- .

Table 1. Physical and chemical characteristics of the tested farm soil Depth of

sampling (cm)

Soil texture

Organic carbon

Electrical conductivity (dSm-1)

Total nitrogen (%)

Acidity (PH)

Absorbable phosphorus (ppm)

Absorbable potassium (ppm)

0-30 Silty loam 1.2 2.5 0.1 8.1 11.8 816.3

30-60 Silty Clay loam 0.85 1.9 0.8 8 9.5 714.5

60-90 Silty Clay loam 0.5 1.7 0.5 7.9 9.1 685.4

Table 2. Chemical properties of irrigation water Water class Salinity

(dSm-1) Acidity Na+ Ca+2 Mg+2 Cl- So4-2

(meqlit-1)

C2-S1 0.65 7.3 0.3 3.3 3.7 0.8 0.4

(6)

* -0 2 1398

C D

@ I

H 6 L "

-8 4/

. : P Q 5/

7(/

( i&

S 120 )

I1

9(

100

)

I2

9(

80 )

I3

( 60 )

I4

L " ( ( D (

G' 5/

CHASE

,./ 9* (: C F

(

&'

$ . : P Q -.&

LD 8 30

- c

>

LD 8 25 -

K K : "

: . ,: "

- C D

} / G / ( .,8 E P Q P R

,: "

LD 8

W/

((

* : K T % d70 - -

Q

K

$

? t%

3 ( 6U

-E P ' c /

( G ( ( . :

&'

&' -.&

3 5 - -

: P Q ,0 (K

k .

200 z B Q 6D 8 3 5(

30 -

>60 "

: P Q - C D

;

C 8 (

7 D / d & (

( I - 8

,8 E C D : )

Khashaei, 2019

G .(

*(

9H B 3 T d;I 400

" 5 P E 6("

C D " d / 3 ? d I ( "

3 , c " 6U G

3 , ,: "

,! LU L(5!/ Y 9-E

LE 3

: ( 3 : L5: . : X 4

) 1 ,(Wo (

* 8 E '

K K 6D 8 /

3 ! R 5 -

.

* 2 <%

G= ( C D

( )

: P Q ( =

(?;/ S 9 ( ( d70 *((W/

- W/

(E ~

(?;/ ; . , # . : -

(E L( % ~ W/

(ETP)

(E J o ) 9 y #

) & d;I - 1

(

) :

Allen et al., 1998

:(

) 1 (

ETp= Ep + Tp = KcbETo + KeETo

= (Kcb + Ke) ET0

93 "

Ep

J(/ / Tp

i& L( % (?;/

(E ` / L( % ~ W/ H B

(mm day-1)

9

ETo

(?;/

- # (E ~ W/

(mm day-1)

9 J o Kcb

) % - (E -

( ) H B (?;/ J oKe

- ( - : .

Figure 1. Status of pilot project in the studied farm

(7)

* 2 <%

?;/ ; . = (

- (E ~ W/

) #

*7 % y 8 ) (ETo

-

: j(

)

Allen et al., 1998

:(

) 2 (

.

!

3 "

9 (?;/ETo

- / # ~ W

(mm day-1)

9

Rn

(E AK B 2 /

(MJ m-2day-1)

9 : G

H B E

(MJ m-2day-1)

9 , V J o

5

(KPaoC-1)

9

Tmean

*(R (

9(Co)

k ;: ? !8 es (KPa)

9 -W' ? !8 ea

(KPa)

9

es-ea

k ;: ? !8 ;7"

(KPa)

9

U2

k / ,0 *(R (

(m s-1)

9

k ;: ? !8 - . J(:

(KPaoC-1)

9

Cn=900

# (E J o

(KgoK/Kj/day)

9

Cd=0.34

J o

# (E

(sm-1)

- - (E J o . :

y #

# L : -

€ ~ W/ (?;/

, "

# /

* "

( WK & * -.& C D

9

(?;/ 2?

X D

= : 9 = * .

2 / 9C U # L : ( - :

-0 -; , I ,0 9 (: B 1398 0 -5 " K - : R

9 - E -/ S(S./

7#

# . :

) 3 (

- : % *(R (

, #

(?;/ S *((W/

- ,!" L48 I # ~ W/

S& * (: C F 4.

WK &

3 ! - .

(?;/ k 7Q ; . -

6D 8 # (E ~ W/

( C 9 4. - ( *((W/ ( *(

Z

&' - ( d70 3 5

. : *((W/

S ,!" L48 I -E 3 ( ,60 ) Vx 8 E = ( S ; .

! G

*(

S ( X1/ P 0 # /

0 LB

# / c "

3 C "

2

" 3 S

100 . : 8 E = D

,!" L48 I k 7Q

26 / . : P Q (

( 2: (E L " S 3 3

3 5 (

: P Q W

3 G" S 7(/ (

. : 70 -!

G" 7(/

( Z

*( g/

80 60 J o * 8 E = (E - ( D

8 / 0 6 / 0 70 : -E ( P R - ,:

c s K (8 P (7B 6U 9* (: C F

,8 E C D )

Lutts et al., 2006

(.

# *((W/

9 5670 12

-8 4/ 1

"

L 1 ,:

:

3 *((W/ . : * / C "

9

7 100 - / C D -8 4/

: #

3 ? 1 3

E ( t% . :

E ( &' I 1

t(K "

,' 1 / 0

(6 - 9> W/ > W/ 9

7 12

0 * *(R ( ) 7: - /

: t Q/

. 7# t%

9

P t Q/

8 P Q SPSS

*(R ( S )

*5

: .

Table 3. Mean meteorological parameters of the study area during the growing season Month Maximum temperature

(°C)

Minimum temperature (°C)

Maximum humidity (%)

Minimum humidity (%)

Hours of sun (hr)

wind speed (ms-1)

July 31.9 18.4 48 25 11.7 2.1

August 32.6 19.4 49 28 10.9 1.9

September 27.9 15 57 33 9.7 2

October 26.8 11.7 50 24 10.7 2.2

(8)

Q/ T # -

) 4 (

3 ! :

.,

# /

9t Q/ T

V

@ &

>6 ? 9 1 5670 C D (

9 3

W/ 9X1Y 3 1 I 92: % 3 1 &'

> W/ 9 1 >

- W :

.

- W AB : 3 : G" V : "F

* (

- 3 ( ,(W' AB : * " "

C F

9 ( 3 ( -5 r ;/ * (:

I 1 / 5670 ( S 2 " "

- 2 "

. S

• ( R (

* -

3 Z

*5 i&

T % D

# ) 5 ( 3 ! :

, .

!

Z # ) 5 (

*(R ( 3 X U " -

! Z

D T % i& *5 3 C /

W -

*(

3

. #

T

, 3 ! 2 8

4. s / * (: C F

( S

L ' Z (E

&

G(S

. 2(

/ 7(/ 1 5670 * 120

( D

) L "

I1

( G"

/ 7(/ 3 S * 60

- ( D

)

I4

( , *( . / 7(

)

I1

( )

I4

( i&

X1 B D c 7 U W

-

! :

9

) 7(/ *(

I2

) (

I3

( X1 B W - 5670

1 ,

. ( 7(/ Q(

20 G" D (

) L " ( 7(/ ,;

I1

9(

72 / 4 2 " D

7(/ " , -K U * ., : 1 5670 60 ( D ) -

I4

( ) 7(/ ,;

I1

( 7 / 52 D

1 5670 2 " * . 5670 2 "

Q(

(E 6 S 2 "

G"

- 8 2 " - /

. : G

*(

5670 2 "

C F - / L(K

1 B :

Vx # (E

8 67#

2

E I

!8 - L" " ‚ ,

2 "

5!/ W/

L(

: . :

Table 4. Results of analysis of variance of corn grain yield, thousand weight, diameter of uncovered corn, length of podless corn, number of rows, number of grains per row

Source of changes df

Average of squares Corn yield

(Ton/ha)

Weight of a thousand seeds

(gr)

Corn diameter

(cm)

Corn length

(cm)

Number of seeds in a row

Number of rows

Treatment 3 79.3* 4604.8* 1.1* 75.9* 101.4* 16.6*

Block 3 1.1 144.3 0.13 0.39 2.7 0.3

Coefficient of variation - 9.1 33.11 0.57 3.93 4.73 1.8

Error 9

Total 15

*: Signifincatly differences at 5% of probability levels.

Table 5. Comparison of means of different irrigation water treatments on corn grain yield, thousand weight, diameter of uncovered corn, length of corn without pods, number of rows, number of seeds per row

Source of changes

Corn yield (Tonha-1)

Weight of a thousand seeds (gr)

Corn diameter (Cm)

Corn length (Cm)

Number of seeds in a row

Number of rows

I1 30.4a 391.8a 5.6a 24.7a 42.6a 18.4a

I2 27.5b 375.7a 5.3a 21.8b 40.7ab 17.1b

I3 26.2b 372.6a 5.2a 17.4c 39.9b 15.9c

I4 19.9c 312.1b 4.4b 14.9b 31.3c 13.6d

(9)

T 2 <%

Farsiani et al.

) (2011 Van

Donk & Shaver

) ( (2016

C F 5670 2 "

,K U G"

( L " ( S

3 !

- .

# / 2 <%

P Q :

` /

Imam &

Ranjbar

) 9(2001 Ahmadi et al.

) (2000 Kara &

Ertick

) ( 2013

- C F 5670 " " 3 ( 3 / ,;

G" ` : 3 ! - 2 " -

- , D *

( 100 - W C / - ( D

5670 85 (E - ( D i&

*( % 5670 / I

- W 2 "

- "

* T 2 <%

. ,S & (

"#

$

2 / 2 " d I 3 : % ;7"

3

- 2 " 5670 ( .

T d;I

, 3 = ( >6 ? @ & *(

X1 B D T % i&

W - #

. G

*(

3 *(R ( S

( S 2 " " 3 ! >6 ? 7(/

7(/ ,;

I2

9 3 2 "

- *

C : 1 5670 , D ,; 2 "

G"

/

, ) 85 / 0 D 2 "

I3

7(/ ,;

I2

( Z

# ) 5 ( *(R ( *( X1 B 3

7(/

I1

9

I2

I3

W -

; *(R ( X1 B

7(/ 7(/ * , D * 40

G" D (

W - ., * 3 ! C F " , *

* (:

G"

( :

t50 L7WK 2(

/

3 2 "

3 ! - .

# /

2 <%

P Q : ` /

Ghazian Tafrishi et al.

) (2013

- / " ,8 3 * (: C F 5670 2 "

,./

Vg/

( ,; 1 7: 2 " - 2 / - p ,(7 3 : % 6U ;7" .

- , B

5670 : 2 " J; /

: 3 2 " d I .

%& ' " ! ()

T d;I ,

V

@ &

&' ( >6 ?

1 W - , #) 4 ( . W/ d I 9 1 &'

9 1 >

*((W/

1 k 7Q

2S 5670 G" " 3 ! T .

J; (

7 1 &' 2 "

( >6 ? @ &

: .

2(

/ *(R ( 1 &' * 6

/ 5 - r 9

i&

20 2( D (

G"

/ 1 &' *(R ( *

7(/

40 G" D 8 ~ / (

#) 5 .(

Lawson

) (2006 Afsharmanesh

) T (2008

2 <%

" " ) E *( B

;(

* (: C F >6 ? g/

S 9 (E - ( *(

&'

,; 1 G"

( 9 2(

/ .,

Table 6. Comparison of relative changes in the mean measured traits of sweet corn at different irrigation levels Source of

changes

Corn yield

Weight of a thousand seeds

Corn diameter

Corn length

Number of seeds in a row

Number of rows

I1 +10.54 +4.25 +5.66 +13.3 +4.66 +7.6

I2 0 0 0 0 0 0

I3 -4.72 -0.85 -1.88 -20.18 -1.96 -7.01

I4 -27.63 -16.95 -16.98 -31.65 -23.09 -20.46

$3 2 . $ #$"#$ H $ IJ0. , #KC I ( " @" , +

-

$3 2 . $ #$"#$ H $ IJ0. , #KC I ( K ,

(10)

*!+ " ! ,

# / G" 9 Q/ T

(Vg/ ( W

-

#) , : 1 I 4

S 2 " .(

* (: C F (E X1Y 3 1 I , D ( G'

Chase

#) ,8 2 " T / 6

.(

* =

G" 7(/ 9, D 2( 7(/ (

X1 B 9 (

W - : : 7(/ R 5 )

# 5 .(

, D 9> W/ (Vg/ d I 9 1 I 2 / V 1 I 2 " , Vx 5670

- 1 W/ k 7Q 2 " J; 9-5!B . :

Heatherly

) ( (1990

> 2 " -6D ,60

-5!B V 1 I 2 "

.,

- ./

W/ ( >6 ? 7(/ V t Q/

>

" 7 A?! 1 , D * =

- W X1 B D T % i& 7(/ *(

#

#) 4 .(

2(

/ r > W/ *

L " ( 7(/

)

I1

9(

6 / 42 G"

/

r 3 *

7(/

60 - ( D 3

/ 31 .

S T

*(R ( 7(/ *( " 3 !

I1

I2

G

*(

*(

7(/

I2

I3

> W/ = X1 B 1

W - ,: # 9

2( 7(/ *(

( 20

G" D 9 ( G

*(

7(/ *(

60 - ( D

X1 B ( 7(/

W - T % i&

#) # D 5

.(

Sanders et al.

) (2014

2 / ` : > W/ C / 7 P10 -5!B -

/ L(K

J $#

<

C F -! LU L " ( 7(/

.,

Ahmadi et al.

) (2000

Kaman et al.

) (2011

( 2 <%

. 8 , - ! T B

! - ./

> W/ ( >6 ? 7(/ V t Q/

- W X1 B # 9 1 i&

*( D T %

#) 3 ! 7(/

4

*(R ( S T .(

3 !

G" 7(/ P " "

2( ( = (

E 1 > W/

' -/

) # 5 ( 1 > W/ 9 ( S 2 " .(

I , D ! 9,8 2 " 1 I 5670

2( 1 5670 , D ,; 2 " * C : /

G" 1 I , D ,;

/ ) 01 / 7 D

2 "

20 ,; ( S D /(

7

I2

(

#) 6 2 <% * T d & .(

Adiloglu et al.

) (2012 Scot & Aboudrare

) (2009

2 <% -I

-5!B 2 / " 7 P10 B

C F ;(

- 1 > W/ 2 " j0 * (:

. :

0 1 2

G"

2 " , # " Vx ; ) ( 8 D - W (Y 2 " X 4 - #

., 4. - 5670 Q WK & * T d;I

, D - 2 / 9 1 5670

&' 9 3

> W/ 9X1Y 3 1 I 92: % 3 1 - W (Vg/ * (: C F (E > W/ 9 1

- s / Vx 2S ( S ,: -! "

.,: ( 4.

( 3 ! 2 <% * T

&' 3 -S70 F C 6/ " -.&

G" , 9, ( ( d;I . ! 70 (

7(/ 9T 40

G" D 2 / 3 7(/ ,; (

2 " - 63

/ 27 . : # 1 5670 D

-K U 2 " "

20 5670 ( ( D

1 I - W (Y 72

/ 4 .,8 2 " D

(11)

34 5 6 ./

v(

. # 3 E ` / 8 l W/ E

3 5

1. Adiloglu, A., Talian, D.D., Abin, S., Davison, D., & Petersen, J. (2012). The Effect of Boron (B) Application on the growth and nutrient contents of maize in zinc (Zn) deficient soils.

Research Journal of Agriculture and Biological Sciences, 2(1), 1-4.

2. Afshar, H., & Sadrghaen, H. (2014). Impact of Different Irrigation Levels, Plant Density and Row Spacing on Water Productivity of Corn Using Subsurface Drip Irrigation. Water and Soil, 27(6), 1145-1152. (In Persian).

3. Afshari, M., Azizi, F., Pazaki, A., & Sajedi, N.

(2011). Investigation of the effect of different plant densities on some phenological traits of five sweet and very sweet foreign corn cultivars. New agricultural findings, 17(1), 1-8.

(In Persian).

4. Afsharmanesh, Gh. (2008). Investigation of the effect of planting date on grain yield of corn cultivars in early spring planting in Jiroft.

Research and construction, 20(2), 3-8. (In Persian).

5. Ahmadi, J., Zeinali, H., Rostami, M., &

Chogan, R. (2000). Drought resistance in late commercial commercial hybrids of corn.

Iranian Agricultural Sciences, 31(4), 891-907.

(In Persian).

6. Albasha, R., Dejean, C., Mailhol, J.C., Weber, J., Weber, J., Bollegue, C. & Lopez, J.M.

(2015). Performances of subsurface drip irrigation for maize under Mediterranean and temperate oceanic climate conditions. 26th Euro-Mediterranean Regional Conference and Workshops. 12-15 October 2015, Montpellier, France.

7. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements. FAO Irrigation and drainage. Paper 56.

8. Ashraf, M., Arno, H., Beling, D., & Santos (2012). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27(2), 84-93.

9. Azarpanah, A., Alizadeh, O., Dehghanzadehm, H., & Zare, M. (2013). The effect of irrigation levels in various growth stages on morphological characteristics and yield components of Zea mays

L. Technical Journal ofEngineering and Applied Sciences, 3 (14), 1459-1447.

10. Basaki, T., Pikarestan, B., & Khayam-Nekoue, S. (2018). The Effect of Irrigation cutting on Water use Efficiency and Proline Content of Six Sweet Corn Varieties in Milajerd Conditions. Journal of Crop Biotechnology, 20(7), 65-74. (In Persian).

11. Campos, H., Cooper, M., Habben, J.E., Edmeades, G.O., & Schussler, J.R. (2004).

Improving drought tolerance in maize: a view from industry. Field Crops Research, 90, 19-34.

12. dehghansanij, H., Kanani, E., & Hamami, M.

(2017). Application of Subsurface Drip Irrigation System and Management Parameters in Corn Production. Water Management in Agriculture. 3(2), 39-52. (In Persian).

13. Earl, H.J., & Davis, R.F. (2003). Effect of drought stress on leaf and whole canopy radiation, use efficiency and yield of maize.

Agronomy Journal, 95, 688-696.

14. Elmaloglou, S., & Diamantopoulos, E. (2009).

Simulation of soil water dynamics under subsurface drip irrigation from line sources.

Agricultural water management, 96, 1587-1595.

15. Enciso, J., Jifon, J., Anciso, J., & Ribera, L.

(2015). Productivity of onions using subsurface drip irrigation versus furrow irrigation systems with an internet based irrigation scheduling program. International Journal of Agronomy (11) 1, 238-249.

16. Ertick, A., & Kar, B. (2013). Yield and quality of swect corn under deficit irrigation, Agriculture Water Management, 129, 138-144.

17. Farsiani, A., Ghobadi, M.E., &

Jalalillonarmand, S. (2011). The effect of water deficit and sowing date on yield components and seed sugar contents of sweet corn (Zea mays L.), African Journal of Agriculture Research, 6(26), 5769-5774.

18. Fereidooni, M., & Farajee, H. (2017). Effect of Different Irrigation Levels and Cultivation Techniques on Water Use Efficiency and Quantity and Quality yield of Sweet Corn (Zea mays var. saccharata). Water and Soil, 31(4), 1001-1014

19. Ghazian Tafrishi, S., Aynehband, A., Tavakoli, H., Khavari khorasani, S., & Joleini, M. (2013).

Effect of Limited Irrigation on Yield and Yield Component of Several Sweet Corn (Zea mays L.var Saccharata) Varieties. Iranian Journal of Field Crops Research, 11(1), 171-178. (In Persian).

(12)

20. Gheysari, M., Sadeghi, S. H., Loescher, H. W., Amiri, S., Zareian, M. J., Majidi, M. M., Asgarinia, P., & Payero, J. O. (2017).

Comparison of deficit irrigation management strategies on root, plant growth and biomass productivity of silage maize. Agricultural water management, 182, 126-138.

21. Harrison, M.T., Tardieu, F., Dong, Z., Messina, C.D., & Hammer, G.L. (2014). Characterizing drought stress and trait influence on maize yield under current and future conditions.

Global Change Biology, 20, 867-878.

22. Heatherly, L., Wasley, G., & Elmore, C.

(1990). Corn, sorghum and soybean response to irrigation in the Misissippi river alluvial plain. Crop science, 30, 666-672.

23. Hüner, N.P., & Hopkins, W.G. (2008).

Introduction to Plant Physiology: Wiley, NewYork.

24. Imam, Y., & Ranjbar, Gh. (2001). Effect of plant density and drought stress on vegetative growth stage on yield, yield components and water use efficiency in grain corn. Iranian Journal of Crop Sciences, 2(3), 51-62. (In Persian).

25. Kaman, H., Kirda, C., & Sesveren, S. (2011).

Genotypic differences of maize in grain yield response to deficit irrigation. Agricultural Water Management, 98, 801-807.

26. Kanani, E., Dehghanisanij, H., & Akhavan, S.

(2016). Effects of different irrigation methods and mulch on corn (Zea mayz L.) evapotranspiration, yield, water use efficiency in a semi-arid climate.

2nd world Irrigation Forum (WIF2). 6-8 November, 2016. Chiang Mai, Thailand

27. karimi, M., Baghani, J., & Joleini, M. (2015).

Evaluation of the Effect of Different Irrigation Levels of Drip Irrigation (Tape) on Yield and Yield Components of Corn. Water and Soil, 29(2), 311-321. doi: 10.22067/jsw.v0i0.29307.

(In Persian).

28. Khashaei, F., Behmanesh, J., Rezaverdinejad, V., & Azad, N. (2019). Effect of the Amount of Irrigation and Nitrogen Fertilizer Splitting on Grain yield, Yield Components and Water Productivity of Corn under Subsurface Drip Irrigation. Journal of Water Research in Agriculture, 33(4), 601-612. (In Persian).

29. Lawson, V. (2006). Sweet corn cultivar trial - 2006 Iowa state university Muscatine island Res And Demonstrafion farm IS RFo6. 20, 10-13.

30. Lobell, D.B., Roberts, M.J., Schlenker, W., Braun, N., Little, B.B., Rejesus, R.M., &

Hammer, GL. (2014). Greater sensitivity to drought accompanies maize yield increase in

the US Midwest. Science, 344, 516-519.

31. Lutts, S., Kinet, JM., & Bouharmont, J. (2006).

NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity rsistance. Annals of Botany, 78, 389-398.

32. Mohammadkhani, A., Pourgholam-Amiji, M., Sohrabi, T., & Liaghat, A. (2020). The Effect of Different Levels of Water Stress in Two Surface and Subsurface Drip Irrigation Systems on Yield and Water Productivity of Maize. Water and Irrigation Management, 10(2), 247-264. (In Persian).

33. Moohamadi Behmadi. M., & Armin, M. (2017).

Effect of drought stress on yield and yield components of different corn cultivars in delayed planting conditions. Applied Research of Plant Ecophysiology, 4 (1), 17-34. (In Persian).

34. Naderi Bani, A., Gholami Sefidkoohi, M., &

Kamali, M. (2019). Investigation of the effect of surface and subsurface local irrigation on sweet corn yield. 15th National Conference on Irrigation and Evaporation Reduction, Kerman. (In Persian).

35. Oktem, A., Eulgun, A., & Coskun, Y. (2005).

Determination of sowing dates of sweet corn (Zea mays L. Saccharata Sturt.) under Sanliurfa conditions. Turkish Journal of Agriculture and Forestry, 28, 83-91

36. Palacios-Diaz, M.P., MendozaGrimon, V., Fernandez-Vera, J.R., RodriguezRodriguez, F., Tejedor-Junco, M.T., & Hernandez- Moreno, J.M. (2009). Subsurface drip irrigation and reclaimed water quality effects on phosphorus and salinity distribution and forage production. Agricultural water management, 96(11), 1659-1666.

37. Sanders, O., & Shaw, M. (2014). Temperature and soil water effects on maize growth, development, yield and forage quality. Crop Science, 36, 341 -348.

38. Scot, P., & Aboudrare, A. (2009). Adaptation of crop management to water-limited environment. Europeanm Journal of Agronomy, 21, 433-446

39. Soleymanifard, A, Pourdad, S., Naseri, R., &

Mirzaei, A. (2011). Effect of drought stress on growth indices of sweet corn in rainfed conditions. Pakistan Journal of Botany, 47, 327-340.

40. van Donk, S. J., & Shaver, T. M. (2016).

Effects of nitrogen application frequency via subsurface drip irrigation on corn development and grain yield. Journal of Plant Nutrition, 39(13), 1830-1839.

Referensi

Dokumen terkait

Genetic analysis of inbred and hybrid yield under stess and non stress enviroment in tropical maize.. Breeding and selection for adaptation to stress; Genetic improvement of

The relation between soil water content and the growth of cotton root was studied for the scheme of field water and cotton yield under mulched drip irrigation.. Based on the

Water and Land Productivity of Lettuce Plants Based on the production of lettuce plants cultivated in floating pots in greenhouse by applying subsurface irrigation, the

"Influence of chlorine injection on soil enzyme activities and maize growth under drip irrigation with secondary sewage effluent", Irrigation Science, 2018 Publication

Application of nitrogen through drip irrigation showed a positive effect on the fruit yield and number of fruits per plant.. The treatment T3 17.8 mmol/lt N2 produced highest yield and

Morvareed cultivar, an experiment has been carried out with three main treatments including surface drip irrigation TS, subsurface drip irrigation TSS, and Furrow irrigation F, as

M.Sc., Department of Water Engineering, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.. Professor, Department of Water Engineering, College of Agriculture,

Modeling Impact of Climate Change on Surface Water Availability Using SWAT Model in a Semi- Arid Basin: Case of El Kalb River, Lebanon.. Assessment of Surface Water Availability