• Tidak ada hasil yang ditemukan

Distance protection zone 3 misoperation during system wide cascading events: The problem and a survey of solutions

N/A
N/A
Protected

Academic year: 2023

Membagikan "Distance protection zone 3 misoperation during system wide cascading events: The problem and a survey of solutions"

Copied!
9
0
0

Teks penuh

(1)

ContentslistsavailableatScienceDirect

Electric Power Systems Research

jou rn al h om e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / e p s r

Distance protection zone 3 misoperation during system wide cascading events: The problem and a survey of solutions

A.M. Abdullah

a,∗

, K. Butler-Purry

b

aDepartmentofElectricalPowerandMachines,CairoUniversity,Gizah12613,Egypt

bDepartmentofElectricalandComputerEngineering,TexasA&MUniversity,CollegeStation,TX77843,UnitedStates

a r t i c l e i n f o

Articlehistory:

Received10May2017

Receivedinrevisedform20August2017 Accepted21August2017

Keywords:

Distanceprotectionzone3 Blackouts

Cascadingevents Misoperation Security

a b s t r a c t

Distancerelayzone3misoperationhasbeenresponsibleformajorblackoutsaroundtheworld.Zone 3misoperationgenerallyoccursundersystemwidecascadingeventssuchasthe2003Northeastern US–Canadablackoutorunderstressedsystemconditionssuchasthe2015Turkishblackout.Thispaper explainstheproblemofzone3distanceprotectionmisoperation.Thepaperthenproceedstosurveythe literatureforpossiblesolutionstoincreasedistancerelaysecuritytopreventdistanceprotectionmisoper- ation.Threecategoriesofsolutionswereproposedinliteraturetoaddresstheproblemofzone3distance protectionmisoperation.Thefirstoneisanticipationandpreventionofmisoperationintheplanning stage.Thesecondoneiscommunicationassistedprotectionschemesthatuseremotemeasurementsto enhancerelaysecurity.Thelastoneuseslocaldatatoenhancedistancerelaysecurity.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

WiththederegulatedmarketstructureintheUnitedStatesand Europe,gridoperatorsareundermorepressuretoreapmoreprof- itsofexistinginfrastructureduetoincreasedcompetition.Thegrid isthusincreasinglyoperatednearthethresholdofstability.Failure ofthegrid,betterknownasblackouts,carriescatastrophic eco- nomicandsocietalsequences.Largeblackoutstendtobedueto eitherextreme naturaleventssuchas hurricanesor a seriesof eventscalledcascadingfailures[1].Inthis paper,weonlyfocus oncascadingevents.Thoseeventscanbeanyofthefollowing:

linetripping,overloadingofotherlines,malfunctionsofprotection systems,poweroscillationsandvoltageinstability[2].Thereason thatisconsideredinthispaperisdistanceprotectionmisoperation whichisacontributingfactorinseventypercentofallcascading events[3].Ifnotdiscoveredandmitigatedinanearlystage,cas- cadingeventsgenerallyleadtoacompleteblackout.Withtoday’s societymuchdependenceonelectricityasaformofenergy,pre- ventingsuchdamageisofhighimportance.

Cascadingfailuresaredefinedas“asequenceofdependentfail- uresofindividualcomponentsthatsuccessivelyweakenthepower system”[4].Sincethe2003US–Canadablackout,cascadingevents

Correspondingauthor.

E-mailaddresses:ahmad.abdullah@cu.edu.eg(A.M.Abdullah), klbutler@tamu.edu(K.Butler-Purry).

havedrawnmuchattentionintheindustrialandacademiccommu- nity.Eventhoughtheworldhaswitnessedmanyblackoutspriorto the2003blackout[1],thedramaticcausesandconsequencesofthe 2003blackouthaveleftindustrialandacademiccommunitywith theburdenofexploringthisphenomenoninmoredetail.Tounder- standtheseverityofthe2003blackout[5],itsufficienttosayithad causedthelossof62GWwhichcausedthelightstoturnoffformore than51millionpeopleintheeasterninterconnection.Considering themanycomponentsandthebitsandpiecesinvolved,adomino effectofeventsevolvedslowly(hours)orfast(seconds)according totheregioncausingadegradationoftheintegrityofthesystem leadingultimatelytoacompleteblackout.Themainreasonofthe 2003blackoutwasdistancerelaymisoperation.Dauntingefforts hadtobeexertedtogainmoreknowledgeandunderstandingof theunderlyingphenomenon.

Relaysbydesignactquicklytoremovethefaultfromthesys- tembydisconnectingfaultedlines.However,sometimesrelaysfail toperformsuchfunctionwhichisconsideredaprotectionsystem misoperation.Ofallprotectionsystemmisoperationsthatleadto cascadingevents,thispaperfocusesexclusivelyondistancepro- tectionmisoperation.Aprotectionsystemmisoperationisdefined as“afailuretooperateasintendedforprotectionpurposes”[6].

Variouscategoriesaregivenformisoperationin[6].However,in thispaperthewordmisoperationwillbeusedexclusivelytomean onlyoneofthem,namely,anoperationinwhichaprotectionsys- temtripsahealthylineduetoheavyloadingwhennofaultexists.

Inotherwords,othercausesofdistanceprotectionmisoperation

http://dx.doi.org/10.1016/j.epsr.2017.08.023 0378-7796/©2017ElsevierB.V.Allrightsreserved.

(2)

Asmentionedin[2],oneoftheeffectivewaystopreventcas- cadingeventsistospecifypotentialundesirablerelayoperations aheadoftime.Inthispaper,weshowthateventhoughdistance protectionmisoperationcanbeanticipatedaheadoftime,preven- tionofthismisoperationisnotpossiblewithdistanceprotection principleonlybecausethedistanceprotectionprincipleisnotable tobeselectiveinsomeregionsofitsoperation.

Thepaperisorganizedasfollows:Section2providesasample distancerelaythatissetaccordingtoNERCstandards.Oncethis relayissetaccordingtoNERCdirectives,itwillbeexplainedin thesamesectionthattherelaymaystillmisoperateundervarious operatingconditions.Anticipationanddetectionofdistancerelay misoperationintheplanningstageisdescribedSection3.Section4 providesanoverviewofthecommunicationassistedschemesthat havebeenproposedtoeliminatethedistanceprotectionmisoper- ation.Lastly,Section5offersasurveyonthemethodsthatwere suggestedinliteraturetoenhancethedistanceprotectionsecurity usinglocaldataonly.

2. Thedistanceprotectionmisoperationproblem

OnAugust14thof2003[5],theUSeasterninterconnectionsuf- feredoneofthelargestblackoutsintherecentUShistory.Three 345kVtransmissionlinessaggedintountrimmedtreesduringthe hotsummerdays.Thetrippingofthoselinescausedanother345kV transmissionlinetocarrysubstantialsystemload.Theheavyload- ingofthis lastlinecoupledwithrelativelylowsystemvoltage, causedthedistancerelaytoconfuseaheavyloadingsituationfor unclearedzone3faultastheimpedanceenteredthethirdzoneof protectionwhichinturnresultedintrippingoftheheavilyloaded line.Thetrippingofthehealthyyetheavilyloadedlineworsened systemconditionsleadingtoachainofeventsthatultimatelyled tosystemcollapse.Also,onMarch31stof2015[9],theTurkish gridsufferedtheworstblackouteverrecordedsince1999whenan earthquakecausedacompleteshutdownofthegrid.Onthecon- trarytothe1999earthquake,the2015blackoutwascausedbya impedanceprotectionmisoperationthattrippedaheavilyloaded lineonthe400kVtransmissionleveleventhoughtherewasno faultonthetrippedlineoranywhereinthetransmissionnetwork.

Ascanbeseenfromtheexamplesin[5,9]inwhichdistancepro- tectionmisoperationhavebeenthemaincauseoftheblackouts orin[10]in whichdistanceprotectionmisoperationhavebeen studiedintheIEEE118bussystem,adistanceprotectionmisop- erationischaracterizedbyadistanceprotectionsystemseeinga heavyloadonalineasafault.Thisconfusionarisesfromthefact thattheimpedancemeasuredbytheimpedanceprotectionsystem coincideswiththatofafault.Thereasonfortheheavyloadcanbe duetoloadshiftingafterafaultasinthe2003US–Canadablackout [5]orduetolinesoutofserviceformaintenancecausingoneline tocarrysubstantialsystempowertransferasinthe2015Turkish blackout[9]orduetoanyunforeseenreasons.

Toillustratethatthisconfusionisnottiedupwithcertainsystem conditionsbutratherinherentinsecurityinthedistanceprotection principle,thesinglelinediagramshowninFig.1isusedtofor- mulatetheproblemingeneralterms.Itwillbeshownbelowthat

theimpedanceofadjacentlineswithoutanyinformationaboutthe systemloaduntilthecoordinationstudyphase.Inthecoordina- tionstudyphase,thetransmissionlineownerchecksallsettings againstapplicablestandards.Thisisexplainedindetailin[11].In thefollowingparagraphs,wewillsetuptherelaysettingsfirstthen discusswhathappensinsystemwidecascadingevents.

InFig.1,thedistanceprotectionrelaythatwillbestudiedisthe relayatpointAoflineA–C.LineA–Cisconnectedtothree(3)lines, namelyC–M,C–NandC–P.Thenumberoflinesconnectedtoline A–Cwillnotaffectzone1orzone2settingsbutwillaffectzone3 settings.Aswillbeseenbelow,trippinginzone3becomesmore insecurewithmorelinesconnectedtolineA–Caszone3reach becomeslarger.Tosimplifytheanalysis,alllinesareassumedto havethesameimpedanceaswellastheshortcircuitlevel.How- ever,aswillbeexplainedbelow,thissimplificationdoesnotaffect thegeneralityoftheproblemformulation.Theimpedanceandthe ratingofthelinesare60and 3000Amp, respectivelyandare takenfrom[12].Thesettingofzone1 isassumedtobe0.85of thelineimpedance.Zone2settingisassumedtobe1.2oftheline impedance.However,someconsiderationisneededtosetthethird zone.Thethirdzonehastobesetsuchthatitcanprotectthelongest adjacentline(assumedtobelineC–Pinthiscase)andtoprotect 20%beyondthatlinetoprovidebackuptotheremotecircuitbreak- ers.IncaseofaboltedthreephasefaultonlineC–Pandassuming thattheshortcircuitcontributionsofallbusesisgiveninFig.1by Iindexwhereindexisthebusname(beingM,N,AorP),thevoltage atdistanceprotectionsystematAcanbewrittenasgiveninEq.(1).

VA=IA×ZA+ZP×(IM+IA+IN) (1) TheimpedancethatisseenbytherelayAcanthenbewritten asin(2)

ZR=VA

IA =ZA+ZP

1+IM+IN IA

(2) Eq.(2)willonlybeapplicabletofaultsonlineC–P,ifweneedto include20%forthelinethatisbeyondbusP,thentheimpedanceZP in(2)hasbereplacedby1.2×ZP.Usingthedatain[12]andassum- ingalllinesareidenticalaswellastheirshortcircuitcontribution, thenthesettingofzone3willbeZA+3.6×ZP=4.6×ZA.Thethree zonesareplottedinFig.2.

Aftersettinguptherelaylocally,applicablestandardsanddirec- tivesneedtobeappliedtothesettingsforcompliancepurposes.

Thisstepinvolvesrunningworstcasepowerflowinthesummer peakcase.Themostnotabledirectiveistheloadencroachment.

Theloadencroachmentzoneisanareaoftheprotectionzonein whichtheloadimpedance“encroaches”–intrudes–uponthefault impedance.Loadencroachmentwillobviouslycausemisoperation andshouldberemovedfromthezoneofprotection[12].Toplotthe loadencroachmentzoneaccordingtoNERCdirectives[6,12,13],the loadzoneshouldincludethepointwhichcorrespondsto150%line loadingand0.85perunitvoltage.Thustheloadencroachmentlocus ofthedistancerelayatAwillconsistoftwoparts.Thefirstpartwill beanarcofcircleofradiusgiveninEq.(3)whichisgivenasarc RITinFig.1.ThisarcRITcorrespondstotheleastimpedancethat therelayshouldnotissueatripcommandfor.Theothercharacter- isticloadlineswillbetwolinesmakinganangleof±30withthe

(3)

Fig.1. Systemconfigurationforformulatingtheproblem.

Fig.2. DistanceprotectioncharacteristicforsysteminFig.1.

x-axis(±30 representsthepowerfactorofthelineunderworst caseloadingcondition)

Zload= VA

IA =

345kV 3 ×0.85

1.5×3000 =57 (3)

TheorangehashedareaRLQTistheloadencroachmentarea.

NERCdirectives[6,12,13]statesthatthisloadencroachmentzone hastoberemovedfromtherelayoperatingzone.Itcanbeseenat oncethatiftheimpedanceseenbytherelaylieswithinthesolid greenareaURIthenarelaymayconfusethisoperatingpointfor afaultsincethepointliesalreadyinzone3.Thisconfusionarises ifthefaultresistanceishighenoughtocausethefaultpointto liewithinthesolidgreenareaURI.InFig.2,thisfaultresistance rangesfrom30to90.Thefaultresistancecanbeobtainedby measuringthedistancebetweenthediameterABofzone3circle topointRandUofthegreenzone.Ifitisknowninadvancethat thefaultresistancecalculatedcannotbeattainedalongtherouteof thetransmissionline,thentheriskofmisoperationisnonexistence andthegreenareacanberemovedfromzone3withoutaffecting thesecurityorreliabilityofthedistanceprotectionsystem.How- ever,faultresistancealongtherouteofthetransmissionlineisnot knowninadvance.Also,oneshouldnotethatsolidstateandelec- tromechanicalrelayscannotbeprogrammed,onlymicroprocessor

relayscan.Thisreallymeansthatolderrelayswillhavetocomply withNERCstandardsbydisablingzone3altogether.Itisshown in[14]thatdisablingzone3insomecaseswillforceprotection engineerstoprovidebackupprotectionsolutionstoremotecircuit breakers.Thismightinvolveaconsiderablecost.Additionally,not allcountriesaroundtheworldhavestandardsasstrictasNERC, sothesolidgreenareaURIexistinthezoneofprotectionwithout regardfromtheprotectionengineer.Lastly,eveniftherelaycom- plieswithNERCdirectives,animpedancecanstillfallanywherein zone3,notonlythesolidgreenareaURI,understressedsystem conditionsasPhadkeandHorowitzpointedoutintheirpaper[14].

Thisshowsclearlytheimpedanceprotectionisinherentlyinsecure understressedsystemconditions.

Attentionisnowgiventotheassumptionsstatedinthebegin- ning.Itwasassumedthatalllineshavethesameimpedanceandall ofthemarecontributingequalcurrentstothefault.Itcanbeseenat oncefromFig.2thatthisassumptionisnotrestrictingthegeneral- ityoftheproblemformulation.Becauseinanycasethegreenarea URIwillexistdue totheloadprofileunderstressedconditions.

Additionally,thefaultcontributionofthetransmissionlineswill onlyaffectthediameterBAofzone3whichwillonlyaffectpoint U.PointUcorrespondtothemaxfaultresistance.Stateddiffer- ently,therewillalwaysbeanoverlapbetweenthedynamicrating ofthelineandzone3andtheshortcircuitlevelsfromnearbylines willonlyaffectthesizeoftheoverlap(areaURI)nottheoverlap itself.Lastly,toderiveEqs.(1)and(2),athreephasefaulthasbeen assumed.Thisisduetothefactthatlineoverloadisthreephase phenomenon.However,itshouldnotbehardtobeabletoenvision asinglelinetogroundfaultcausingthesameeffectifoneimpor- tantlineisoperatedwithonlyonephaseduetoalinetolinefault underheavyloadingconditions.

Itshouldbeapparentfromthedescriptionabovethatthemajor issuethatisfacedbytraditionalimpedanceprotectionsystemis that thesteadystateimpedance correspondingtoaheavy load iscoincidenttotheimpedanceunderafaultonaremotelineto whichthedistanceprotectionsystemprovidesbackupprotection.

Itcouldbearguedthatimpedanceprotectionshouldbesupervised byothersteadystateprotectionprinciplestoenhanceitsselec- tivity,i.e.,theabilitytodifferentiatebetweenaloadandafault current.However,otherprotectionprinciples–suchasovercur- rentprotection–thatcanmakethedistinctionbetweenaloadand afaultdependontheanticipatedpowerflowforoperationwhile theprobleminhandisdifferent.Theconfusionthatisseenbythe distanceprotectionisbecausethepowerflowundersystemwide cascadingfailureschangesconsiderablyfromtheplannedpower flow.Inotherwords,theloadencroachmentzonehastobesetfor systemwidecascadingscenariosthatarenotknowninadvance, whichisclosetoimpossibleundertaking.Oneoftheauthors[14]

statesthisfactas:

“TheoverwhelmingthrustoftheNERCrulesandotherinstructions regardingtheapplicationofzone3elementshasbeentoprevent itsoperationduringemergencyconditions.Althoughthisisadesir-

(4)

Fig.3.Impedancemarginandimpedancelocusplotforadistancerelayduringa wideareacascadingscenario.

ablegoal,itshouldberecognizedthatevenwithalltheintelligence availabletomoderncomputerrelays,theproblemofdistinguish- ingafaultfromaheavyloadinarelativelyshorttimeandusing onlythecurrentandvoltagesignalsavailabletotherelaycannotbe solvedineverysingleimaginable(andsomeunimaginable)power systemscenarios”.

3. Detectionandmitigationofzone3misoperationinthe planningstage

MostIndependentSystemOperators(ISOs)[15,16]todayuseN- 1criteriontojudgewhetherthesystemissecureaftertheremoval ofonelineinplanningstage.However,giventhatzone3distance protectionmisoperationisnottriggereduntiltwoorthreelinesgo outofservice[5],thedistributionofpowerflowishardtobetaken intoaccountintheplanningstageasitwouldmeanperformingN-2 andN-3contingencyanalysiswhichisexpensivecomputationally.

Thus,itisincreasinglyhardtoassessprotectionsystemcapability underthemoststressfulsystemconditions.Duetothat,theauthors in[17,18]providedanefficientmethodtostudythesensitivityof zone3undervariousoperatingconditionswithouttheneedfor performinglargenumberof powerflow studies.In[17,18],the authorsdefinealinearizedimpedancemarginofadistancerelay usingsystemvoltages,injectedpowerandshuntsusceptance.The impedancemarginisdefinedasthedistancebetweenthemeasured impedancelocusintheR–Xplanetotheboundaryoftheoperat- ingcharacteristicoftherelayandisshowninFig.3.Bydoingso, therelaysthatmaymisoperatecanbeanticipatedaheadoftime inanefficientmannerintheplanningstageusingsimpleformulas.

However,itisshowninthepaperthatifthechangesinthevoltages orpowerinjectionsareelectricallyfarawayfromtherelayunder study,asituationthatalwaysexistsinwideareacascadingscenar- ios,theerrorintheanalysisbecomesunacceptableespeciallyfor longlines.

In[19],theauthorsproposeblockingzone3ofcertaindistance relaysaheadoftimebasedonofflinesimulations.Theauthorspro- posethatthesystemoperatorperformcontingencyanalysisusing crediblehistoricalcontingenciesinplanningstagetoobservethe impedancetrajectory ateach distance relayin thesystem.The contingencyscenariostobeperformedhavetoincludemorethan onecontingencytocreateanimpedancetrajectory.Therelaysthat misoperateduringeachcontingencyscenarioduetotheimpedance trajectoryenteringzone3whennofaultconditionsexistshould beshortlisted.Ofthoserelaysthatareshortlisted,certainrelays

cadesinrealtime.Anindexthatisusedtomonitordistancerelays isalsoproposed.Iftheindicesassociatedwiththedistancerelays exceedtheirthreshold,thendistanceprotectionmisoperationis abouttooccurand thesystemoperator hastheoptionto stop distancerelaysfromoperation.However,inpracticeonlyN-1con- tingenciesarestudiedandthustheseverityindexischosenbased onthesecases.Nevertheless,ifthesystementersN-2orN-3con- tingencyconditions,tuningofthe“severity”thresholdwillbea difficulttaskcomputationally.

Lastly,distanceprotectionco-ordinationhasbeenexploredin [21,22].An SVM for each relayis trained using theimpedance trajectorythat isseen bytherelayduringfault conditions.The impedancetrajectoryisobtainedbyusingatransientstabilitypro- gram.SVMisthentrainedforvariousscenariostodistinguishzone 1,zone2andzone3faults.Trainingscenariosincludecasesfordif- ferentfaulttypesatdifferentdistancesawayfromtherelaythathas theSVMandatdifferentfaultresistances.TestingscenariosforSVM includefaultsthathavenotusedintraining.Byensuringthatthe relaysarewellco-coordinatedundervariouscontingencycondi- tions,unnecessarytripcouldbeavoided.However,theimpedance trajectorywilldependonthesystemtopologyatthetimeoffault occurrenceandthishasnotbeentakenintoconsiderationin[21,22]

whichcouldleadtolargeofflinetrainingset.

Duetothefactthatdistanceprotectionco-ordinationrequires large amount of offline simulations by performing many con- tingency conditions, theauthors in[23] introduced theidea of

“distance of impact” to automate the distance protection co- ordination. However, the authors use the super computer to performtheircomputationsatthefirststage.Oncethedistance ofimpactofeachrelayhasbeencalculated,co-ordinationofthe distancerelaysbecomesstraightforward.Ashortcomingofthedis- tanceco-ordinationapproachisthateventhoughitcanensurethat distancerelaysneveroverreachforfaultsbeyondtheirreach,little researchhasbeenperformedtostudywhethertheco-ordination canensurethatrelayswillnotmisoperateunder heavyloading conditions.

Ascanbeseenabove,anticipationdetectionofdistancepro- tectionmisoperationintheplanningstageisa hardtask. Tobe able tofully prevent distanceprotection misoperation, an N-x, wherexisgreaterthan1,contingencyanalysisneedtobedone.

Eventhough this couldbedone for small benchmarksystems, contingencyanalysis,underuncertainloadandgeneration,iscom- putationallyintensiveforlargesystemconsistingofthousandsof buses.ManyISOsmaynothaveaccesstosupercomputerstorun suchintensivecomputations.

4. Communicationassistedschemes

The2003blackoutspointedouttheimportanceofhavingevents alongwiththetimetheyoccurred.Investigatorsspentmuchoftheir timetryingtomatchupthewaveformstoreconstructthesequence ofeventsthatledtotheblackout. Itwasthen apparentthatto facilitatethetransferandcomparisonofwaveforms,allsamples needtohaveatimestampforthispurpose.PhasorMeasurement Unit(PMU)orsynchrophasortechnologywasthenrecommended

(5)

Fig.4. Protectionlogicofthepaperin[28].

toaddressthisshortcoming[5].Bythetimeof2003blackout,state estimationwasaverymaturefield,butPMUsopenednewareasfor theapplicationofstateestimationbyreducingthetimeneededto dostateestimationduetowidespreaddeploymentinthetransmis- sionnetwork.APMUmeasuresthepositivesequencevoltageand current(boththemagnitudeandangle),whichopensnewareasfor adaptiverelayingandwideareacontrolandprotection.Intypical distanceprotectionschemes,therelayisonlyappliedtoasingle transmissionline.However,inawideareaprotectionscheme,a completearea(severaltransmissionlines)canbeprotectedusing selectedPMUdeviceswithouttheneedtoapplyPMUstoeachsin- glebusinthesystem.BytransferringinformationinbetweenPMUs inthepowersystem,accuratedecisionregardingthenatureofthe impedancefallinginzone3canbemadeandmisoperationcanbe avoided.

WiththeintroductionofPMUs,severalfaultdetectionandloca- tionsmethodshave beenproposed. Thesalient featureof PMU detectionschemes[24]isthatusingthecommunicationlinksto transferdatabetweenthetwoendsofthelines,severalconclusions canbedrawnregardingwhetherthelineisundergoingabnormal conditions.AsalientfeatureofthePMUalgorithmistheabilityto monitorthestatusofthelineandcomputetheparametersofthe lineonlineinaveryaccurateway.

Duetothefactthatzone3ofdistancerelaysmaynotbeable differentiatebetweenheavylineloadandanactualfaultonthe system,theauthorsin[25]proposedthatatoolbeinstalledatthe controlcentre,alsoknownasIndependentSystemOperator(ISO), tocontinuouslysupervisetheoperationofzone3elements.The toolwillconsistoftwomodules,acentralcontrolunit(CCU)and severalregionalcontrolunits(RCUs).TheCCUwillbeinstalledin theISOwhiletheRCUswillbeinstalledatselectindividualsub- stations.The CCUmeasuresthe lineoutagedistributionfactors andgenerationshiftfactorsfortheentirepowergridandsends allfactorstotheindividualRCUs.RCUsuselocalmeasurementsat thesubstationandcommunicatewithoneanother.Theindividual RCUswilldifferentiatebetweenfaultsandtransferofpowerflow andsupervisedistancerelaysbasedontheinformationreceived fromtheCCUandotherRCUs.Eventhoughthissolutionmightbe abletopreventallzone-3misoperations,itneedsconsiderablecost toconstructthecommunicationinfrastructurethatisneededto transmitthedatabetweentheindividualsubstationandtheISO.

Theauthorsin[26]usessynchronizedsamplesfrombothends ofthelinetocheckwhetherthetransmissionlinehasbeentripped successfullyornot.Theinstantaneouspowerfrombothlineends arecalculated.Itisshowninthepaperthatafterfaultinception,the

instantaneouspoweratbothendsbecomespositive.Thisholdtrue evenundersystemswithweekinfeed.Themethodisapplicableto allsystemsotherthanradialsystems.However,duetotheneedto transferdatabetweenbothends,significantcostmaybeincurredto establishsuchalgorithmacrosseachtransmissionlineinthegrid.

Theapproachthathasbeenproposedin[26]hasbeenvalidated usingfielddatain[27].

In[28],distributedPMUsareusedtoreachadefinitivedecision abouttheexistenceofthefaultinthesystemusingasynchropha- sorstateestimator(SynSE).TheSynSEisusedtodetectnetwork topologychangesaswellasdeterminethefaultlocationsasshown in Fig. 4. However, the grid has be completely observable by PMUs.Thus, sitingPMUshastobedonecarefullytonotcreate unobservableislandsunderstressedsystemconditionsandcertain contingencyconditions.

In[29]synchrophasorsareproposedtosupervisezone3oper- ation.Specificindicesareproposedtoassertthefaultusingthe currentswhichresultinaveryrobustzone3distanceprotection system.Thealgorithmformsasupernodefromthecertaingroups ofPMUs. Bysummingthecurrent goingintothesupernode, a decision canbereachedwhetheradisturbanceexists ornot.If adisturbanceisdetected,anotherlogicisinvokedtodetermine whetheritisafaultforthegroupofPMUswiththehigherdeviation.

Thelogicthatisinvokedafterdisturbancedetectionisimpedance based.Aweightedfaultdetectionindexisdefinedforthispurpose.

Theweightsusedtodefinetheindexdependonthereachofthe respectivezone 3distanceprotectionrelay.If afterdisturbance detection,theweightedfaultindexisexceeded,afaultinzone3 isdeclaredandtherelayisrestrainedfromoperation.However,to fullytakeadvantageofthemethod,strategicallylocatedPMUshave toexistinthesystemwhichmakestheapproachhighlydependent onthetopologyandanytransmissionsystemupgrades.Addition- ally,certaincontingencyconditionscancausesomefaultsnottobe detectedduetothelocationofthePMUs.

In[30],agentsareusedtoaidzone3relayelementswithout enforcing adecision. Inthis scheme,eachimpedance relaywill havethecapabilitytocommunicatewithotheragentsinthenet- workthatprotectthesametransmissionline. Ifthemajorityof theagentsinformsthelocaldistancerelaythattheimpedancein itszone3reachisactuallyduetoafault,thenthelocaldistance relayshouldbeenergizedandatripcommandhastobeissued.

Anoptimizationapproachissetupsuchthatthecommunication delaybetweenthevariousagentsarelessthan1second,whichis thetimeofoperationofzone3.Asimilarapproachhasbeenpro-

(6)

willbeflaggedashavingafault.Nextcomesthetaskofidentify- ingthefaultedline.Fortheareathatisflaggedashavingafault,a distancequantitywillbecalculatedforeachlinewithinthearea, i.e.,eachlinewillbeassumedfaultedandadistancequantitywill becalculated.Ifthedistancequantityfallsbetween0to1then thefaultedlinewillbedetermined.Ifmorethanonelineisfound tobefaulted,anestimationofrelativeresidualerrorismadeand thelinewiththeminimumresidualerrorwillbeselectedasthe faultedline.Itisclearfromthisdescriptionthattwofaultswithin anyprotectedzoneorcrosscountryfaultswillbedetectedasone faultonly.Andeventhoughoneofthetwofaultsmayhavenot beencleared,thealgorithmmaynotbeabletodetectsuchsitua- tion.

In[33],abackupwideareaprotectionschemeisproposed.Short windowDFTisusedtoextractthephasorinformationfromthe threephasevoltagesandcurrents.Inthisscheme,theabsolutedif- ferenceofthebusanglesandcurrentsareusedtodetectthefault.

Theminimumvoltagemagnitudeestablishestheclosestbustothe faultandthemaximumcurrentangledifferencebetweenthebuses establishesthefaultedlines.However,forthemethodtowork,the minimumvoltagethresholdhastobeestablished.Itisshownin thepaperthatavoltagethresholdlessthan0.95meansthatthere isafaultonasystem.Thisimmediatelypointsoutthatincaseof voltageinstabilityconditions,themethodcanoperateerroneously.

In[34],anotherwideareaprotectionschemeisproposed.The solutionconsistsoftwocomponents:afaultelementidentification (FEI)andafaultareadetection(FAD).TheFEIisusedtoidentifythe faultedelementinthezonebeingprotected.Afterthat,thefault isolationisrealizedbycoordinationamongareacircuitbreakers breakers.AspartoftheFEI,themeasuredvoltageandcurrentofone terminaloftheprotectedareaareusedtoestimatethevoltagesat theotherend.Ifaninternalfaultoccurswithinthezonebeingmon- itored,thentheestimatedvaluewillbedifferentfromthemeasured valueatthatbuscausingafaulttobedetected.Ontheotherhand, thefaultedareaisdetectedthroughFAD.Thesubstationsthatare withinthefaultedareaneedtosendtheinformationtothecentral controlroom.Afterwards,thecentralcontrolroomwillsearchthe suspectedfaultylinesandidentifyactualfaultylinesquickly.The useofFADconceptreducesthecommunicationoverheadrequired bythescheme.

Theauthorsin[35]usePMUs,thatareinplaceaspartofawide areaprotectionscheme,todetectthepowerflowtransferduetothe removaloffaultedlinefromservice.In[35],theloadflowtransfer toalinecanbecalculatedusingthenetworktopologyviathedis- tributionfactors.Ifthemeasuredpowerflowtransfersignificantly mismatchesthecalculatedpowerflowtransfer,thenafaultwillbe declared.Basedonthatdetection,zone3isadaptivelyadjustedto preventmisoperationwhicheliminatedistanceprotectionzone3 misoperation.

EventhoughPMUbasedschemesandwide-areabasedschemes canofferattractivesolutionstoeliminatetheproblemofdistance protectionmisoperation,thesesolutionsrequiresignificantcom- municationinfrastructurecost.Additionally,thepowergridis a criticalinfrastructureandthecybersecurityriskmaybeeminentif thegridisbroughtonlineforcommunicationspurposes.

usedtodeterminewhetherafaulthasoccurredwithinthereach oflocaldistancerelay.TheDCdecayingfaultcomponentisrecon- structedfromthemeasuredcurrentsinallthreephases.Sincethe faultisthreephase,aDCdecayingcomponentmustexistinone ofthephases.Atransientmonitoringfunctionwillthenbedefined tobethemaximumofallthreephasesDCdecayingcomponentsin onecycle.Also,forthethreephasetobeasserted,thelineloadangle hastobegreaterthan50degrees.Boththemonitoringfunctionas wellasthelineloadanglehastobetrueforathreephasefault tobedeclared.Thedrawbackofthismethodisthatthefaultmust havesignificantdecayingDCcomponentwhichmakesitchalleng- ingforcertainfaultincipientanglesandtransmissionlinelengths asasignificantdecayingDCcomponentcanonlyoccurwhenthe faultoccursatcertainincipientanglesandundercertainX/Rratios.

Additionally,thepaperassumestheanglebetweenthecurrentand thevoltageattherelaytobemorethan50degreesasafaultindi- cator.However,ithasbeenpointedoutin[14]thatunderstressed systemconditionstheanglemayindeedexceedthatthresholdwith nofaultonthesystem.Also,iftheswingfrequencyinthesystemis anticipatedtobelargerthan5Hz,thresholdselectionfortransient monitoringbecomesahardtaskwhichcouldmisleadtheschemeto confusepowersystemswingforthreephasefaults.Lastly,theeffect offaultresistancehasnotbeenstudiedinthepaper.Faultresistance canpotentiallycausetroublesettingthethresholdforthetransient monitoringfunctionasitaffectstheDCdecayingcomponent.

In[37]therateofchangeofvoltageisusedasatriprestraintto supervisedistanceprotectionmisoperation.Theideaisthatfault occurrenceorfaultclearingcausesthevoltageseenbytherelay tochangedrastically.Theauthorsproposeifthelocalrelaysenses thatthesystemvoltageisstressedaccordingtotheconditionslisted in[38],therateofvoltagechange(V/t)willbeusedtoassert whetherafaulthasoccurredandclearedwithinzone3protection usingtwo thresholds for both fault occurrenceand fault clear- ing.Additionally,theauthorsproposedtouseathermal loading monitoringfunctiontodecidewhetherthemaximumconductor temperaturehasbeenreached.Thetemperaturemonitoringfunc- tionwillstartoperationafterthefaulthasbeendetected.Ifthe temperaturemonitoringfunctiondeclaresthatthelinetempera- turehasreachedmaximumlimit,thelinewillbetrippedwhether thefaulthasbeenclearedornot.However,forthetripcommand tobesecure,largeamountofofflinesimulationsneedtobecarried outtoknowtheworstcaserateofchangeofvoltage.Themajor disadvantageofthemethodisthatundervoltageinstability,the (V/t)criterionisnotexclusivepropertyforfaultsaspointedin [39]sinceundervoltageinstability,asuddengeneratortripping couldcausethesame(V/t).

Sinceitishardtodistinguishbetweenevolvingpre-blackout event and short circuit conditions using magnitude of voltage, anothertrip restraint quantity, namely (I/V)has beenused alongwith(V/t)criteriontotripzone3securelyin[39].The (I/V)thresholdvaluehasalsobeenobtainedusingofflinesim- ulations.Thedisadvantageofthemethodin[39]isthat neither contingencyanalysisnorsystemloadinglevelshavebeentaken intoconsideration.

Theuseoffaultgeneratedhighfrequencycomponentshasalso beeninvestigatedinliterature[40].Suchusagecangiveamore

(7)

Fig.5.Creationofadaptiveloadblinderin[45].

preciseanswerwhetherafaulthasoccurredthusmakingtripping inzone3moresecure.In[41],theenergyofthefirstthreecurrent levelsandthethirdapproximationisusedtotrainaprobabilis- ticclassifier.Theenergyiscalculatedusingcertainlevelsofthe discretewavelettransformofthethreephasecurrents.Usingthis energyfeatures,adecisionismadewhetheratransientsignalifdue toafaultornon-faultconditiononaline.Asimpleronlinetransient classifierhasbeenproposedin[42],wherethetransientevents occurringonthetransmissionlinesnearbyanydistancerelayare identified.Modaltransformationis usedtotransformthephase currentsintomodalcurrents.Thediscretewavelettransformcoef- ficientsoftheaerialmodes[43]arecombinedinacertainmanner totrainafeedforwardneuralnetworktoclassifythosetransients.

However,themajordrawbacksofboth[41,42]isthattheycan- notbeusedtotellwhetherthefaultiswithintherelayprotection reacheventhoughtheycantellwhetherafaulthasoccurredinthe network.Thesepaperscanonlybeusefulifamethodisfoundto usethetransientclassificationasanentrancepointtodetermining whetherthefaultiswithintheprotectionreachoftherelaybutthis hasnotbeendoneinliteraturetothebestofourknowledge.

Variousadaptivezone3settingswerealsoinvestigatedinliter- aturewherezone3reachisadjustedbasedonlocalinformation.In [44,45],ANNhasbeenusedtopredictthecorrectloadblinderunder varioussystemconditions.Theloadblinderisthencombinedwith thezone3settingstoblockanyundesirabletripping.Theloadblin- derisonlyactivatedunderbalancedconditionstomakesurethat theheavyloadingisnotconfusedforunbalancedfaultconditions.

Theloadblinderisdeterminedbasedonofflinesimulations.The simulationstakeintoaccounttheloadinglevelofthepowersys- tem,faultincipientangle,sourceimpedanceratio,faultresistance andfaultlocation.ThefeaturesusedtotrainANNistheactiveand reactivepower,voltageaswellastherateofchangeofboththe voltagesandcurrentsseenattherelayterminalasshowninFig.5.

Asimplelineconnectedtoanotherlinewithaloadin between isusedtotestthemethodwhichisadisadvantageofthemethod.

Also,theeffectofthesystemtopologywasn’tstudied.Itisalsofore- seenthattheinclusionforcontingencyanalysisinANNtrainingwill requirelargeofflinesimulationsandwillmakeloadblinderselec- tiondifficulttask.Additionally,onlythreephasefaultcurrentshas beenusedtotraintheANNandincaseasinglelinetogroundfault occursandcausethefeaturestobedifferentthantheonesusedin training,themethodisexpectedtofailbecauseANNisknownto havebadgeneralizationcapabilities[46].

In[47,48],theauthorsproposechangingzone3reachduring emergencyconditionstopreventdistanceprotectionmisoperation ifcertainsystemconditionsaremet.Ifthosesystemconditionsare met,zone3protectionreachwillbeshrunktozone2whichin turngivesmaximumsecurity.Duringstressedsystemconditions, theimpedanceseenbythelocalrelayapproachestheoriginalzone

Fig.6. TZMAandTZPAofthemethodin[47].

3border,whetherthisborder isMHOcharacteristicsorpolygo- nalone.Theauthorsproposetodefineafourthprotectionzone, calledthirdzoneproximityarea(TZPA),aswellasafifthprotection zone,calledthirdzonemodificationarea(TZMA),tochangezone 3protectionreachbasedoncertaincriteria.TheTZMAisaregion withinTZPAbutclosertozone3protectionzone.Theauthorspro- videdrulesonhowtosetbothTZMAandTZPA.Oncetheimpedance entersthisTZPAandcrosseszone3fastenough,thefaultwillbe declared.However,iftheimpedanceentersTZPAandstayswithin TZPA,theTZMAlogic willbeputintoaction. Zone3protection willbeshrunktozone2iftheimpedancecrossesTZMAwithina minute.Thisoneminuteisusedtoadjustforrestorativecorrective forcesofthegirdsuchasgeneratorexcitationcontrolsandtrans- formerloadtapchanger.Insummary,zone3protectionwillonlybe changediftheimpedancecrossesTZMAwithacertainratewithina specifiedtimedelayonceitstartschanginginTZPA.Theseideasare illustratedinFig.6.Although,theapproachisverypromising,afast evolvingsysteminstabilitycouldmisleadthescheme.Additionally, itcanbeseenthattheapproachproposedsacrificesdependability forsecurityasevidentbyshrinkingzone3;ifafaultoccurswithin theoriginalzone3protectionzonebeyondtheoriginalzone2reach afterzone3protectionzoneisshrunk,theapproachproposedby theauthorswillrelyheavilyontheclosestrelayandcircuitbreaker toclearthefault.However,ifthisrelayorcircuitbreakerfailsto clearthefault,thefaultwillgounclearedworseningthealready stressedsystemconditions.Lastly,theproposedalgorithmwillfail definitelyincasetheimpedancestayswithinTZPA,suddenlyjumps tooriginalzone3duetozone3faultbeforethetimedelayexpires thenstaysinzone3afterfaultclearingduetolineheavyloading conditions.

Lastly,theauthorsin[49]proposedtoidentifypowerflowover- loadbasedonanewlyproposedconcept.Thisconceptisbasedon thephasorrelationshipsinthecomplexphasorplane.Thepaper onlydifferentiatesbetweenthreephase faultsand overloadsas overloadsarethreephasebalancedphenomenon.Sincethepaper onlyaimstodistinguishthreephasefaultsfromoverload,anythree phase faultona transmissionlinecan beanalyzedwithoutthe needofinformationfromtheotherendofline.Thisisduetothe factthatthearcvoltageisnotaffectedbytheinfeedfaultcurrent makingthefaultpointgroundedthroughthearcresistance.This propertyisusedtoderivethecriteriontodifferentiatebetween

(8)

Insummary,theuseofrateofchangeofvoltagesandcurrents canpreventtheproblemofdistanceprotectionmisoperation in mostoccasionsbutdoesnotfullypreventit.Othermethodsuse previousoperationalexperiencewithdistancerelaystopropose solutionstotheproblemofdistanceprotectionmisoperation.How- ever,systemconditionsand scenarios thatwerenot previously encounteredcouldmisleadthoseproposedsolutions.Theuseof highfrequencyfaultgeneratedtransientsseemstobeapromising areabutitisscarcelyresearchedinliterature.

6. Conclusion

The problem of distance protection misoperation has been presented.Variousapproachestosolvetheproblemhavebeensur- veyedandorganizedintothreemaincategories.Themethodsin eachcategoryhavebeenexplained.Additionally,theadvantages anddisadvantagesofeachmethodhavebeenpointedout.

Thefirstcategoryisanticipationofdistanceprotectionmisop- erationintheplanningstage.Inthiscategory,distanceprotection misoperationcouldbeanticipateddayaheadbasedonthefore- casted load and generation as well as contingency conditions.

However,duetothelargesizeofmoderndaypowersystems,such anticipationiscomputationallyintensive.

The second category is communication assisted protection schemes.Themainideainthiscategoryisthatusinginformation frombothendsofthelineorinformationfromvarioussubstations inthenetwork,ablockingcommandcanbeissuedtotheaffected distancerelay.Nevertheless,thesecommunicationassistedpro- tectionschemeshavenotfoundwideindustryacceptancedueto cybersecurityrisksaswellastheeconomiccostthatisrequiredto buildsuchsystems.

Thethirdcategoryismodificationofthelocaldistanceprotec- tionfunctionusinglocalinformation.Themainideainthisfamilyof solutionsisthatusingoperationalsystemexperienceaswellasthe localdata,onecantellwithcertaintythatadistancerelayisaboutto misoperate.Bydetectingsuchconditions,ablockingcommandcan beissuedtoguardtherelayagainstmisoperation.Nevertheless,the methodsinthislastcategorymayfailundersystemconditionsthat werenottakenintoconsiderationwhiledevelopingthesemethods.

Themost appropriate methodtomitigate zone 3misopera- tionisdependentonwhatisthemostimportantfactor forthe utilitycompany.Forexample,oneutilitycompanymayprefera communication-assistedschemeusingremote measurementsto eliminatethepossibilityfordistanceprotectionmisoperationwhile accepting the cybersecurity vulnerabilities that are introduced.

Anotherutilitymaynotbewillingtoacceptthecybersecurityrisks orthecostofconstructingsuchschemeandrequiresasolution usinglocalmeasurementsorminimumremotemeasurements.The authorsthinkthatmethodswhichuselocalrelaydataareworthy ofresearchattentionascybersecuritythreatsarebecomingamajor concern.

References

[1]P.Hines,J.Apt,S.Talukdar,LargeblackoutsinNorthAmerica:historical trendsandpolicyimplications,EnergyPolicy37(12)(2009)5249–5259.

[5]B.Liscouski,W.Elliot,2004.

[6]NERC,StandardPRC-004-3ProtectionSystemMisoperationIdentification andCorrection(PRC-004-3),feb2014http://www.nerc.com/pa/Stand/

Project%20201005%20Protection%20System%20Misoperations%20DL/PRC 0043MisoperationsDraft620140718Clean.pdf.

[7]D.Novosel,M.M.Begovic,V.Madani,Sheddinglightonblackouts,IEEEPower EnergyMag.2(1)(2004)32–43.

[8]D.N.Kosterev,C.W.Taylor,W.A.Mittelstadt,ModelvalidationfortheAugust 10,1996WSCCsystemoutage,IEEETrans.PowerSyst.14(3)(1999)967–979.

[9]Entoso-E,FinalReportonBlackoutinTurkeyon31stMarch2015,Entoso-E, Tech.Rep.,2015,Available:http://www.nerc.com/comm/PC/

System%20Protection%20and%20Control%20Subcommittee%20SPCS%20DL/

Load%20Encroachment%20Final%2012-7-05.pdf(online).

[10]A.Abdullah,A.Esmaeilian,G.Gurrala,P.Dutta,T.Popovic,M.Kezunovic,Test bedforcascadingfailurescenariosevaluation,in:InternationalConferenceon PowerSystemsTransients,ConferenceProceedings,2012,pp.18–20.

[11]M.J.Thompson,D.L.Heidfeld,Transmissionlinesettingcalculationsbeyond thecookbook,in:201568thAnnualConferenceforProtectiveRelay Engineers,IEEE,2015,pp.850–865.

[12]S.ProtectionandC.T.F.oftheNERCPlanningCommittee,IncreaseLine LoadabilitybyEnablingLoadEncroachmentFunctionsofDigitalRelays, December2005,Availableonlineathttp://www.nerc.com/comm/PC/

System%20Protection%20and%20Control%20Subcommittee%20SPCS%20DL/

Load%20Encroachment%20Final%2012-7-05.pdf.

[13]S.ProtectionandC.T.F.oftheNERCPlanningCommittee,NERCStandard PRC-023-2,December2005,Availableonlineathttp://www.nerc.com.

[14]S.Horowitz,A.Phadke,Thirdzonerevisited,IEEETrans.PowerDeliv.21(1) (2006)23–29.

[15]ERCOT,ErcotNodalProtocolsSection5:TransmissionSecurityAnalysisand ReliabilityUnitCommitment,2017(online).

[16]CAISO,CaliforniaISOPlanningStandards,2015,Available:https://www.caiso.

com/Documents/TransmissionPlanningStandards.pdf(online).

[17]S.Li,N.Yorino,Y.Zoka,Operationmarginanalysisofzone3impedancerelay basedonsensitivitiestopowerinjection,IETGener.Transm.Distrib.1(2) (2007)312–317.

[18]S.Li,N.Yorino,M.Ding,Y.Zoka,Sensitivityanalysistooperationmarginof zone3impedancerelayswithbuspowerandshuntsusceptance,IEEETrans.

PowerDeliv.23(1)(2008)102–108.

[19]M.R.Aghamohammadi,S.Hashemi,A.Hasanzadeh,Anewapproachfor mitigatingblackoutriskbyblockingminimumcriticaldistancerelays,Int.J.

Electr.PowerEnergySyst.75(2016)162–172.

[20]H.Song,M.Kezunovic,Anewanalysismethodforearlydetectionand preventionofcascadingevents,Electr.PowerSyst.Res.77(8)(2007) 1132–1142.

[21]B.Ravikumar,D.Thukaram,H.Khincha,Anapproachfordistancerelay co-ordinationusingsupportvectormachines,in:TENCON2008-2008IEEE Region10Conference,IEEE,2008,pp.1–6.

[22]B.Ravikumar,D.Thukaram,H.Khincha,Anapproachusingsupportvector machinesfordistancerelaycoordinationintransmissionsystem,IEEETrans.

PowerDeliv.24(1)(2009)79–88.

[23]M.Tasdighi,M.Kezunovic,Automatedreviewofdistancerelaysettings adequacyafterthenetworktopologychanges,IEEETrans.PowerDeliv.31(4) (2016)1873–1881.

[24]J.Joe-Air,Y.Jun-Zhe,L.Ying-Hong,L.Chih-Wen,M.Jih-Chen,Anadaptive PMUbasedfaultdetection/locationtechniquefortransmissionlines.I.Theory andalgorithms,IEEETrans.PowerDeliv.15(2)(2000)486–493.

[25]S.-I.Lim,C.-C.Liu,S.-J.Lee,M.-S.Choi,S.-J.Rim,Blockingofzone3relaysto preventcascadedevents,IEEETrans.PowerSyst.23(2)(2008)747–754.

[26]P.Dutta,A.Esmaeilian,M.Kezunovic,Transmission-linefaultanalysisusing synchronizedsampling,IEEETrans.PowerDeliv.29(2)(2014)942–950.

[27]A.Esmaeilian,T.Popovic,M.Kezunovic,Transmissionlinerelay

mis-operationdetectionbasedontime-synchronizedfielddata,Electr.Power Syst.Res.125(2015)174–183.

[28]P.V.Navalkar,S.A.Soman,Secureremotebackupprotectionoftransmission linesusingsynchrophasors,IEEETrans.PowerDeliv.26(1)(2011)87–96.

[29]P.Kundu,A.K.Pradhan,Synchrophasor-assistedzone3operation,IEEETrans.

PowerDeliv.29(2)(2014)660–667.

[30]S.Garlapati,H.Lin,A.Heier,S.K.Shukla,J.Thorp,Ahierarchicallydistributed non-intrusiveagentaideddistancerelayingprotectionschemetosupervise zone3,Int.J.Electr.PowerEnergySyst.50(2013)42–49.

[31]M.A.Haj-ahmed,M.S.Illindala,Intelligentcoordinatedadaptivedistance relaying,Electr.PowerSyst.Res.110(2014)163–171.

(9)

[32]M.K.Neyestanaki,A.M.Ranjbar,AnadaptivePMU-basedwideareabackup protectionschemeforpowertransmissionlines,IEEETrans.SmartGrid6(3) (2015)1550–1559.

[33]M.Eissa,M.E.Masoud,M.Elanwar,Anovelbackupwideareaprotection techniqueforpowertransmissiongridsusingphasormeasurementunit,IEEE Trans.PowerDeliv.25(1)(2010)270–278.

[34]Z.He,Z.Zhang,W.Chen,O.P.Malik,X.Yin,Wide-areabackupprotection algorithmbasedonfaultcomponentvoltagedistribution,IEEETrans.Power Deliv.26(4)(2011)2752–2760.

[35]X.Lin,K.Yu,N.Tong,Z.Li,M.S.Khalid,J.Huang,Z.Li,R.Zhang, Countermeasuresonpreventingbackupprotectionmal-operationduring loadflowtransferring,Int.J.Electr.PowerEnergySyst.79(2016)27–33.

[36]P.K.Nayak,A.K.Pradhan,P.Bajpai,Securedzone3protectionduringstressed condition,IEEETrans.PowerDeliv.30(1)(2015)89–96.

[37]M.Jonsson,J.E.Daalder,Anadaptiveschemetopreventundesirabledistance protectionoperationduringvoltageinstability,IEEETrans.PowerDeliv.18 (4)(2003)1174–1180.

[38]K.Vu,M.M.Begovic,D.Novosel,M.M.Saha,Useoflocalmeasurementsto estimatevoltage-stabilitymargin,IEEETrans.PowerSyst.14(3)(1999) 1029–1035.

[39]M.Sharifzadeh,H.Lesani,M.Sanaye-Pasand,Anewalgorithmtostabilize distancerelayoperationduringvoltage-degradedconditions,IEEETrans.

PowerDeliv.29(4)(2014)1639–1647.

[40]S.A.Probert,Y.H.Song,Detectionandclassificationofhighfrequency transientsusingwaveletanalysis,in:2002IEEEPowerEngineeringSociety SummerMeeting,ConferenceProceedings,vol.2,2002,pp.801–806, Available:http://ieeexplore.ieee.org/ielx5/8076/22355/01043437.

pdf?tp=&arnumber=1043437&isnumber=22355(online).

[41]N.Perera,A.Rajapakse,Recognitionoffaulttransientsusingaprobabilistic neural-networkclassifier,in:2011IEEEPowerandEnergySocietyGeneral Meeting,2011,Available:<GotoISI>//WOS:000297469600037(online).

[42]A.Abdullah,Towardsanewparadigmforultrafasttransmissionlinerelaying, in:2016IEEEPowerandEnergyConferenceatIllinois(PECI),IEEE,2016,pp.

1–8.

[43]D.Hedman,Propagationonoverheadtransmissionlines.I.Theoryofmodal analysis,IEEETrans.PowerAppar.Syst.84(3)(1965)200–205.

[44]H.K.Zadeh,Z.Li,Artificialneuralnetworkbasedloadblinderfordistance protection,in:2008IEEEPowerandEnergySocietyGeneralMeeting ConversionandDeliveryofElectricalEnergyinthe21stCentury,IEEE,2008, pp.1–6.

[45]H.K.Zadeh,Z.Li,Adaptiveloadblinderfordistanceprotection,Int.J.Electr.

PowerEnergySyst.33(4)(2011)861–867.

[46]J.M.Zurada,IntroductiontoArtificialNeuralSystems,vol.8,1992,WestSt.

Paul.

[47]V.Nikolaidis,Emergencyzone3modificationasalocalresponse-driven protectionmeasureagainstsystemcollapse,IEEETrans.PowerDeliv.PP(99) (2016)1.

[48]V.Nikolaidis,N.Savvopoulos,A.Safigianni,C.Vournas,Adjustingthirdzone distanceprotectiontoavoidvoltagecollapse,in:PowerSystemsComputation Conference(PSCC),2014,ConferenceProceedings,IEEE,2014,pp.1–7.

[49]J.Ma,C.Liu,Y.Zhao,S.Kang,J.S.Thorp,Anadaptiveoverloadidentification methodbasedoncomplexphasorplane,IEEETrans.PowerDeliv.31(5) (2016)2250–2259.

Referensi

Dokumen terkait

Table Ⅲ-1 Distribution of irregular workers by the sex, age and education level Unit: % total wageworkers classification.. irregular degree of regular temporary+ daily

MASTER OF ARTS: PROGRAM STRUCTURE TRACK 1: English Language Teaching ELT Core: 33 credits Code & Title Credits Changes ELT 522 English Language Structure 3 Course code and