• Tidak ada hasil yang ditemukan

Dissolved Oxygen Modeling Using Deep Learning and Pre-Processor Methods Kiyoumars Roushangar

N/A
N/A
Protected

Academic year: 2024

Membagikan "Dissolved Oxygen Modeling Using Deep Learning and Pre-Processor Methods Kiyoumars Roushangar"

Copied!
18
0
0

Teks penuh

(1)

Online ISSN: 2382-9931

Journal of Water and Irrigation Management

Homepage: https://jwim.ut.ac.ir/

University of Tehran Press

Dissolved Oxygen Modeling Using Deep Learning and Pre-Processor Methods

Kiyoumars Roushangar1 | Sina Davoudi2

1. Corresponding Author, Department of Water Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran. E-mail: [email protected]

2. Department of Water Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran. E-mail:

[email protected]

Article Info ABSTRACT

Article type:

Research Article

Article history:

Received: 17 July 2022 Received in revised form:

20 September 2022 Accepted: 04 October 2022 Published online:

25 December 2022

Keywords:

Dissolved Oxygen,

Empirical Mode Decomposition, Long Short-Term Memory, Wavelet Transform.

Water pollution is a major global problem that requires constant evaluation and revision of water resources policy at all levels. Dissolved oxygen (DO) is one of the most important indicators of water quality. In the present study, the water quality parameter of dissolved oxygen using intelligent Long Short-Term Memory (LSTM) method based on discrete wavelet transform (DWT) and Complementary Ensemble Empirical Mode Decomposition (CEEMD) pre-processor methods in both temporal and spatial modes. It was investigated in five consecutive stations on the Savannah River. The results of analysis of models showed the ability and high efficiency of the method used in estimating the amount of dissolved oxygen in water. On the other hand, pre-processor methods improved the results. It was also observed in the investigations that the results of analysis based on wavelet transformation in spatial modeling reduced the RMSE error by two percent and also the empirical mode decomposition in temporal modeling by 15 percent. The best evaluation for test data was obtained using the empirical mode decomposition in temporal modeling corresponding to the previous day with values of DC=0.977, R=0.988 and RMSE=0.017. Also, in the spatial modeling to estimate dissolved oxygen in the third station, it was found that the results obtained from the inputs of the dissolved oxygen parameter one day before the second station and two days before the first station have the best results.

Cite this article: Roushangar, K., & Davoudi, S. (2022). Dissolved Oxygen Modeling Using Deep Learning and Pre- Processor Methods. Journal of Water and Irrigation Management, 12 (4), 873-890.

DOI: http://doi.org/10.22059/jwim.2022.345864.1005

© The Author(s). Publisher: University of Tehran Press.

DOI: http://doi.org/10.22059/jwim.2022.345864.1005

(2)

نا هﺎﮕﺸ اد تارﺎﺸ ا

Homepage: https://jwim.ut.ac.ir/

! "

# "

1 2 |

1 . !

"

!

"

.

:$ %

[email protected]

2 . !

"

!

"

.

:$ %

[email protected]

: !

' () *+ ,

"

#

$

#

%&

26: / 04 / 1401

"

#

$

!' ( 29 : / 06 / 1401

"

#

$ )*

# + 12 : / 07 / 1401

"

#

$ ,-!

04 : / 10 / 1401

. / : 0

(3 4 56

7 ! 89

$ ":!

; :!

< = $>? @

! 4 A

+

8 7 B%";

9 C

$4

$;

; D%

E

> :!

% C 3 F;

;

%

$ ' G H I 3J@

% . (3 4 ) 56 (DO

D M N ! OP Q R ' C3S34 C

.

%

$T+ H U @ J % ) S34 (3 4 56

% ; SJ D V % Q '

$>? @

< =

! 4 A )

; (LSTM

$ ) V % R ' W3) D ) 7 !

) $J 89

(DWT

V %

$ ":!

; :!

) 7 4

CEEMD

% ( C+ @ D

% X ) J + J ; R %

$ P %

%

% ;

% Y C?

. X J 7Z @ D 7356!

' C35; Y

% 4 R< ; V %

$;

$J?%% 4 %

% N3 [!

"3 (3 4 56

%

$;

; P .

D

? = V %

R '

W3) D )

\ ; ; X J Q . M' N3 ]

%

% ; R ' E : Q ' Q

$4 X J

7Z @ D

$ ":!

^ ;

7 ! 89

% RD Z% "3 $;

M' N3 ]

$ ":!

; :!

% RD "3 $; D 15

R HP "3 Z%

W' 4 %RMSE

. N J ;

C+ @

; D%

R ; R ' D ; SJ D

$ ":!

; :!

% C+ @ RD

D

` ;

$;

8 D % 7 Y ; , 977 / 0

= 988 DC

/ 0

= 017 R

/ 0

=

$; RMSE

C . M' N3 ]

% RD C 9

N3 [!

(3 4 56

% J E

"3 O[

Q X J 7Z @

D R % R ' J % ) (3 4 56

% 8 D % 7 Y J E D % 7 Y J

N J ;

$:3J % % . Q ;

- Q %: .c ^ R ) 1401 .(

D R 4 3(

56 ; SJ D V % 3 R 3 d V % R ' ) 3 W D ) C $ .

R% 3;

12 ) 4 ( 873 - 890 . DOI:http//doi.org/10.22059/jwim.2022.345864.1005

: Q

! A % J $ g

. . ©

(3)

1 .

& '

W3) 3;

h + % 3' '

; 3i3)

< ; ) E

J

$ 3 ' 8

W+ ] R ;

C h + % 3' '

C

$4 W, %

% C j36 C D F;

M' N3 ]

% W' 4 R k;

` ;

$;

O3[ ! '

.

% R ' 3P W "?

7; Y 9 !

% T!

% R ' 5 Q

%

D R W3) 3;

8 h + % 3' D

$5 9

R ' %

"

J ;

"

"

% 6

"

' Q . N3 ]

R ' %

D R 7 Q A< T U % C

$4

$ D

?

"3?

D @

$ 5;

D

$ ":!

7356!

R R '

D lg

% )

$;

R % 9 P M' D

$J?

Q C )

Nourani et al., 2014

(.

R ; c%

m36Z

D R ' 6H NJP Q R ' J % ) C3S34

$4 j ! R '

$ Q R '

!% >

$n % Q R

! 3@

C .

5 8

$ Q A% >

;

$9 !

$;

R '% 3T o5J[

)

$;

p D ;

$ "' (

! ;

; ; N3 [!

R ' J % ) q P

D ' J % ) 73 ! Q )

Csábrági et al., 2017

( . R ' C3S34 C3S34

$ P % 9

)

QUAL2K

(

$ ;

$3 Q RD

$ ":!

7356!

C3S34 )

(WASP

% 3 ; 3i3) D 3

$;

A k=

R % ? D MJ 3

$ P % J ' )

Pelletier et al., 2006; Wool et al., 2020

(.

(3 4 56

) (DO

$; 1

8

% 3T R 354 M

% j36 R '

; r5s R ;

; D%

C k

MJ 3 4 R '

;

$ P % '

$] % '

^ 3Y ' SJ Q .

$;

N3 '

% >

W' () R ' R TJ

% N

$ 3 D ; SJ D V % R ' R 3

N3Q E : Q C .

Soyupak et al.

) ( 2003

% 8

$T+ H D

$ Q t R ; W3) 3;

C>5s (3 4 56

% C+ @ C; l

$J ;

$;

R u?

$ Q

% )

%

$

"[

o5J[

SJ 4 . r U J ' M'

R ; R ' 3vJ 9 P

D 3 R Q M' R ; W3;

D

95 / 0 . ;

Elhatip and Kömür

) (2008

R ' J % ) C3S34

%

"[

N3 % D

R 4 .

X J !

2ANN

% R ; W3) 3;

(3 4 56

% d=

h% Q

$35[!

% C N3

.

Palani et al.

) (2009

%

$T+ H R

%

% ) R ; N3 [!

JS'

"3 (3 4 56

%

% D

$ Q t Jw ) ]

$ <

; C35; Y x)

% J HP

$ Q t

3 %

M3 T!

$J?

SJ 4 .

$:3J

$ Q t

3 %

M3 T!

$J?

X J R J ; .CQ

Niroobakhsh

) (2012

C 9

$ 6

C>5s 74 9 56

% ) (TDS

D

$ Q Jw ) ANN

]

$ <

) (MLP

5 3

$ ) TQ

) (RBF

R ;4

$ P % 9 9 SJ

4

$4 X J

MLP

% Y RBF

$;

$3 Q RD R ' 3vJ

C3S34

$ P % 9 9 ; CY W3;

D 90 Z%

% . J '

% R 3' R '

Liu et al.

(2013)

8

MJ % +

IPSO-LSSVR

R ; 5

CP 8 W3)

3;

HP 3s y [!

Q .

IPSO-LSSVR

W D %

% Y C?

; SJ D MJ % + R ' R ;

W3) 3;

R J6 (3 4 56

% R ' [J C 4

z ] P

$ P %

$ , Q . X J W D '

$4

R 3)

IPSO-LSSVR

! CY

W3) 3;

% W "?

' 5 M3 T!

% J ; D 3 %

% ; 3J )

% J ) (SVR

$ Q 6

t

7BP

E : . '

Ji et al.

) (2017

$;

% >

W3) 3;

C>5s

% DO

8

$ P % M4 (3 4

% 9 Y Q

N3]

D N3Q

% ; 3J ) )

(SVM

SJ 4 .

% ] 3 3+ 4

o5J[

$;

% = q P

3 %

HP

$ ]

$ Q t

% J r,

$ Q t

3 %

: SVM

Q . X J

$4

% SVM

W3) 3;

C>5s

% DO

$ P % { - R % z ! C

$;

R '

! ; .C

Ahmed

) ( 2017

"3 (3 4 56

%

$ P %

% % ; SJ D

$ Q t

% [ 3) F; !

$ ) TQ

(4)

% Y $T+ H % .

X J A S!

N3;

$ Q t

% ' C+ @ 8!

3vJ 3vJ

$;

;

) r U J '

$;

r3! ! 79 / 0 88 / 0 Q ( .

Shi et al.

) (2019

M' N3 ]

% 8 V % 9 J ;

$Q P

)

CSELM

8( R ; W3) 3;

d3Y

% 4 33v!

(3 4 56

D R ' R D 4 SJ

$:3J

$4

CSELM

D

>

CY

% 4

% W3) 3;

R J6 (3 4 56

% R 3 TY X J W3) -

3;

R J ; C

$;

' R

PLS-ELM

$; ELM

C . %

Hosseinpanahi et al.

) (2021

5

V % ' % TQ $ ) F; ! t $ Q 3J ) % ; N3Q R W3)

3;

$ , % $ 3 3 C3S34

54 M |9 C R ' J % ) % > N R ; . 4

$;

OP Q ' }% t % C3S34 R

. Q $J? > % RD% 4

^ ;

TQ $ ) F; ! t $ Q $; C 3J ) % ; N3Q X J

R ; R J ; 5 CY D W3)

3;

$ 3 3 $ P % C3S34 R ' J % ) . ; % % P ; %

F; % ; E :

Q V % R< ; ;% 4 D

W3) $ 3 D % t t $ Q Q ' R ' 3;

% 56 (3 4 N ; . Q ;

% @

% A 3;

?

;% 4 ; $H; % % ] A T+ H $5 R 3

d3

% W3) 3;

"3 (3 4 56

% % ? = D .C $J? A% Z V % D SJ 3P R '

R '

3 $ ":!

$;

3 7356! $ 3 D % lg % 3 ; N Q % '

.C $J? % Y $9 ! % D R '

N ] $; 5Z 3 V % N % Q $ ":! R D

VD ; r A< T ; $ ":! D 7Z @ R '

V % N $5 9 D . Q % % $4 C 7 4 ; :! $ ":! 9 V % 89 7 ! V % '

$ ":!

RD

$ 9 D SJ ; Q 5Z 3 % 3S " D R 6 M:@

S " R% C p R ' F D ! $4 3

}|@ $ ":! % D J " l % x 4 ? D @ % D J . Q

|+

% N W' () T

' P Q ;

SJ D V % N

$ Q R ' J D ; 3

d V % ' R W3) D ) (3 4 56

%

% ; D

R

Q .

2 .

2 . 1 . ) *+

,

&*- . &'./

$ P % D 9

$ P % R ' A<

6J C

$4

$;

^ 3Y x5=

" % . N

$ P % B%";

% 9 Y Q A<

6J C

$4 W3;

! D N3;

C+

R ' R 3+ % 4

; 9 39% 9 % 73 ! '

.

$P Q D

$ P % + !

$ P %

! ] + Q N ! C Y D

% 73 ! '

.

$U @ 'D

$ P %

$;

C 9 Y Q 4 R ' ]< )

% 7P R 3+ % 4 + Q

$4 j ! } Q

% Y Y Q

6 Q

V J

; .

= N

$ P %

@ 301 7 ) 484 J 534 ( C . D

Yk!

$ P %

+ !

$ P % 73 !

Q C . D N 76 Yk!

% D

$] %

!% '

$= s

% C .

$ !

< + !

$4 ; R %

$ P %

< + ! FY Q C

$P Q R D

$ P % + ! C

$4

$P Q Q

; s

$ P % %

73 ! '

. R ' SJ %

% N W' ()

` ;

$;

X ) J h + % 3' + J

%

= CS'

) 2015 ! 2021 (

; R %

$ P % Q ;

D j ! $4 N3 D

Q )

( USGS

R%

% .C Q 7 Q

) 1 (

$,H

$T+ H % C3TY

J '

"3 A 33v!

(3 4 56

% X ) J

CS' = % + J

$;

A% Z

Q $ D %

M' N3 ]

% 9 ) 1 ( A t[

J ' W

Q C .

(5)

Figure 1. Study area and location of stations

Table 1. Stations specifications

Hydrometric station Station no. Station Specifications Dissolved Oxygen (mg/l) Longitude Latitude Distance to previous station (km) Min. Max. Ave.

Station 1 02198840 81°09'03.9" 32°14'07.7" - 3.656 11.814 7.697 Station 2 02198920 81°09'17.7" 32°09'55.2" 7.807 3.202 11.286 6.527 Station 3 021989715 81°07'42.0" 32°06'57.9" 6.021 1.522 10.602 5.631 Station 4 021989773 81°04'52.9" 32°04'49.5" 5.942 1.083 10.445 5.527 Station 5 0219897993 81°00'25" 32°06'11" 7.449 2.454 10.350 5.993

2 . 2 . 01 2 34 )

(WT

10

7 ! 89 R% ";

lg R ; I [J A k=

;

$ ":!

3 5Z

$;

D @ R ' x 4 ? N3 ) x 4 ?

< ; C )

Yadav and Eliza, 2017

( 89 . )

Wavelet

( R D F; ! U % C

$4 C 9

$ ":!

3

$J 3)

$;

$S+g R ' 4 ?

$;

% 4

%

$4 mH 83 S!

'

$S+g

; ; ;

^ 3, C

. 89 ' )

$4

$;

89

%

$JP Q Q

(

$ R ' ,J

$J?

^ 3, Q 8 F; ! ) 89

% (

;

= ' J

$;

A Q 3 J ' . F; ! 89 T; ! C

$4 (

M ;

! 4 A ; % %

)

Roushangar and Ghasempour, 2020

(.

T; !Ѱ(x)

89 C j,?

7 !

$ % ?

` QѰ(ω)

D % U%

4 )

Lau and Weng, 1995

(:

$H; % 1 (

| |

| | ≺ ∞

N

` Q ;

` Q J? |) R ;

89

$JP Q Ѱ(x)

Q . F; ! Ѱ(x)

89

% C )

$H; % 2 (

$4

r U

a

% b

W, ,J

^ 3, 3

> % % % )

Lau and Weng, 1995

(.

$H; % 2 (

,

F; ! 89 R %

~ R% 3 ; J '

$4 M N ! N ! ;% 4 ) '

7 Q

% ' C+%

k4

"

C5 3 N3

C . 7 ! 89

$J 3)

$;

V % N " 9 7 !

$ % ? D -

! 4

$n % Q } '

dn ? ;

Ak

$; ` ; 83 S!

R |)

% 7 !

$ % ? D -

! 4 C .

% 7 p4 R R ' D

h + % 3'

$;

A% Z

$J

% D ' O[

D 3 R Q . N ; ;

;% 4 89

$J

!

(6)

r ! R J ; ; N

~ R D

$JQ Q ; . 7 ! 89

$J

% 7 ' 7 ! 89

$J 3) C

)

$[

$J Q (

$4

% 8 R 89 D 7 ! 89

$J 3)

$

$J?

C MJ 3 R ' R ! 3w 4

C35; Y

$ 6 %

;

$ "' D M4 ! C % . Z 7 ! 89

$J

$;

Q % C6!

z 4

; D

;

$4

% 1976 z R ;

$3+

% | Q

% o3Z !

D -

^ 3, D 3

$J ;

SJ D R ' J53?

J3:

$n % Q . 7 ! 89

7Z @ C' Q :

) N 3+ % 4 (

N3;

R J6 4 ?

) 3, ( 3 F; ! 89

%

^ 3, R ' o5J[

C )

Adamowski et al., 2009

( .

$ ":!

4 R

R '

D ; SJ D R ' J53?

O[

) 89 F; !

^ 3, R% | Q (

~

R D

%

$;

9

• % R '% ;

,!

3Y ; R '% ;

A 3n"9 . N r U 7Z @ D M'%

3i3) R

D 5Z ; J53?

N3 )

%|

'

F; !

^ 3, R% | C J53?

%| < ; ' F; ! 89 C . F; ! 7 ! 89 C35; Y

$ ":!

R D

$;

N ]

R D

D ;

^ 3, R ' o5J[

%

% ;

% ; D R R ' D

$:J D R D 54

% J?%

8] 4

^ 3, B%";

^ 3, 8 ? h + % 3' %

"3+

4 . H; %

$4 W3;

! R ; N3 [!

mH

$ ":!

SJ %

% Y 3

$;

A% Z D C :

$H; % 3 (

= !"# $ % , =&'(&'( -*+,)

$4

% mH L

$ ":!

T!N

` ,

% R D

; ;p

; D 6 Q R ; 89

% [J

Q C )

Chou, 2014

(.

2 . 3 . ) , 94 & :94 (EMD

11

V %

$ ":!

; :!

Q % R ;

$ ":!

3 R ' C

$4 N 7

%

? R C6!

; s 4

A% Z 3

.

= N ? 3 5Z

$;

R T!

$S+g ; R J6

R ;

A SJ

$ ":!

Q . V %

d =EMD

$H; % ) 4 ( 3 5Z %x(n)

$;

R T!

! y ) (IMF

$ ":!12

4 )

Amirat et al., 2018

(:

$H; % 4 (

= ∑ /1 0

02 31

$4

rn(x)

'

$S+g Y ; T;

D T! n IMFs ci(x)

C . 8 N

C

% 8 D R %

N ]

! y Q ; . N R ' F; !

R '

! y ) (IMF

E

% R % j Q J '

• 1 -

% 74

' T!

` , N ? ) M J 4 (

` , SZ ; M'

; ; p4 @

R % 8

@ }kJP J ' 2 -

% '

$H,

N3 3 V ) VD ; Q

;

` ,

$ 3 3;

56 V ) VD ; Q

;

` ,

$ 3 4 56 ; SZ Q ; .

$;

C5

9 !

"

% 3 '

% P ;

%

$;

C5

`kJP

• ' F D ! D @ D - x 4 ?

% ]

~ H, Q

5

% ] EMD

€, Q ) ] N3 3 'IMF

J+ @ O[

$;

P 3

.(

C 9 F?%

N

Q % A SJ ; V %

$ ":!

; :!

$]% w ) (EEMD

3) 13

Q .

% %

$ ":!

RD M:@

R 6 D

"

3S

% 3 5Z Q .

; SJ D

$ 9 R ' C p R%

"

3S

$4 F D ! D J

%

D @ x 4 ?

% l

"

J D %

$ ":!

}|@

Q .

% V %

$ ":!

; :!

$]% w 7 4

)

CEEMD

14(

$?

3S

$;

A% Z

! ) C p R

S (

$;

5Z

$? U Q ! R

IMF

~ :

$JP Q . N ; ; 34 ! 7 J D 5Z

$?

? U M %

$4

~ : 'IMF

; ; 3 5Z

Q

$?

? U

$ 9 D

$ ! ' Ppm

; )

Wu and Huang, 2004

(.

(7)

2 . 4 . ,#< = &>? @ 4

A ) (LSTM

15

' % t $ Q R ; $4 C J D ; t $ Q R ' % D RNN

D R R '

$+

% SJ 5Z ( . Q C D ; RNN

3P•!

r9 $4 C $ Q 5 o3Z ! $; $ Q Q

C D ; . Q ; % Y MJ 3 R ) 3P•!

\ ; 3

D % $ Q 9 P Q

$ t

D % R % ; ! ; t

3 D D 7 Y J D ; R ' VD ) % ! N 9 ; . Q j ! t

$+ R '

! 4 R .C A

oTU J ; R 3 E ' % RNN

J ; w = P $; ;% R '

< = A

$ ; % R '

W3) 3;

C D R

)

Sagheer and Kotb, 2019

(.

< = $>? @ R ' 5

! 4 A % 1997 R ' 5 $4 Q ? T ; R 3 ] D = $; %RNN

[;

)

Hochreiter and Schmidhuber, 1997

( < = $>? @ .

! 4 A ) ~ 8 (LSTM

RNN

$>? @ 5 D $4 C Q $JP LSTM

$;

% >

J ; R '

< = A

% ' D R R

SJ N ; k . 4 Q ) $5 7@ R ; LSTM

% Z % RNN

$ 3 D ‚S@ 9 A

< = A

C D 3 % )

Bengio et al., 1994

( 33v! . 5 $; C LSTM

V % + T RNN

$ 6 T?

D .C R T?

D $5@ % R

^ ; t

$ 6 D % ~ % ] D % A k= D % $4 Q

$JP Q 5 D % 9 P D % Q ? Q

)

Fang and Yuan, 2019

(.

$5@ % ) A k= D % R % $ 6 D $H; % ; (t

: Q

$H; % 5 (

4= 5 60 . ℎ4 60 . 4

% $4 .C 3 F; ! 7p HP 3s F; !σ

W9

x ! W

' J ' $4

$;

r3! !

h−1

; %

h

; % 7tJ h

. 4

$;

% = 9 P D % R % Q ? D % R % $;

$;

A% Z $ 6 D Q

:

$H; % 6 (

:4= 5 6; . ℎ4 6; . 4

.

"4= 5 6' . ℎ4 6' . 4

+ 5 D % R %

$;

A% Z $ 6 D : Q

$H; % 7 (

<4 = :4. <4 4. =4

% $4

<−1

7 Y $5@ D 5 C3TU A k=

>

$;

A% Z $ 6 D : Q

$H; % 8 (

=4 = 9 ℎ 6? . ℎ4 6? . 4

% $4 P % .C u ^ F; !tanh

T?

D $5@ % R

$; t

A% Z $ 6 D : Q

$H; % 9 (

4= "4. 9 ℎ <4

2 . 5 . : - #

D 7@

5Z

% SJ D V % R ' Q ' W3) VD ) '

Q ; .

;

$9 !

$;

$ F3 R '

R %

$;

% >

W "?

CY C

D R R ' SJ %

% N W' () ; SJ D

$H; % ) 10 (

%

D ; ) 1 / 0 ! 1 ( Q

% C

~ : R '

ƒ ? R ; D

R

$;

% 4

$J?

Q .

$H; % 10 (

@0A4B = 0.1 0.9 × GGH GHIHJ

HIKL GHIHJ

$4

%

ximin

M4 ! N

ximax

W3;

! N D

>

% , C )

Roushangar and Shahnazi, 2019

(.

(8)

2 . 6 .

, *

$;

% >

; D%

% 4 V % SJ Q

% N3 [!

"3 (3 4 56

$ D % D

$ J % ) R%

SJ Q

$4

!%

D r U J ' N3;

,

! '

! 6 ) (R

r U 17

N33 !

$4 J ' N3;

, W3) 3;

Q TY %

' D

R '% 3T M

; D%

C35; Y 8 C

) (DC

$ % 18

N3 3 A T;

' HP

$4 3;

"3

} 6 N3;

, W3) 3;

Q C ) (RMSE

.19

$] '

% ,

R

R ;DC

8

$;

8 8 "

!

% ,

RMSE

8] 4 ! Q ;

$;

T 5H ; C

. j; % N R ' J % ) R%

$;

A% Z D C :

$H; % 11 (

M< = 1 −)HS,OPOPQ P*R

Q P*R )HS,

$H; % 12 (

T = )HS,OPQ PQR×OP* P*R

U∑ OP)HS, Q PQR×OP* P*R

$H; % 13 (

TVWX = U∑Y02 OPQYP*R

< ; j; % % $4

Z'

Z[

$;

r3! ! , '

Q W3) 3;

Z' Q

Z[

, j J '

Q

W3) 3;

Q T!N

' . Q ;

3 . D E #

3 . 1 . F *4

%

$T+ H U @ C 9 D

R (3 4 56

%

$;

A% Z D D J % ) (3 4 56

%

% X ) D %

+ J SJ Q C .

$;

N r3! !

$4 (3 4 56

% 8 D % F; ! (3 4 56

% 8

$

% ] X )

D % 7 Y D P Q ; . N D

R

% X ) J + J

%

; D%

% Y

$J?

C . D } =

% D R

$;

; D%

:

` !%

(3 4 56

%

$ J 8 J % 3' + J

$JP ) Q C .

$;

N

r3! !

$4 R ; W3) 3;

(3 4 56

% J N3 ) C D ' R (3 4 56

% C < ; SJ

Q

C .

$;

N

% >

R ; W3) 3;

(3 4 56

% J E D (3 4 56

% D % + J

% J

E SJ Q C .

%

! D

R ' x) D

"3+

4 '

J;

R ' R D j ! 7 !

89

$ ":!

$]% w

; :!

7 4

$;

R D

'

$ ":!

Q xw N D R '

$;

R %

SJ LSTM

Q .

% 7 Q ) 2 ( 83! Q D

R A% Z

$J?

% W' () Q

C . M' N3 ] 9

) 2 ( 3;

' R o T!

Q C . ED<

$;

m3U ! C

$4 R ' R D (3 4 56 D 2015 -

2019

$;

R ' VD

$3,;

' ) 2020 2021 (

$;

R ' D SJ %

% Y

$J?

.

Table 2. Defined models

Temporal Modelling Spatial Modelling

Model Input Target Model Input Target

T(I) DO(t-1) DO(t) S(I) DO1(t-1) DO3(t)

T(II) DO (t-1, t-2) DO(t) S(II) DO1(t-2) DO3(t)

T(III) DO (t-1, t-2, t-3) DO(t) S(III) DO2(t-1) DO3(t)

T(IV) DO (t-1, t-2, t-3, t-4) DO(t) S(IV) DO2(t-2) DO3(t)

T(V) DO (t-1, t-2, t-3, t-4, t-5) DO(t) S(V) DO1(t-1), DO1(t-2) DO3(t) S(VI) DO2(t-1), DO2(t-2) DO3(t) S(VII) DO2(t-1), DO1(t-2) DO3(t)

(9)

Figure 2. The schematic view of considered modeling in the study

3 . 2 . E #

&

) G & :94 LSTM

3 . 2 . 1 . ,#

C 9 N3 [!

"3 (3 4 56

%

^ ; R

D 5Z ;

$ ":!

$;

N ]

R D

X )

^ ; R '

$ D % (3 4 56

` ;

$;

D % R ' 7 Y o T!

Q

% 4 V %

$>? @

< =

! 4 A

% ; %

% Y C?

. N ; ; N

' ; V %

"3+ LSTM

Q X J

$5Z @ D 7356!

'

% 9 ) 3 (

7 Q ) 3 ( Q

.;

$9 !

$;

X J

$;

C D

$

% 3T

; D%

R ; R '

VD D '

Q

$4 X J R ;

$ ' '

%

$ ' J '

„ ,!

C . N ; ;

$:3J Q (3 4 56

% 8

D % !

@ R D F; ! (3 4 56

% D % 7 Y Q ; . '

% =

$4 ' Q W "?

T!

'D % 33v!

]

% X J

$;

C ' .

$;

73+

$;

; X J

% X ) J

% ; Q X J

` ;

$;

J R ;

R R ' VD D

% 7 Q ) 4 ( Q

C .

Table 3. Results of temporal modeling evaluation without data decomposition

Model Station Train Test

R DC RMSE R DC RMSE

T(I)

St1 0.991 0.981 0.019 0.979 0.961 0.020

St2 0.991 0.982 0.031 0.980 0.963 0.036

St3 0.995 0.985 0.032 0.981 0.965 0.034

St4 0.996 0.986 0.035 0.981 0.965 0.038

St5 0.996 0.988 0.024 0.982 0.971 0.029

T(II)

St1 0.981 0.972 0.022 0.969 0.952 0.023

St2 0.983 0.973 0.031 0.971 0.958 0.035

St3 0.991 0.988 0.032 0.978 0.969 0.034

St4 0.988 0.979 0.033 0.975 0.961 0.033

St5 0.994 0.979 0.036 0.981 0.964 0.031

T(III)

St1 0.990 0.972 0.022 0.976 0.958 0.022

St2 0.988 0.976 0.041 0.969 0.947 0.044

St3 0.988 0.977 0.035 0.978 0.954 0.039

St4 0.991 0.989 0.031 0.980 0.975 0.035

St5 0.996 0.979 0.031 0.984 0.965 0.036

T(IV)

St1 0.992 0.975 0.024 0.978 0.949 0.023

St2 0.991 0.981 0.034 0.979 0.969 0.036

St3 0.989 0.977 0.033 0.979 0.959 0.038

St4 0.993 0.978 0.033 0.979 0.965 0.035

St5 0.995 0.989 0.025 0.981 0.974 0.031

T(V)

St1 0.990 0.976 0.020 0.975 0.958 0.021

St2 0.983 0.978 0.033 0.972 0.958 0.035

St3 0.991 0.981 0.034 0.979 0.968 0.036

St4 0.989 0.979 0.035 0.974 0.967 0.036

St5 0.995 0.979 0.038 0.981 0.969 0.039

(10)

Figure 3. Results of training and testing steps of all models for the station 1 in temporal modeling without data decomposition

Figure 4. Results of the training and testing steps of model T(I) for the station 1 in temporal modeling without data decomposition

(11)

3 . 2 . 2 . ,# H

C 9 W3) 3;

3 4 ( 56

% ;

` !%

N3;

' J CS'

^ ; J % ) (3 4 56

%

J 7 Y D %

+ J o T!

Q

% 4 V %

$>? @ < =

! 4 A

% ; Q . X J R '% 3T

; D%

% 9 ) 4 (

% Q C . '

% =

$4 ' Q X J 7Z @ D R % D %

7 Y (3 4 56

%

J E J 7 Y D % 8 N J ;

$:3J %

% )

$JQ C . X J

! ; C 9 W3) 3;

(3 4

56 J

E R ; R R ' VD D

% 7 Q ) 5 ( Q

C .

Table 4. Results of spatial modeling evaluation without data decomposition

Model Train Test

R DC RMSE R DC RMSE

S(I) 0.888 0.780 0.103 0.870 0.355 0.132

S(II) 0.887 0.785 0.102 0.866 0.350 0.132

S(III) 0.986 0.949 0.049 0.985 0.752 0.082

S(IV) 0.980 0.958 0.044 0.979 0.924 0.045

S(V) 0.883 0.777 0.104 0.867 0.359 0.131

S(VI) 0.988 0.972 0.036 0.987 0.885 0.055

S(VII) 0.990 0.977 0.033 0.985 0.939 0.040

Figure 5. Results of the training and testing steps of superior model (S(VII)) in spatial modeling without data decomposition

3 . 3 . E #

&

) G & :94 I"LSTM

% N C Y ; SJ D V %

$ ":!

$]% w

; :!

7 4 7 ! 89

$J J;

R R ' D

$ ":!

Q xw

R D

R '

$;

C

$;

R %

$;

Q LSTM

. D R

"3

% C+ @

D E :

Q . N3+

E Y R ;

$ ":!

3 ; 7 ! 89 [J 89

% C .

% N W' () D

89

% ;db2

$ mH

$ ":!

SJ Q .

^ V %

CEEMD

"3

$ ":!

3

$;

R 'IMF

o5J[

8 3 3Y ; C

$4

% C

~ : N ' ' 3 5Z ' P ; . V % 73 ! 'IMF

^ ;

d S!

F; !

$ ) D 3 5Z C . N

$ ) ! JY

$

;

$4

„ ,!

3 Y ; C; l

Q .

% C

R D

R '

$;

C D ' V %

$;

R %

$;

Q LSTM

.

$;

p W3) VD )

R R ' D J

%

^ 3,

$ D % j ! 7 ! 89 M' N3 ]

$ ":!

; :!

% 7 Q R ' ) 6 ( ) 7 (

Q C .

(12)

Figure 6. The subheading of the first station decomposes by discrete wavelet transform

Figure 7. The subheading of the first station decomposes by complementary ensemble empirical mode decomposition

(13)

3 . 3 . 1 . ,#

X J 7Z @ D D R D x) D VD ) '

j ! 7 ! 89

$J

$ ":!

; :!

% 9 ) 5 (

% Q C . '

% =

$4

% X J

"3 ' Q

$ ":!

R R ' D ! R @

\ ; ; X J Q

3l•!

$ ":!

; SJ D

$ ":!

$]% w

; :!

7 4 W3;

! D V % 7 ! 89

$J C . d; H X J

$;

C

„ ,!

%

$ ' J ' X J C

d = X J ; W3) VD ) W "?

T!

'D % 3l•!

] ; X J

% . N ; ;

$:3J Q (3 4 56

% 8 D % F; ! (3 4 56

% D % 7 Y ' P ; .

|+

C 9

$ , X J X J J M' ; W3) VD ) '

M' x) D VD ) '

$;

V % Q 4y

% 7 Q R ' ) 8 ( ) 9 (

% Q C . % ; :! $ ":! X J $; $9 ! ; W "? \ ; J % T(I)

% % 3T % R Z% 8 D

; W' 4 DC

15 R HP "3 % R Z%

. QRMSE

Table 5. Results of temporal modeling evaluation after data decomposition

Model Station Train Test

R DC RMSE R DC RMSE

T(I)

St1 DWT 0.993 0.974 0.017 0.987 0.965 0.018

CEEMD 0.986 0.981 0.015 0.988 0.977 0.017

St2 DWT 0.974 0.965 0.026 0.973 0.955 0.025

CEEMD 0.977 0.969 0.015 0.975 0.955 0.017

St3 DWT 0.977 0.965 0.014 0.976 0.957 0.015

CEEMD 0.978 0.967 0.018 0.975 0.959 0.020

St4 DWT 0.977 0.968 0.014 0.976 0.957 0.016

CEEMD 0.975 0.970 0.016 0.978 0.960 0.016

St5 DWT 0.977 0.967 0.013 0.976 0.963 0.017

CEEMD 0.973 0.972 0.015 0.978 0.968 0.017

T(II)

St1 DWT 0.973 0.966 0.015 0.970 0.961 0.016

CEEMD 0.982 0.978 0.013 0.978 0.976 0.015

St2 DWT 0.975 0.970 0.026 0.973 0.965 0.024

CEEMD 0.978 0.978 0.019 0.975 0.968 0.020

St3 DWT 0.973 0.966 0.023 0.970 0.958 0.025

CEEMD 0.979 0.974 0.017 0.977 0.961 0.017

St4 DWT 0.974 0.968 0.020 0.972 0.965 0.022

CEEMD 0.977 0.976 0.013 0.971 0.968 0.015

St5 DWT 0.974 0.964 0.019 0.972 0.961 0.022

CEEMD 0.979 0.967 0.015 0.978 0.964 0.016

T(III)

St1 DWT 0.972 0.963 0.019 0.968 0.952 0.020

CEEMD 0.975 0.966 0.016 0.971 0.954 0.018

St2 DWT 0.973 0.966 0.023 0.969 0.958 0.022

CEEMD 0.978 0.969 0.020 0.978 0.964 0.021

St3 DWT 0.971 0.963 0.025 0.967 0.954 0.028

CEEMD 0.978 0.967 0.021 0.978 0.958 0.023

St4 DWT 0.972 0.970 0.023 0.970 0.969 0.026

CEEMD 0.979 0.972 0.015 0.978 0.968 0.016

St5 DWT 0.977 0.964 0.022 0.971 0.963 0.026

CEEMD 0.977 0.968 0.015 0.976 0.966 0.015

T(IV)

St1 DWT 0.965 0.949 0.023 0.959 0.937 0.025

CEEMD 0.978 0.976 0.014 0.978 0.975 0.016

St2 DWT 0.969 0.959 0.031 0.964 0.951 0.032

CEEMD 0.978 0.969 0.020 0.978 0.961 0.025

St3 DWT 0.972 0.965 0.025 0.968 0.955 0.027

CEEMD 0.978 0.972 0.022 0.978 0.968 0.023

St4 DWT 0.973 0.966 0.021 0.971 0.962 0.024

CEEMD 0.978 0.969 0.015 0.977 0.965 0.016

St5 DWT 0.971 0.962 0.023 0.970 0.960 0.028

CEEMD 0.979 0.969 0.017 0.978 0.964 0.018

T(V)

St1 DWT 0.974 0.963 0.018 0.971 0.955 0.019

CEEMD 0.971 0.967 0.015 0.978 0.966 0.019

St2 DWT 0.967 0.953 0.030 0.961 0.938 0.031

CEEMD 0.978 0.964 0.020 0.978 0.958 0.022

St3 DWT 0.974 0.969 0.021 0.971 0.962 0.023

CEEMD 0.976 0.973 0.013 0.975 0.965 0.014

St4 DWT 0.972 0.964 0.024 0.970 0.958 0.026

CEEMD 0.977 0.968 0.018 0.977 0.961 0.020

St5 DWT 0.972 0.963 0.022 0.972 0.960 0.026

CEEMD 0.977 0.974 0.015 0.973 0.964 0.017

(14)

Figure 8. Results of training and testing steps of model T(I) for the first station in temporal modeling after data decomposition

Figure 9. Results of training and testing steps of model T(I) for the station 1 in temporal modeling after data decomposition

(15)

3 . 3 . 2 . ,# H

R ; W3) 3;

(3 4 56

% J E ;

$9 !

$;

X J 9 ) 6 ( ' Q

$4 N J ;

S(VII)

Q ;

$4 ; J % ) (3 4 56 8 D % 7 Y J E (3 4 56 D %

7 Y J

$:3J 7; Y + Y C

. '

% =

$4 ' Q

% :

"3 X J 7Z @ D W3) VD ) '

! R @

\ ; ; X J Q C M' N3 ] X J 7Z @ D 7 ! 89

$J ; D% % 3T % R Z% 8 W "? ;

R HP % R Z% W' 4 DC

J ;RMSE

D X J 7Z @ D

$ ":!

; :!

7 4 Q ; . X J VD

D R ; N J ;

% 7 Q ) 10 (

% Q C .

Table 6. Results of spatial modeling evaluation after data decomposition

Model Train Test

R DC RMSE R DC RMSE

S(I) DWT 0.883 0.739 0.112 0.866 0.592 0.105

CEEMD 0.937 0.872 0.078 0.901 0.546 0.111

S(II) DWT 0.883 0.778 0.104 0.868 0.382 0.129

CEEMD 0.923 0.831 0.090 0.913 0.372 0.130

S(III) DWT 0.988 0.968 0.039 0.987 0.844 0.065

CEEMD 0.990 0.978 0.032 0.989 0.774 0.078

S(IV) DWT 0.983 0.966 0.040 0.981 0.929 0.043

CEEMD 0.986 0.964 0.041 0.985 0.852 0.063

S(V) DWT 0.885 0.776 0.104 0.868 0.436 0.123

CEEMD 0.922 0.849 0.085 0.921 0.437 0.123

S(VI) DWT 0.989 0.977 0.033 0.988 0.920 0.046

CEEMD 0.992 0.981 0.030 0.991 0.814 0.071

S(VII) DWT 0.991 0.981 0.030 0.990 0.953 0.039

CEEMD 0.992 0.979 0.031 0.987 0.941 0.045

Figure 10. Results of the training and testing steps of superior model in spatial modeling after data decomposition by wavelet transform

3 . 4 . & ' E #

% N

$T+ H ; SJ D V % R ' J ; V ' t V %

$>? @

! 4 < = A

R ' 34 !

89 -

$>? @

! 4 < = A

$ ":!

; :!

-

$>? @

! 4 < = A

$;

W3) 3;

(3 4 56

$;

A% Z

D

$JP ) Q . X J R '% 3T

; D%

R ;

$5@

D R '

! ; ; SJ D V % R '

% 4|

% 7 Q

) 12 (

% Q C . V % V % $; C R J ; X J LSTM

$; R ' ) N3 3) $J?%% 4

$; (ANN

C '

)

Dabrowski et al., 2018

( d; H . X J ' Q

% 7 Q ) 11

% ( RD

D

% T(I)

RD

S(VII)

; NJQ W3;

N ! M4 DC

N !

$; RMSE

N ! ;

; D%

Q .

(16)

Figure 11. Comparison of evaluation criteria of superior models in two types of temporal and spatial modeling

$;

% = n"9 ] ]% ] 54 W3) CY ! WT

3;

[ ; ; R @ ! % 7,J R ' + @%

$4

% R% Q C " …3' M3,J ]% ] '

)

Xu et al., 2021

(.

M' N3 ] V % ; 34 ! R '

EEMD

R HP ! D

R M4 !

$; R ' ; C )

Eze, 2021

(.

$]

% '

~ D R VD ) '

R

\ ;

; X J Q C

% D

R D

$ ":!

; :!

\ ; Q J ; X J

D

? =

% D R

7 ! 89

\ ; J ; Q X J % , W "?

QDC

C .

4 .

&9 #

% N W' () D

$>? @ < =

! 4 A R ; D

R (3 4 56

% ) (DO

%

$ P %

%

% CS'

$+

$;

A% Z R '

$ D % SJ Q .

~ D R D M'

; W3) VD ) '

M' x) D

$ ":!

' R R D ; SJ D 7 ! 89

$ ":!

; :!

E : Q .

;

$9 !

$;

X J

%

D R D

%

$ ' J '

$:3J Q

$4 W "?

T!

'D % 3l•!

R

% ; 5 CQ

x)

!

$:3J C?

(3 4 56

% 8 J

% 8 D % ; CY R D F; ! (3 4 56

% D % 7 Y

Q ; . M' N3 ]

% D R '

Q

$4 X J 7Z @ D 8 D % 7 Y J E D % 7 Y J

% W3) 3;

(3 4 56 J

E

% 4 ' P ; . M' N3 ]

% '

~ D R W3) D ) ' 3l•!

; P

% ; 5 JQ

"3 W "? \ ; QDC

M' N3 ] 7 ! 89

% D R

$ ":!

; :!

% D R D W3;

! N 3l•!

%

% ; 5 CQ LSTM

.

5 . ,"

)J # 1. Dissolved Oxygen

2. Artificial Neural Network 3. Multi-Layer Perceptron 4. Radial Basis Function

5. Least Squares Support Vector Machine-Improved Particle Swarm Optimization 6. Support Vector Machine

7. Back Propagation

8. Constrained Extreme Learning Machines

(17)

9. Savannah River 10. Wavelet Transform

11. Empirical Mode Decomposition 12. Intrinsic Mode Functions

13. Ensemble Empirical Mode Decomposition

14. Complementary Ensemble Empirical Mode Decomposition 15. Long Short-Term Memory

16. Recurrent Neural Network 17. Correlation Coefficient 18. Coefficient of Determination 19. Root Mean Square Error

6 . K? / L *4

…3' . % 9 N3; T? †% T! $

7 . K /

Adamowski, K., Prokoph, A., & Adamowski, J. (2009). Development of a new method of wavelet aided trend detection and estimation. Hydrological Processes, 23, 2686-2696.

Ahmed, A. A. M. (2017). Prediction of dissolved oxygen in Surma River by biochemical oxygen demand and chemical oxygen demand using the artificial neural networks (ANNs).

Journal of King Saud University - Engineering Sciences, 29(2), 151-158.

Amirat, Y., Benbouzid, M. E. H., Wang, T., Bacha, K., & Feld, G. (2018). EEMD-based notch filter for induction machine bearing faults detection. Applied Acoustics, 133, 202-209.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157-166.

Chou, C.-M. (2014). Complexity analysis of rainfall and runoff time series based on sample entropy in different temporal scales. Stochastic Environmental Research and Risk Assessment, 28(6), 1401-1408.

Csábrági, A., Molnár, S., Tanos, P., & Kovács, J. (2017). Application of artificial neural networks to the forecasting of dissolved oxygen content in the Hungarian section

Referensi

Dokumen terkait

In this study performance of several methods such as Decision Tree, Random Forest, and Long Short-Term Memory (LSTM) are compared to determine the best method in

As mentioned above that the objective of this experiment is to evaluate the state of sulphur and oxygen isotopes of dissolved sulphates from various manifestations in Sumatra

from keras.layers import Dense, Dropout, Activation, Embedding, LSTM, Bidirectional from keras.callbacks import EarlyStopping from keras.datasets import imdb. Let's print an

coli Activation function LSTM layer Rectified linear unit ReLU Rectified linear unit ReLU Activation function dense layer Rectified linear unit ReLU Rectified linear unit ReLU Batch

The two ML algorithms used for this experiment are the Long Short-Term Memory LSTM and Extreme Gradient Boosting XGBoost, both known for its high accuracy of prediction from various

Akurasi metode Long Short Term Memory LSTM yang digunakan dalam penelitian ini untuk meramalkan penjualan HP Samsung baik offline maupun online ditemukan sebesar 1,3%.. Terdapat