Basic Concepts and Definitions
Basic Concepts and Definitions
Basic Concepts and Definitions
𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐹𝑙𝑜𝑤 𝑣𝑠. 𝑂𝑝𝑒𝑛 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝐹𝑙𝑜𝑤: 𝐹𝑟𝑖𝑐𝑖𝑡𝑜𝑛 𝐹𝑜𝑟𝑐𝑒 𝑣𝑠. 𝐺𝑟𝑎𝑣𝑖𝑡𝑦
Simplifying Assumptions in an Open Channel Flow:
1- One dimensional 2- Steady
3- Flow at each section: Uniform: 𝐿𝑎𝑟𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑠𝑐𝑎𝑙𝑒 𝑎𝑛𝑑 𝑅𝑒
∴ 𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑓𝑙𝑜𝑤 (𝛼 = 1)
4- The pressure distribution is Hydrostatic In fluid low dir.: ∆𝑝 = 0
Major pressure gradient across each section
Basic Concepts and Definitions
Basic Concepts and Definitions
Channel Geometry
𝑦: 𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑓𝑙𝑜𝑤: 𝐹𝑟𝑜𝑚 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑏𝑒𝑑 𝑡𝑜 𝑓𝑟𝑒𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝐴:𝐹𝑙𝑜𝑤 𝑎𝑟𝑒𝑎 ⊥ 𝐹𝑙𝑜𝑤 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
𝑃: 𝑊𝑒𝑡𝑡𝑒𝑑 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟: 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑤𝑖𝑡ℎ 𝑙𝑖𝑞𝑢𝑖𝑑 𝑅ℎ: 𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝑟𝑎𝑑𝑖𝑢𝑠
𝑹𝒉 = 𝑨 𝑷
𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐹𝑙𝑜𝑤: 𝐷ℎ = 4𝐴 𝑝
𝐹𝑜𝑟 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛: 𝐷ℎ = 2𝑅ℎ = 𝐷 2
Channel Geometry
𝐹𝑜𝑟 𝑛𝑜𝑛 − 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠: 𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝑑𝑒𝑝𝑡ℎ:𝑦ℎ = 𝐴 𝑏𝑠 𝑏𝑠: 𝑤𝑖𝑑𝑡ℎ 𝑎𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝐴 = 𝑏𝑠𝑦ℎ
the hydraulic depth represents the average depth of the channel at any cross section. It gives the depth of an equivalent rectangular channel.
Speed of Surface Waves and the Froude Number
Effect of Gravitational Disturbance on Surface Wave تسدلااب اب تسد نییاپ رد لایس راتفر قیبطت
Speed of Surface Waves and the Froude Number
1. Steady flow.
2. Incompressible flow.
3. Uniform velocity at each section.
4. Hydrostatic pressure distribution at each section.
5. Frictionless flow.
Continuity:
→ ∆𝑉 = 𝑐 ∆𝑦 𝑦 + ∆𝑦
𝑎𝑠𝑠𝑢𝑚𝑒 𝑐 > ∆𝑉
Speed of Surface Waves and the Froude Number
Momentum:
𝑭𝑺𝒙? ? ? 𝑝𝑐: 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑡 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑜𝑓 𝑠𝑢𝑟𝑓𝑎𝑐𝑒
Speed of Surface Waves and the Froude Number
ො𝑛 ො𝑛
𝑐 − ∆𝑉 𝑐
Speed of Surface Waves and the Froude Number
𝑢𝑠𝑒 ∆𝑉 = 𝑐 ∆𝑦 𝑦 + ∆𝑦
∆𝑦 ≪ 𝑦 𝒄 = 𝒈𝒚 :کچوک هنماد اب جاوما یارب سین هتسباو لایس صاوخ هب جوم تکرح تعرس ت
.
Speed of Surface Waves and the Froude Number
Example
11.1 SPEED OF FREE SURFACE WAVES
You are enjoying a summer’s afternoon relaxing in a rowboat on a pond. You decide to find out how deep the water is by splashing your oar and timing how long it takes the wave you produce to reach the edge of the pond. (The pond is artificial; so it has approximately the same depth even to the shore.) From floats installed in the pond, you know you’re 20 ft from shore, and you measure the time for the wave to reach the edge to be 1.5 s. Estimate the pond depth. Does it matter if it’s a freshwater pond or if it’s filled with seawater?
Speed of Surface Waves and the Froude Number
Speed of Surface Waves and the Froude Number
تعرس اب لایس دوش یم لامعا نآ هب تسد نییاپ رد شاشتغا کی هک دراد نایرج 𝑉
.
کی طسوت دناوت یم شاشتغا نیا 𝑏𝑢𝑚𝑝 𝑖𝑛 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑓𝑙𝑜𝑜𝑟
عنام کی طسوت ای 𝑏𝑎𝑟𝑟𝑖𝑒𝑟
دوش داجیا .
Speed of Surface Waves and the Froude Number
Speed of Surface Waves and the Froude Number
Speed of Surface Waves and the Froude Number
تعرس اب شاشتغا نیا دنک یم تکرح تسدلااب رد لایس هب تبسن 𝑐
.
رگا تعرس لایس
مک
،دشاب 𝑉 < 𝑐
شاشتغا اب
تعرس 𝑐 − 𝑉 قلطم
رد تسدلااب
تکرح یم
دنک .
رگا تعرس لایس
دایز
،دشاب 𝑉 > 𝑐
شاشتغا یمن
دناوت رد تسدلااب تکرح
دنک و طقف
رد نییاپ تسد
تکرح یم
دنک .
دورف ددع فیرعت
Speed of Surface Waves and the Froude Number
𝑭𝒓 = 𝑽 𝒈𝒚
Instead of the rather loose terms “slow” and “fast,” we now have the following criteria:
• 𝐹𝑟 < 1 Flow is
subcritical
. Disturbances can travel upstream; downstream conditions can affect the flow upstream. The flow can gradually adjust to the disturbance.• 𝐹𝑟 = 1 Flow is
critical
.• 𝐹𝑟 > 1 Flow is
supercritical
, rapid, or shooting. No disturbance can travel upstream; downstream conditions cannot be felt upstream. The flow may“violently” respond to the disturbance because the flow has no chance to adjust to the disturbance before encountering it.
Speed of Surface Waves and the Froude Number
For nonrectangular channels: 𝑭𝒓 = 𝑽
𝒈𝒚𝒉 (𝐴 = 𝑏
𝑠𝑦ℎ)
Energy Equation for Open-Channel Flows
assumptions:
1. Steady flow
2. Incompressible flow
3. Uniform velocity at a section
4. Pressure distribution is hydrostatic 5. Small bed slope
6. 𝑊ሶ𝑆 = ሶ𝑊𝑠ℎ𝑎𝑓𝑡 = ሶ𝑊𝑜𝑡ℎ𝑒𝑟 = 0
Energy Equation for Open-Channel Flows
𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑏𝑒𝑑
𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑏𝑒𝑑 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑡ℎ
Energy Equation for Open-Channel Flows
𝑑𝐴 = 𝑏𝑑𝑦
_
Energy Equation for Open-Channel Flows
Notice that:
3. Uniform velocity at a section
4. Pressure distribution is hydrostatic
For section 1:
Therefore,
Total head
Same for section 2, therefore, the energy equation becomes:
The total head or energy head, H, at any location in an open-channel flow:
𝑉12
2 + 𝑔𝑦1 + 𝑔𝑧1 − 𝑉22
2 + 𝑔𝑦2 + 𝑔𝑧2 = ℎ𝑙 𝑇
÷ 𝑔 𝑉12
2𝑔 + 𝑦1 + 𝑧1 = 𝑉22
2𝑔 + 𝑦2 + 𝑧2 + 𝐻𝑙
𝑯 = 𝑽𝟐
𝟐𝒈 + 𝒚 + 𝒛 𝑦 & 𝑧: 𝑙𝑜𝑐𝑎𝑙 𝑑𝑒𝑝𝑡ℎ 𝑎𝑛𝑑 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑏𝑒𝑑 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛
𝐻1 − 𝐻2 = 𝐻𝑙 & 𝐻𝑙 > 0 → 𝐻1 > 𝐻2
Specific Energy
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 = 𝑇𝑜𝑡𝑎𝑙 ℎ𝑒𝑎𝑑 − 𝑧 (𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 ℎ𝑒𝑎𝑑)
𝑬 = 𝑽𝟐
𝟐𝒈 + 𝒚 → 𝐸1 − 𝐸2 + 𝑧1 − 𝑧2 = 𝐻𝑙
𝑬 = 𝑸𝟐
𝟐𝒈𝑨𝟐 + 𝒚
𝐾𝑛𝑜𝑤 𝑡ℎ𝑎𝑡 𝑉 = 𝑄 𝐴 :
𝐹𝑜𝑟 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝑎𝑠 𝑦 ↑: 𝐴 ↑→ 𝑄2
2𝑔𝐴2 ↓ 𝐴 𝑦
Specific Energy
Critical depth (𝑦𝑐): For a given flow rate, at a specified depth, the specific energy would be minimum.
Specific Energy
Specific Energy
Example 11.2 SPECIFIC ENERGY CURVES FOR A RECTANGULAR CHANNEL
For a rectangular channel of width b = 10 m, construct a family of specific energy curves for Q = 0, 2, 5, and 10 𝑚
3
𝑠 . What are the minimum specific energies for these curves?
𝑬 = 𝑸𝟐
𝟐𝒈𝑨𝟐 + 𝒚
Specific Energy
Specific Energy
Specific Energy
Specific Energy
Critical Depth: Minimum Specific Energy
Example 11.2 treated the case of a rectangular channel. We now consider channels of general cross section.
𝑬 = 𝑸𝟐
𝟐𝒈𝑨𝟐 + 𝒚
For a given flow rate Q, to find the depth for minimum specific energy,
𝑑𝐸
𝑑𝑦 = 0 = − 𝑄2 𝑔𝐴3
𝑑𝐴
𝑑𝑦 + 1 & 𝑑𝐴 = 𝑏𝑠𝑑𝑦 𝑑𝐸
𝑑𝑦 = − 𝑄2
𝑔𝐴3 𝑏𝑠 + 1 = 0
→ 𝑄2 = 𝑔𝐴3 𝑏𝑠
Critical Depth: Minimum Specific Energy
Critical Depth: Minimum Specific Energy
𝐹𝑟𝑜𝑚 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑉 = 𝑄 𝐴 𝑉 = 𝑄
𝐴 = 1 𝐴
𝑔𝐴3 𝑏𝑠
12
= 𝑔𝐴 𝑏𝑠
& 𝐴 = 𝑏𝑠𝑦ℎ 𝑉 = 𝑔𝑦ℎ
𝑭𝒓 = 𝑽 𝒈𝒚𝒉 But the Froude number is given by:
• For minimum specific energy, Fr = 1, which corresponds to critical flow.
• We obtain the important result that, for flow in any open channel, the specific energy is at its minimum at critical conditions.
Critical Depth: Minimum Specific Energy
For critical flow:
𝑸𝟐 = 𝒈𝑨𝟑 𝒃𝒔 𝑽𝒄 = 𝒈𝒚𝒉𝒄
𝐴𝑐, 𝑉𝑐, 𝑏𝑠𝑐 and 𝑦ℎ𝑐 are the critical flow area, velocity, channel surface width, and hydraulic depth, respectively.
For rectangular channel: 𝑏𝑠 = 𝑏 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 & 𝐴 = 𝑏𝑦
𝑄2 = 𝑔𝐴3𝑐
𝑏𝑠𝑐 = 𝑔𝑏3𝑦𝑐3
𝑏 = 𝑔𝑏2𝑦𝑐3 𝑏 𝑦
→ 𝒚𝒄 = 𝑸𝟐 𝒈𝒃𝟐
𝟏𝟑
Critical Depth: Minimum Specific Energy
𝑽𝒄 = 𝒈𝒚𝒄 = 𝒈𝑸 𝒃
𝟏𝟑
With:
And minimum energy:
𝐸 = 𝐸𝑚𝑖𝑛 = 𝑉𝑐2
2𝑔 + 𝑦𝑐 = 𝑔𝑦𝑐
2𝑔 + 𝑦𝑐
𝑬𝒎𝒊𝒏 = 𝟑 𝟐 𝒚𝒄
Critical Depth: Minimum Specific Energy
Example 11.3 CRITICAL DEPTH FOR TRIANGULAR SECTION
A steep-sided triangular section channel (𝛼 = 60°) has a flow rate of 300 𝑚
3
𝑠 . Find the critical depth for this flow rate. Verify that the Froude number is unity.
Critical Depth: Minimum Specific Energy
Critical Depth: Minimum Specific Energy
Critical Depth: Minimum Specific Energy
Localized Effect of Area Change (Frictionless Flow)
a simple flow case in which the channel bed is horizontal and for which the effects of channel cross section (area change) predominate:
Flow Over a Bump
Localized Effect of Area Change (Frictionless Flow)
𝑉12
2𝑔 + 𝑦1 + 𝑧1 = 𝑉22
2𝑔 + 𝑦2 + 𝑧2 = 𝑉2
2𝑔 + 𝑦 + 𝑧 = 𝑐𝑜𝑛𝑠𝑡 𝐸1 + 𝑧1 = 𝐸2 + 𝑧2 = 𝐸 + 𝑧 = 𝑐𝑜𝑛𝑠𝑡
it takes place over a short distance, the effects of friction (on either momentum or energy) may be reasonably neglected.
Flow over a Bump
تباث ضرع اب یلیطتسم لاناک دیریگب رظن رد 𝑏
.
یگدمآرب هلداعم 𝑧 = ℎ(𝑥) :
𝑦 𝑥 : 𝑓𝑟𝑜𝑚 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑏𝑒𝑑 ،
1: 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑝𝑜𝑖𝑛𝑡 & 2: 𝑜𝑛 𝑡ℎ𝑒 𝑏𝑢𝑚𝑝:
𝑉12
2𝑔+ 𝑦1 = 𝐸1 = 𝑉2𝑔2 + 𝑦 + ℎ = 𝐸 + ℎ 𝑥 = 𝑐𝑜𝑛𝑠𝑡 → 𝐸 𝑥 = 𝐸1 − ℎ 𝑥
Flow over a Bump
𝐹𝑟𝑜𝑚 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦: 𝑄 = 𝑏𝑉1𝑦1 = 𝑏𝑉𝑦
𝑄2
2𝑔𝑏2𝑦12 + 𝑦1 = 𝑄2
2𝑔𝑏2𝑦2 + 𝑦 + ℎ = 𝑐𝑜𝑛𝑠𝑡
هب تبسن لااب هطبار زا دوجو لیلد هب دازآ حطس عافترا تارییغت یارب یا هطبار ات میریگ یم قتشم 𝑥
𝑏𝑢𝑚𝑝
دیایب تسد هب .
− 𝑄2 𝑔𝑏2𝑦3
𝑑𝑦
𝑑𝑥 + 𝑑𝑦
𝑑𝑥 + 𝑑ℎ
𝑑𝑥 = 0 𝑑𝑦
𝑑𝑥 =
𝑑ℎ𝑑𝑥
[ 𝑄𝑔𝑏22𝑦3 − 1]
=
𝑑ℎ𝑑𝑥 [𝑉𝑔𝑦 − 1]2
Flow over a Bump
𝒅𝒚
𝒅𝒙 = 𝟏 𝑭𝒓𝟐 − 𝟏
𝒅𝒉 𝒅𝒙
response to a bump very much depends on the local Froude number, Fr
Flow over a Bump
رگا 𝐹𝑟 < 1: 𝑆𝑢𝑏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝐹𝑙𝑜𝑤: 𝐹𝑟2 − 1 < 0:
𝑑𝑦 بیش بیش فلاخم دازآ حطس رد 𝑑𝑥
𝑑ℎ
رد 𝑑𝑥
تسا 𝑏𝑢𝑚𝑝 .
عافترا رگا 𝑏𝑢𝑚𝑝
:↑ لایس عافترا سکعلاب و ↓
.
Flow over a Bump
رگا 𝐹𝑟 = 1: C𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝐹𝑙𝑜𝑤: 𝐹𝑟2 − 1 = 0: 𝑑𝑦
𝑑𝑥 → ∞: 𝐼𝑚𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒
→ 𝑑ℎ
𝑑𝑥 = 0
هک یلحم رد دناوت یم طقف ینارحب نایرج نیاربانب
𝑑ℎ
𝑑𝑥 = 0 دتفیب قافتا ،تسا
.
ینعی : 𝑎𝑡 𝑏𝑢𝑚𝑝 𝑐𝑟𝑒𝑠𝑡 𝑜𝑟 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑖𝑠 𝑓𝑙𝑎𝑡
Flow over a Bump
رگا 𝐹𝑟 > 1: 𝑆𝑢𝑝𝑒𝑟𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝐹𝑙𝑜𝑤: 𝐹𝑟2 − 1 > 0:
𝑑𝑦 بیش بیش قفاوم دازآ حطس رد 𝑑𝑥
𝑑ℎ
رد 𝑑𝑥
تسا 𝑏𝑢𝑚𝑝 .
عافترا رگا 𝑏𝑢𝑚𝑝
:↑ لایس عافترا سکعلاب و ↑
.
Flow over a Bump
Flow over a Bump
Example 11.4 FLOW IN A RECTANGULAR CHANNEL WITH A BUMP OR A NARROWING
A rectangular channel 2 m wide has a flow of 2.4 𝑚3/𝑠 at a depth of 1.0 m.
Determine whether critical depth occurs at:
(a) a section where a bump of height h = 0.20 m is installed across the channel bed,
(b) a side wall constriction (with no bumps) reducing the channel width to 1.7 m, and
(c) both the bump and side wall constrictions combined.
Neglect head losses of the bump and constriction caused by friction, expansion, and contraction.
Flow over a Bump
Solution: Compare the specific energy to the minimum specific energy for the given flow rate in each case to establish whether critical depth occurs.
Flow over a Bump
Flow over a Bump
Flow over a Bump
Flow over a Bump
Hydraulic Jump
When flow at a section is supercritical,
and downstream conditions will require a change to subcritical flow, the need for this change cannot be communicated upstream;
the flow speed exceeds the speed of surface waves, which are the mechanism for transmitting changes.
Thus a gradual change with a smooth transition through the critical point is not possible.
The transition from supercritical to subcritical flow occurs abruptly through a hydraulic jump.
Hydraulic Jump
Hydraulic Jump
Unlike the changes due to phenomena such as a bump,
the abrupt change in depth involves a significant loss of mechanical energy through turbulent mixing.
فا یم قافتا هاتوک اتبسن هزاب کی رد یکیلوردیه شرپ هک دنهد یم ناشن یبرجت یاه شیامزآ دت
.
شرپ لوط ممیزکام :
6 رت گرزب قمع ربارب (𝑦2)
: زا رظنفرص 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒
هلداعم رد طقف
یژرنا هلداعم رد هن و موتنموم (
سنلاوبروت هدیدپ لیلد هب )
Although hydraulic jumps can occur on inclined surfaces, for simplicity we assume a horizontal bed, and rectangular channel of width b; the results we obtain will apply generally to hydraulic jumps.
Hydraulic Jump
Hydraulic Jump
Hydraulic Jump
assumptions:
1. Steady flow
2. Incompressible flow
3. Uniform velocity at each section
4. Hydrostatic pressure distribution at each section 5. Frictionless flow (for the momentum equation)
Continuity:
𝐶𝑆𝑉. Ԧ𝐴 = 0 → −𝑉1𝑏𝑦1 + 𝑉2𝑏𝑦2 = 0 𝑉1𝑦1 = 𝑉2𝑦2
Hydraulic Jump
x-mom: 𝐹𝑥 = 𝐹𝑠𝑥 + 𝐹𝐵𝑥 = 𝜕
𝜕𝑡න
𝐶𝑉
𝑢𝜌 𝑑𝑉 +
𝐶𝑆𝑢𝜌𝑉. Ԧ𝐴
→ 𝐹𝑠𝑥 =
𝐶𝑆𝑢𝜌𝑉. Ԧ𝐴
𝐹𝑅 = 𝑝𝑐𝐴
𝑭𝒔𝒙? ?
𝐹𝑠𝑥 = 𝐹𝑅1 − 𝐹𝑅2 = 𝑝𝑐𝐴 1 − 𝑝𝑐𝐴 2 = 𝜌𝑔𝑦1
2 𝑦1𝑏 − 𝜌𝑔𝑦2
2 𝑦2𝑏 = 𝐹𝑠𝑥 = 𝜌𝑔𝑏
2 (𝑦12 − 𝑦22) 𝐹𝑠𝑥 = 𝜌𝑔𝑏
2 𝑦12 − 𝑦22 =
𝐶𝑆𝑢𝜌𝑉. Ԧ𝐴 = 𝑉1𝜌 −𝑉1𝑏𝑦1 + 𝑉2𝜌 𝑉2𝑏𝑦2
Hydraulic Jump
Momentum equation for the hydraulic jump:
Momentum Eq. for open channel flow:
For horizontal hydraulic jump, 𝑧1 = 𝑧2, so:
𝑬𝟏 = 𝑽𝟏𝟐
𝟐𝒈 + 𝒚𝟏 = 𝑽𝟐𝟐
𝟐𝒈 + 𝒚𝟐 + 𝑯𝒍 = 𝑬𝟐 + 𝑯𝒍
𝑉12
2𝑔 + 𝑦1 + 𝑧1 = 𝑉22
2𝑔 + 𝑦2 + 𝑧2 + 𝐻𝑙
𝑽𝟏𝟐𝒚𝟏
𝒈 + 𝒚𝟏𝟐
𝟐 = 𝑽𝟐𝟐𝒚𝟐
𝒈 + 𝒚𝟐𝟐 𝟐
Hydraulic Jump
Loss of mechanical energy for hydraulic jump:
∆𝐸 = 𝐸1 − 𝐸2 = 𝐻𝑙
𝑽𝟏𝒚𝟏 = 𝑽𝟐𝒚𝟐 𝑽𝟏𝟐𝒚𝟏
𝒈 + 𝒚𝟏𝟐
𝟐 = 𝑽𝟐𝟐𝒚𝟐
𝒈 + 𝒚𝟐𝟐 𝟐 𝑬𝟏 = 𝑽𝟏𝟐
𝟐𝒈 + 𝒚𝟏 = 𝑽𝟐𝟐
𝟐𝒈 + 𝒚𝟐 + 𝑯𝒍 = 𝑬𝟐 + 𝑯𝒍
یکیلوردیه شرپ تلاداعم
Depth Increase Across a Hydraulic Jump
(𝑉1𝑦1 = 𝑉2𝑦2) ∴ 𝑉12𝑦1
𝑔 + 𝑦12
2 = 𝑉12𝑦1 𝑔 (𝑦1
𝑦2) + 𝑦22 2 Rearranging:
Dividing by 𝑦2 − 𝑦1:
× 𝑦2 ÷ 𝑦12 gives:
Depth Increase Across a Hydraulic Jump
𝒚𝟐
𝒚𝟏 = 𝟏
𝟐 𝟏 + 𝟖𝑭𝒓𝟏𝟐 − 𝟏
تسدلااب هب تسد نییاپ رد قمع نایم تبسن تسدلااب رد دورف ددع ∝
𝒚𝟏 & 𝒚𝟐: 𝑪𝒐𝒏𝒋𝒖𝒈𝒂𝒕𝒆 𝒅𝒆𝒑𝒕𝒉𝒔
Head Loss Across a Hydraulic Jump
𝑯𝒍 = 𝑬𝟏 − 𝑬𝟐 = 𝑽𝟏𝟐
𝟐𝒈 + 𝒚𝟏 − (𝑽𝟐𝟐
𝟐𝒈 + 𝒚𝟐)
𝑉1𝑦1 = 𝑉2𝑦2 ∴ 𝐻𝑙 = 𝑉12
2𝑔 1 − 𝑦1 𝑦2
2
+ (𝑦1 − 𝑦2)
→ 𝐻𝑙
𝑦1 = 𝑉12
2𝑔𝑦1 1 − 𝑦1 𝑦2
2
+ [1 − 𝑦2 𝑦1]
→ 𝐻𝑙
𝑦1 = 𝐹𝑟12
2 1 − 𝑦1 𝑦2
2
+ [1 − 𝑦2 𝑦1]
Head Loss Across a Hydraulic Jump
𝑯𝒍
𝒚𝟏 = 𝟏 𝟒
𝒚𝟐
𝒚𝟏 − 𝟏 𝟑 𝒚𝟐 𝒚𝟏
𝒐𝒓 𝑯𝒍 = 𝒚𝟐 − 𝒚𝟏 𝟑 𝟒𝒚𝟏𝒚𝟐
𝐻𝑙 > 0𝑝𝑟𝑜𝑜𝑓𝑦2
𝑦1 > 1
یزاس دعب یب 𝐻𝑙
طسوت 𝐸1
:
𝐸1 = 𝑉12
2𝑔 + 𝑦1 = 𝑦1 𝑉12
2𝑔𝑦1 + 1 = 𝑦1 (𝐹𝑟12 + 2) 2
Head Loss Across a Hydraulic Jump
→ 𝐻𝑙
𝐸1 = 1 2
𝑦2
𝑦1 − 1 3 𝑦2
𝑦1 [𝐹𝑟12 + 2]
𝒚𝟐
𝒚𝟏 = 𝟏
𝟐 𝟏 + 𝟖𝑭𝒓𝟏𝟐 − 𝟏
𝑯𝒍 𝑬𝟏 =
𝟏 + 𝟖𝑭𝒓𝟏𝟐 − 𝟑
𝟑
𝟖 𝟏 + 𝟖𝑭𝒓𝟏𝟐 − 𝟏 [𝑭𝒓𝟏𝟐 + 𝟐]
𝐹𝑟1 ↑→ 𝐻𝑙 ↑ 𝐹𝑟1 = 1 → 𝐻𝑙 = 0
Hydraulic Jump
Example
11.5 HYDRAULIC JUMP IN A RECTANGULAR CHANNEL FLOW
A hydraulic jump occurs in a rectangular channel 3 m wide. The water depth before the jump is 0.6 m, and after the jump is 1.6 m. Compute (a) the flow rate in the channel (b) the critical depth (c) the head loss in the jump.
Hydraulic Jump
Hydraulic Jump
Hydraulic Jump
Hydraulic Jump
Steady Uniform Flow
Steady uniform flow is something that is to be expected to occur for channels of constant slope and cross section: Prismatic channel
We have Uniform Flow.
Fully Developed Flow
Constant depth: Normal depth (𝒚𝒏)
𝐴1 = 𝐴2 = 𝐴 (cross-section areas), 𝑄1 = 𝑄2 = 𝑄 (flow rates),
𝑉1 = 𝑉2 = 𝑉 (average velocity, 𝑉 = 𝑄
𝐴), 𝑦1 = 𝑦2 = 𝑦𝑛 (flow depth)
Steady Uniform Flow
Assumptions:
1. Steady flow
2. Incompressible flow
3. Uniform velocity at a section
4. Pressure distribution is hydrostatic 5. Small bed slope
6. 𝑊ሶ𝑆 = ሶ𝑊𝑠ℎ𝑎𝑓𝑡 = ሶ𝑊𝑜𝑡ℎ𝑒𝑟 = 0
ضرف 5
: قفا یاتسار رد لایس تعرس ،دومع یاتسار رد لایس قمع
Continuity: 𝑄 = 𝑉1𝐴1 = 𝑉2𝐴2 = 𝑉𝐴
Steady Uniform Flow
Steady Uniform Flow
x-mom: 𝐹𝑥 = 𝐹𝑠𝑥 + 𝐹𝐵𝑥 = 𝜕
𝜕𝑡න
𝐶𝑉
𝑢𝜌 𝑑𝑉 +
𝐶𝑆𝑢𝜌𝑉. Ԧ𝐴 𝐹𝐵𝑥 = 𝑊 sin 𝜃 & 𝐹𝑠𝑥: 𝐹𝑓: 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛
𝐹𝑓 = 𝑊 sin 𝜃 = 𝜏𝑤𝑃𝐿
𝑊 sin 𝜃 = 𝜌𝑔𝐴𝐿 sin 𝜃 ≈ 𝜌𝑔𝐴𝐿𝜃 ≈ 𝜌𝑔𝐴𝐿𝑆𝑏
→ 𝜏𝑤𝑃𝐿 = 𝜌𝑔𝐴𝐿𝑆𝑏
Steady Uniform Flow
→ 𝜏𝑤 = 𝜌𝑔𝐴𝑆𝑏
𝑃 = 𝜌𝑔𝑅ℎ𝑆𝑏 𝑹𝒉 = 𝑨 𝑷 میدوب هدرک فیرعت لابق 𝐶𝑓 = 𝜏𝑤 :
12 𝜌𝑉2
→ 1
2𝐶𝑓𝜌𝑉2 = 𝜌𝑔𝑅ℎ𝑆𝑏
𝑉 = 2𝑔
𝐶𝑓 𝑅ℎ𝑆𝑏
نینچمه و لاناک یسدنه تاصخشم ساسا رب تعرس 𝑪𝒇
𝐶𝑓 ( : لکشم )
هب هتسباو
𝑏𝑒𝑑 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠, 𝑓𝑙𝑢𝑖𝑑 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠, 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦:
Manning Equation for Uniform Flow
یاج هب 𝑪𝒇
تیمک کی دیدج
فیرعت یم
دوش :
بیرض 𝑪𝒉𝒆𝒛𝒚
طسوت یبرجت تروص هب 𝑀𝑎𝑛𝑛𝑖𝑛𝑔
تسا هدش هئارا .
𝐶 = 2𝑔
𝐶𝑓 : 𝐶ℎ𝑒𝑧𝑦 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑽 = 𝑪 𝑹𝒉𝑺𝒃: 𝑪𝒉𝒆𝒛𝒚 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏
𝑪 = 𝟏 𝒏 𝑹𝒉
𝟏𝟔 𝒏: 𝒓𝒐𝒖𝒈𝒉𝒏𝒆𝒔𝒔 𝒄𝒐𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒕
𝑽 = 𝟏 𝒏 𝑹𝒉
𝟐𝟑𝑺𝒃
𝟏𝟐: 𝑴𝒂𝒏𝒏𝒊𝒏𝒈 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏
Manning Equation for Uniform Flow
Manning Equation for Uniform Flow
Manning’s Eq. for Flow Rate in SI:
𝑸 = 𝟏
𝒏 𝑨 𝑹𝒉
𝟐𝟑𝑺𝒃
𝟏𝟐
Manning’s Eq. for Flow Rate in English Engineering unit (𝑉 𝑖𝑛𝑓𝑡
𝑠 & 𝑅ℎ 𝑖𝑛 𝑓𝑒𝑒𝑡):
𝑽 = 𝟏. 𝟒𝟗 𝒏 𝑹𝒉
𝟐𝟑𝑺𝒃
𝟏𝟐 & 𝑸 = 𝟏. 𝟒𝟗
𝒏 𝑨 𝑹𝒉
𝟐𝟑𝑺𝒃
𝟏𝟐
𝑸 = 𝟏
𝒏 𝑨 𝑹𝒉
𝟐𝟑𝑺𝒃
𝟏𝟐 یازا هب طقف ،صخشم بیش اب لاناک کی رد صخشم یبد کی یازا هب 𝒚 کی یم تخاونکی نایرج
دوش 𝒚𝒏 :
.
Steady Uniform Flow
Example 11.6 FLOW RATE IN A RECTANGULAR CHANNEL
An 8-ft-wide rectangular channel with a bed slope of 0.0004 ft/ft has a depth of flow of 2 ft. Assuming steady uniform flow, determine the discharge in the channel. The Manning roughness coefficient is n = 0.015.
Steady Uniform Flow
Steady Uniform Flow
Example 11.7 FLOW VERSUS AREA THROUGH TWO CHANNEL SHAPES Open channels, of square and semicircular shapes, are being considered for carrying flow on a slope of Sb = 0.001; the channel walls are to be poured concrete with n = 0.015. Evaluate the flow rate delivered by the channels for maximum dimensions between 0.5 and 2.0 m. Compare the channels on the basis of volume flow rate for given cross-sectional area.
Steady Uniform Flow
Steady Uniform Flow
Steady Uniform Flow
Steady Uniform Flow
Rectangular Channel
Semi-circular Channel
Steady Uniform Flow
Steady Uniform Flow
Example 11.8 NORMAL DEPTH IN A RECTANGULAR CHANNEL Determine the normal depth (for uniform flow) if the channel described in Example 11.6 has a flow rate of 100 cfs.
Steady Uniform Flow
Steady Uniform Flow
Example 11.9 DETERMINATION OF FLUME SIZE
An above-ground flume, built from timber, is to convey water from a mountain lake to a small hydroelectric plant. The flume is to deliver water at Q =2 𝑚
3
𝑠 ; the slope is 𝑆𝑏
= 0.002 and n = 0.013. Evaluate the required flume size for (a) a rectangular section with y/b = 0.5 and (b) an equilateral triangular section.
Steady Uniform Flow
Steady Uniform Flow
Steady Uniform Flow
Steady Uniform Flow
Steady Uniform Flow
Energy Equation for Uniform Flow
𝑉12
2𝑔 + 𝑦1 + 𝑧1 = 𝑉22
2𝑔 + 𝑦2 + 𝑧2 + 𝐻𝑙
(𝑉1= 𝑉2 = 𝑉 & 𝑦1 = 𝑦2 = 𝑦𝑛)
→ 𝑧1 = 𝑧2 + 𝐻𝑙 → 𝐻𝑙 = 𝑧1 − 𝑧2 = 𝐿𝑆𝑏 𝐸 = 𝐸1 = 𝑉12
2𝑔 + 𝑦1 = 𝐸2 = 𝑉22
2𝑔 + 𝑦2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝐸𝐺𝐿 = 𝑝
𝜌𝑔 + 𝑉2
2𝑔 + 𝑧𝑡𝑜𝑡𝑎𝑙 𝐸𝐺𝐿 = 𝑝
𝜌𝑔 + 𝑧𝑡𝑜𝑡𝑎𝑙
𝑎𝑛𝑑 𝑧𝑡𝑜𝑡𝑎𝑙 = 𝑧 + 𝑦
Energy Equation for Uniform Flow
𝐸𝐺𝐿 = 𝑉2
2𝑔 + 𝑧 + 𝑦
𝑝
𝜌𝑔 + 𝑉2
2𝑔 + 𝑧𝑡𝑜𝑡𝑎𝑙 = 𝜌𝑔(𝑦1 − 𝑦)
𝜌𝑔 + 𝑉2
2𝑔 + 𝑧1 + 𝑦
𝐻𝐺𝐿 = 𝑧 + 𝑦
𝐸𝐺𝐿1 − 𝐸𝐺𝐿2 = 𝑧1 − 𝑧2 = 𝐻𝑙 𝐻𝐺𝐿1 − 𝐻𝐺𝐿2 = 𝑧1 − 𝑧2 = 𝐻𝑙
For normal flow: channel bed || HGL || EGL
Energy Equation for Uniform Flow
Optimum Channel Cross Section
هنیهب تلاح :
ای دشاب ممیزکام عطقم حطس هب یبد تبسن لاناک صخشم یربز و بیش یازا هب
اب نیرتمک حطس
عطقم نیرتشیب
روبع نایرج
قافتا دتفیب
.
𝑸
𝑨 = 𝟏 𝒏𝑹𝒉
𝟐𝟑𝑺𝒃
𝟏𝟐
𝑄
𝐴 : 𝑚𝑎𝑥 → 𝑅ℎ: 𝑚𝑎𝑥, 𝑅ℎ = 𝐴
𝑃 → 𝑃: 𝑚𝑖𝑛 ∴ 𝐹𝑜𝑟 min𝑖𝑚𝑢𝑚 𝐴 : 𝑃 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑑
𝑨 = 𝒏𝑸 𝑺𝒃
𝟏𝟐 𝟑𝟓
𝑷𝟐𝟓