• Tidak ada hasil yang ditemukan

Basic Laws for a System

N/A
N/A
Protected

Academic year: 2024

Membagikan "Basic Laws for a System"

Copied!
114
0
0

Teks penuh

(1)
(2)

Basic Laws for a System

The basic laws are:

Conservation of mass, Newton’s second law,

angular-momentum principle, first law of thermodynamics.

rate equations

(3)

Basic Laws for a System

For a system (a fixed amount of matter, M):

Conservation of mass

(4)

Basic Laws for a System

sum of all external forces acting on the system =time rate of change of linear momentum of the system,

Newton’s Second Law

دنیآرب یاهورین

متسیس کی رب دراو یجراخ =متسیس یطخ موتنموم تارییغت خرن

𝐹 = 𝑚 Ԧ𝑎 → ԦԦ 𝐹 = 𝑚𝑑𝑉

𝑑𝑡 = 𝑑(𝑚𝑉)

𝑑𝑡 = 𝑑𝑃 𝑑𝑡

𝐿𝑖𝑛𝑒𝑎𝑟 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑃 = 𝑚𝑉

(5)

Basic Laws for a System

Newton’s Second Law

𝑑𝑚 & 𝑑𝑉

(6)

Basic Laws for a System

The Angular-Momentum Principle

Angular 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 H = 𝑚 Ԧ𝑟 × 𝑉

𝑃 = 𝑚𝑉 → 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑙𝑖𝑛𝑒𝑎𝑟 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚: Ԧ𝑟 × 𝑚𝑉 = 𝐻

(7)

Basic Laws for a System

rate of change of angular momentum is equal to the sum of all torques acting on the system

The Angular-Momentum Principle

دنیآرب یاهرواتشگ

متسیس کی رب دراو یجراخ =متسیس یا هیواز موتنموم تارییغت خرن

(8)

Basic Laws for a System

Torque can be produced by surface and body forces (here gravity) and also by shafts that cross the system boundary,

(9)

Basic Laws for a System

conservation of energy for a system:

ሶ𝑄 (the rate of heat transfer) is positive when heat is added to the system from the surroundings;

𝑊 (the rate of work) is positive when work is done by the system on its surroundings.

The First Law of Thermodynamics

(10)

Basic Laws for a System

The First Law of Thermodynamics

u is the specific internal energy, V the speed, and z the height (relative to a convenient datum) of a particle of substance having mass dm.

(11)

Reynolds Transport Theorem (RTT)

For a system of fluid,

Relation of System Derivatives to the Control Volume Formulation: RTT

(12)

Reynolds Transport Theorem (RTT)

Gauss's theorem (سناژروید یروئت)

Reynolds Transport Theorem

𝑭

(13)

Gauss's theorem

(14)

Reynolds Transport Theorem (RTT)

Remember from chapter 1?

𝑑𝜂

𝑑𝑡 = 𝜕𝜂

𝜕𝑡 + 𝑢𝜕𝜂

𝜕𝑥 + 𝑣𝜕𝜂

𝜕𝑦 + 𝑤𝜕𝜂

𝜕𝑧

(15)

Reynolds Transport Theorem (RTT)

خرن تارییغت لک

متسیس رد N لرتنک مجح رد N تارییغت خرن نامز رد

تارییغت خرن لرتنک مجح رد N

حوطس زا جورخ و دورو هجیتن رد لرتنک

(16)

Reynolds Transport Theorem (RTT)

inlet outlet

Temporal

Local Local

(17)

Conservation of Mass

mass conservation principle: The mass of the system remains constant 𝑑𝑀

𝑑𝑡 )𝑠𝑦𝑠𝑡𝑒𝑚 = 0

1 1

(18)

Conservation of Mass

1st term represents the rate of change of mass within C.V.

2nd term represents the net rate of mass flux out through C.V.

The mass conservation equation is also called the Continuity equation

یگتسویپ هلداعم :

مرج یاقب لصا

𝑚 = න

𝐶𝑆𝜌𝑉. 𝑛 𝑑𝐴 : 𝑀𝑎𝑠𝑠 𝑓𝑙𝑢𝑥

(19)

Conservation of Mass: Special Cases

For an incompressible fluid,

conservation of mass for incompressible flow through a fixed (non- deformable) control volume:

𝐶𝑆𝑉. 𝑛 𝑑𝐴 = 0 𝑄 = න

𝐶𝑆

𝑉. 𝑛 𝑑𝐴

یبد یاقب

؟؟یمجح

!!

(20)

𝑉 1

𝑉 3 𝑉 2

𝑉 4

𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑜𝑙𝑢𝑚𝑒

−𝑉1𝐴1 − 𝑉2𝐴2 + 𝑉3𝐴3 + 𝑉4𝐴4 = 0

(21)

Conservation of Mass

uniform velocity at each inlet and exit:

At steady state+incompressible:

𝐶𝑆

𝑉. 𝑛 𝑑𝐴 = 0

𝐶𝑆𝑉. Ԧ𝐴 = 0

(22)

Conservation of Mass

During a steady-flow process, the total amount of mass contained within a control volume does not change with time.

Mass Balance for Steady-Flow Processes

𝒎𝑪𝑽 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕

𝒊𝒏𝒎 = ෍

𝒐𝒖𝒕𝒎 (𝒌𝒈 𝒔 )

(23)

Conservation of Mass

Many engineering devices such as nozzles, diffusers, turbines, compressors, and pumps involve a single stream (only one inlet and one outlet)

single-stream steady-flow systems

𝒎𝟏 = ሶ𝒎𝟐 → 𝝆𝟏𝑽𝟏𝑨𝟏 = 𝝆𝟐𝑽𝟐𝑨𝟐

(24)

Conservation of Mass

The conservation of mass relations can be simplified even further when the fluid is incompressible, which is usually the case for liquids.

Incompressible Flow

𝑺𝒕𝒆𝒂𝒅𝒚 𝒊𝒏𝒄𝒐𝒎𝒑𝒓𝒆𝒔𝒔𝒊𝒃𝒍𝒆 𝒇𝒍𝒐𝒘: ෍

𝒊𝒏 ሶ𝑸 = ෍

𝒐𝒖𝒕 ሶ𝑸 (𝒎𝟑 𝒔 )

Steady incompressible flow (single-stream) ሶ𝑸𝟏 = ሶ𝑸𝟐 → 𝑽𝟏𝑨𝟏 = 𝑽𝟐𝑨𝟐

Conservation of Volume Principle

(25)

Conservation of Mass

𝑁𝑜𝑟𝑚𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦: 𝑉𝑛 = 𝑉 cos 𝜃 = 𝑉. 𝑛

Inlet: - Outlet: +

𝜕𝑚𝐶𝑉

𝜕𝑡 + ෍

𝑜𝑢𝑡

𝑚 − ෍

𝑖𝑛

𝑚 = 0

(26)

Conservation of Mass

(27)

Conservation of Mass

𝐶𝑆𝑉. Ԧ𝐴 = 0

(28)

Conservation of Mass

(29)

Conservation of Mass

(30)

Conservation of Mass

(31)

Conservation of Mass

(32)

Conservation of Mass

𝜕𝑚𝐶𝑉

𝜕𝑡 + ෍

𝑜𝑢𝑡

𝑚 − ෍

𝑖𝑛

𝑚 = 0

(33)

Conservation of Mass

(34)

Conservation of Mass

(35)

Conservation of Mass

Moving Control Volumes

𝑽𝒓 = 𝑽 − 𝑽𝑪𝑽

fluid velocity C. V. velocity

Relative velocity: یبسن تعرس

𝑽𝒓 → 𝑽

(36)

Conservation of Mass

Deforming Control Volumes

𝑽𝒓 = 𝑽 − 𝑽𝑪𝑺

fluid velocity Control Surface velocity:

لرتنک حطس یاهزرم ییاج هباج تعرس

𝑽𝒓 → 𝑽

(37)

Conservation of Mass

𝑚𝑏𝑐? ? ? ?

(38)

Conservation of Mass

(39)

Conservation of Mass

(40)

Linear Momentum Equation

Ԧ𝐹 = 𝑚 Ԧ𝑎 → Ԧ𝐹 = 𝑚𝑑𝑉

𝑑𝑡 = 𝑑(𝑚𝑉)

𝑑𝑡 = 𝑑𝑃 𝑑𝑡

(41)

Linear Momentum Equation

Reynolds Transport Theorem

𝑉 = (𝑢, 𝑣, 𝑤)

(42)

Linear Momentum Equation

Uniform flow at each inlet and exit:

خرن تارییغت لک

موتنموم متسیس رد یطخ

=

متسیس رب دراو یجراخ یاهورین

تارییغت خرن موتنموم

د یطخ ر

نامز رد لرتنک مجح

تارییغت خرن موتنموم

د یطخ ر

و دورو هجیتن رد لرتنک مجح لرتنک حوطس زا جورخ

(43)

Momentum Equation

three scalar components of momentum equation:

(44)

Momentum Equation

three scalar components of momentum equation:

(45)

Momentum Equation

At steady state:

steady state+uniform flow:

෍ Ԧ𝐹 = න

𝐶𝑆

𝑉𝜌 (𝑉. 𝑛) 𝑑𝐴

෍ Ԧ𝐹 = ෍

𝐶𝑆𝑉𝜌 (𝑉. 𝑛) 𝐴

(46)

Momentum Equation

෍ Ԧ𝐹 = ෍

𝑜𝑢𝑡𝑉𝜌 (𝑉. 𝑛) 𝐴 − ෍

𝑖𝑛𝑉𝜌 (𝑉. 𝑛) 𝐴

𝑚 = ׬𝐶𝑆𝜌𝑉.𝑛 𝑑𝐴 یمرج یبد

𝐶𝑆𝑉𝜌 (𝑉. 𝑛) 𝐴 = 𝑚𝑉 𝑜𝑢𝑡 𝑚𝑉 𝑖𝑛

(47)

Momentum Equation

𝑚𝑉 1

𝑚𝑉 3 𝑚𝑉 2

𝑚𝑉 4

𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑜𝑙𝑢𝑚𝑒

(48)

Linear Momentum Equation

Unfortunately, the velocity across most inlets and outlets of practical engineering interest is not uniform. Nevertheless, it turns out that we can still convert the control surface integral into algebraic form, but a dimensionless correction factor, called the momentum-flux correction factor, is required,

Momentum-Flux Correction Factor

(49)

Linear Momentum Equation

For the case in which density is uniform over the inlet or outlet and V is in the same direction as Vavg over the inlet or outlet,

𝜷 ≥ 𝟏

(50)

Linear Momentum Equation

(51)

Linear Momentum Equation

Laminar

Turbulent

(52)

Linear Momentum Equation

(53)

Linear Momentum Equation

(54)

Linear Momentum Equation

the net force acting on the control volume during steady flow is equal to the difference between the rates of outgoing and incoming momentum flows.

(55)

Linear Momentum Equation

single-stream systems:

Steady Flow with One Inlet and One Outlet

(56)

Linear Momentum Equation

V: average velocities across the inlet and outlet

(57)

Momentum Equation

(58)

Momentum Equation

(59)

Momentum Equation

Governing equations

Mass conservation:

Momentum conservation:

(60)

Momentum Equation

(61)

Momentum Equation

(62)

Momentum Equation

(63)

Momentum Equation

(64)

Momentum Equation

Note that the choice of CVII meant we needed an additional free-body diagram. In general it is best to select the control volume so that the force

sought acts explicitly on the control volume.

(65)

Momentum Equation

(66)

Momentum Equation

(67)

Momentum Equation

Governing equations

Mass conservation???

(68)

Momentum Equation

𝑉1????

(69)

Momentum Equation

𝑉1????

(70)

Momentum Equation

(71)

Momentum Equation

(72)

Linear Momentum Equation

subtract the atmospheric pressure and work with gage pressures

(73)

Momentum Equation

(74)

Momentum Equation

(75)

Momentum Equation

(76)

Momentum Equation

(77)

Momentum Equation

(78)

Momentum Equation

(79)

Momentum Equation

(80)

Momentum Equation

(81)

Momentum Equation

(82)

Momentum Equation

(83)

ار ه ص مع .دراد ایرج ه ص کی یور ایاپ یار رد ری پان مکارت ایرج کی تعرس لی ورپ .دیریگب ر ن رد 𝒃

طقم حطس رد لایس و 𝒂𝒃

:دنک یم تیعبت ریز یاه هطبار زا 𝒄𝒅

@𝒙 = 𝒙𝒂:𝒖 = 𝑼 & @𝒙 = 𝒙𝒅: 𝒖

𝑼 = 𝟐 𝒚

𝜹𝒚 𝜹

𝟐

𝜹 و رد لایس هی تما 𝒙 = 𝒙𝒅

رگا .تسا 𝒙𝒅 − 𝒙𝒂 = 𝑳

تسبو طم :

.a حطس زا لایس یمرج یبد .𝒃𝒄

.b زرم رد لایس سوتم تعرس .𝒃𝒄

.c زرم رد ه ص رب دراو یورین .لایس ر زا 𝒂𝒅

(84)

Control Volume Moving with Constant Velocity

two coordinate systems: XYZ, “absolute,” or stationary coordinates, and the xyz coordinates attached to the control volume

velocities must be measured relative to the control volume. (It is helpful to imagine that the velocities are those that would be seen by an observer moving with the control volume.)

(85)

Control Volume Moving with Constant Velocity

(86)

Control Volume Moving with Constant Velocity

(87)

Control Volume Moving with Constant Velocity

(88)

Control Volume Moving with Constant Velocity

(89)

Control Volume Moving with Constant Velocity

(90)

Control Volume Moving with Constant Velocity

(91)

Control Volume Moving with Constant Velocity

(92)

Momentum Equation for Control Volume with Rectilinear Acceleration

(93)

Momentum Equation for Control Volume with Rectilinear Acceleration

(94)

Momentum Equation for Control Volume with Rectilinear Acceleration

(95)

Momentum Equation for Control Volume with Rectilinear Acceleration

𝑈𝑠𝑒 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑖𝑒𝑠

(96)

Momentum Equation for Control Volume with Rectilinear Acceleration

(97)

Momentum Equation for Control Volume with Rectilinear Acceleration

(98)

Momentum Equation for Control Volume with Rectilinear Acceleration

(99)

یروآدای

The Angular-Momentum Principle

Angular 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 H = 𝑚 Ԧ𝑟 × 𝑉

𝑃 = 𝑚𝑉 → 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑙𝑖𝑛𝑒𝑎𝑟 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚: Ԧ𝑟 × 𝑚𝑉 = 𝐻

(100)

یروآدای

rate of change of angular momentum is equal to the sum of all torques acting on the system

The Angular-Momentum Principle

دنیآرب یاهرواتشگ

متسیس کی رب دراو یجراخ =متسیس یا هیواز موتنموم تارییغت خرن

(101)

یروآدای

Torque can be produced by surface and body forces (here gravity) and also by shafts that cross the system boundary,

(102)

The Angular-Momentum Principle

(103)

The Angular-Momentum Principle: Special cases

Steady state

𝑇𝑠𝑦𝑠𝑡𝑒𝑚 = ෍ 𝑀 = න

𝐶𝑆

Ԧ𝑟 × 𝑉 𝜌 𝑉. 𝑛 𝑑𝐴

(104)

The Angular-Momentum Principle: Special cases

Steady state+uniform flow

𝑇𝑠𝑦𝑠𝑡𝑒𝑚 = ෍ 𝑀 = ෍

𝑜𝑢𝑡Ԧ𝑟 × ሶ𝑚𝑉 − ෍

𝑖𝑛Ԧ𝑟 × ሶ𝑚𝑉

Steady state+uniform flow+same axis

𝑇𝑠𝑦𝑠𝑡𝑒𝑚 = ෍ 𝑀 = ෍

𝑜𝑢𝑡𝑟 ሶ𝑚𝑉 − ෍

𝑖𝑛𝑟 ሶ𝑚𝑉

(105)

The Angular-Momentum Principle

(106)

The Angular-Momentum Principle

(107)

The Angular-Momentum Principle

Mass conservation

(108)

The Angular-Momentum Principle

(109)

The Angular-Momentum Principle

(110)

The Angular-Momentum Principle

(111)

The Angular-Momentum Principle

(112)

The Angular-Momentum Principle

(113)

The Angular-Momentum Principle

(114)

The Angular-Momentum Principle

Referensi

Dokumen terkait