• Tidak ada hasil yang ditemukan

Distance protection zone 3 misoperation during system wide cascading events: The problem and a survey of solutions

N/A
N/A
Protected

Academic year: 2023

Membagikan "Distance protection zone 3 misoperation during system wide cascading events: The problem and a survey of solutions"

Copied!
9
0
0

Teks penuh

(1)

ContentslistsavailableatScienceDirect

Electric Power Systems Research

jou rn al h om e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / e p s r

Distance protection zone 3 misoperation during system wide cascading events: The problem and a survey of solutions

A.M. Abdullah

a,∗

, K. Butler-Purry

b

aDepartmentofElectricalPowerandMachines,CairoUniversity,Gizah12613,Egypt

bDepartmentofElectricalandComputerEngineering,TexasA&MUniversity,CollegeStation,TX77843,UnitedStates

a r t i c l e i n f o

Articlehistory:

Received10May2017

Receivedinrevisedform20August2017 Accepted21August2017

Keywords:

Distanceprotectionzone3 Blackouts

Cascadingevents Misoperation Security

a b s t r a c t

Distancerelayzone3misoperationhasbeenresponsibleformajorblackoutsaroundtheworld.Zone 3misoperationgenerallyoccursundersystemwidecascadingeventssuchasthe2003Northeastern US–Canadablackoutorunderstressedsystemconditionssuchasthe2015Turkishblackout.Thispaper explainstheproblemofzone3distanceprotectionmisoperation.Thepaperthenproceedstosurveythe literatureforpossiblesolutionstoincreasedistancerelaysecuritytopreventdistanceprotectionmisoper- ation.Threecategoriesofsolutionswereproposedinliteraturetoaddresstheproblemofzone3distance protectionmisoperation.Thefirstoneisanticipationandpreventionofmisoperationintheplanning stage.Thesecondoneiscommunicationassistedprotectionschemesthatuseremotemeasurementsto enhancerelaysecurity.Thelastoneuseslocaldatatoenhancedistancerelaysecurity.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

WiththederegulatedmarketstructureintheUnitedStatesand Europe,gridoperatorsareundermorepressuretoreapmoreprof- itsofexistinginfrastructureduetoincreasedcompetition.Thegrid isthusincreasinglyoperatednearthethresholdofstability.Failure ofthegrid,betterknownasblackouts,carriescatastrophic eco- nomicandsocietalsequences.Largeblackoutstendtobedueto eitherextreme naturaleventssuchas hurricanesor a seriesof eventscalledcascadingfailures[1].Inthis paper,weonlyfocus oncascadingevents.Thoseeventscanbeanyofthefollowing:

linetripping,overloadingofotherlines,malfunctionsofprotection systems,poweroscillationsandvoltageinstability[2].Thereason thatisconsideredinthispaperisdistanceprotectionmisoperation whichisacontributingfactorinseventypercentofallcascading events[3].Ifnotdiscoveredandmitigatedinanearlystage,cas- cadingeventsgenerallyleadtoacompleteblackout.Withtoday’s societymuchdependenceonelectricityasaformofenergy,pre- ventingsuchdamageisofhighimportance.

Cascadingfailuresaredefinedas“asequenceofdependentfail- uresofindividualcomponentsthatsuccessivelyweakenthepower system”[4].Sincethe2003US–Canadablackout,cascadingevents

Correspondingauthor.

E-mailaddresses:[email protected](A.M.Abdullah), [email protected](K.Butler-Purry).

havedrawnmuchattentionintheindustrialandacademiccommu- nity.Eventhoughtheworldhaswitnessedmanyblackoutspriorto the2003blackout[1],thedramaticcausesandconsequencesofthe 2003blackouthaveleftindustrialandacademiccommunitywith theburdenofexploringthisphenomenoninmoredetail.Tounder- standtheseverityofthe2003blackout[5],itsufficienttosayithad causedthelossof62GWwhichcausedthelightstoturnoffformore than51millionpeopleintheeasterninterconnection.Considering themanycomponentsandthebitsandpiecesinvolved,adomino effectofeventsevolvedslowly(hours)orfast(seconds)according totheregioncausingadegradationoftheintegrityofthesystem leadingultimatelytoacompleteblackout.Themainreasonofthe 2003blackoutwasdistancerelaymisoperation.Dauntingefforts hadtobeexertedtogainmoreknowledgeandunderstandingof theunderlyingphenomenon.

Relaysbydesignactquicklytoremovethefaultfromthesys- tembydisconnectingfaultedlines.However,sometimesrelaysfail toperformsuchfunctionwhichisconsideredaprotectionsystem misoperation.Ofallprotectionsystemmisoperationsthatleadto cascadingevents,thispaperfocusesexclusivelyondistancepro- tectionmisoperation.Aprotectionsystemmisoperationisdefined as“afailuretooperateasintendedforprotectionpurposes”[6].

Variouscategoriesaregivenformisoperationin[6].However,in thispaperthewordmisoperationwillbeusedexclusivelytomean onlyoneofthem,namely,anoperationinwhichaprotectionsys- temtripsahealthylineduetoheavyloadingwhennofaultexists.

Inotherwords,othercausesofdistanceprotectionmisoperation

http://dx.doi.org/10.1016/j.epsr.2017.08.023 0378-7796/©2017ElsevierB.V.Allrightsreserved.

(2)

Asmentionedin[2],oneoftheeffectivewaystopreventcas- cadingeventsistospecifypotentialundesirablerelayoperations aheadoftime.Inthispaper,weshowthateventhoughdistance protectionmisoperationcanbeanticipatedaheadoftime,preven- tionofthismisoperationisnotpossiblewithdistanceprotection principleonlybecausethedistanceprotectionprincipleisnotable tobeselectiveinsomeregionsofitsoperation.

Thepaperisorganizedasfollows:Section2providesasample distancerelaythatissetaccordingtoNERCstandards.Oncethis relayissetaccordingtoNERCdirectives,itwillbeexplainedin thesamesectionthattherelaymaystillmisoperateundervarious operatingconditions.Anticipationanddetectionofdistancerelay misoperationintheplanningstageisdescribedSection3.Section4 providesanoverviewofthecommunicationassistedschemesthat havebeenproposedtoeliminatethedistanceprotectionmisoper- ation.Lastly,Section5offersasurveyonthemethodsthatwere suggestedinliteraturetoenhancethedistanceprotectionsecurity usinglocaldataonly.

2. Thedistanceprotectionmisoperationproblem

OnAugust14thof2003[5],theUSeasterninterconnectionsuf- feredoneofthelargestblackoutsintherecentUShistory.Three 345kVtransmissionlinessaggedintountrimmedtreesduringthe hotsummerdays.Thetrippingofthoselinescausedanother345kV transmissionlinetocarrysubstantialsystemload.Theheavyload- ingofthis lastlinecoupledwithrelativelylowsystemvoltage, causedthedistancerelaytoconfuseaheavyloadingsituationfor unclearedzone3faultastheimpedanceenteredthethirdzoneof protectionwhichinturnresultedintrippingoftheheavilyloaded line.Thetrippingofthehealthyyetheavilyloadedlineworsened systemconditionsleadingtoachainofeventsthatultimatelyled tosystemcollapse.Also,onMarch31stof2015[9],theTurkish gridsufferedtheworstblackouteverrecordedsince1999whenan earthquakecausedacompleteshutdownofthegrid.Onthecon- trarytothe1999earthquake,the2015blackoutwascausedbya impedanceprotectionmisoperationthattrippedaheavilyloaded lineonthe400kVtransmissionleveleventhoughtherewasno faultonthetrippedlineoranywhereinthetransmissionnetwork.

Ascanbeseenfromtheexamplesin[5,9]inwhichdistancepro- tectionmisoperationhavebeenthemaincauseoftheblackouts orin[10]in whichdistanceprotectionmisoperationhavebeen studiedintheIEEE118bussystem,adistanceprotectionmisop- erationischaracterizedbyadistanceprotectionsystemseeinga heavyloadonalineasafault.Thisconfusionarisesfromthefact thattheimpedancemeasuredbytheimpedanceprotectionsystem coincideswiththatofafault.Thereasonfortheheavyloadcanbe duetoloadshiftingafterafaultasinthe2003US–Canadablackout [5]orduetolinesoutofserviceformaintenancecausingoneline tocarrysubstantialsystempowertransferasinthe2015Turkish blackout[9]orduetoanyunforeseenreasons.

Toillustratethatthisconfusionisnottiedupwithcertainsystem conditionsbutratherinherentinsecurityinthedistanceprotection principle,thesinglelinediagramshowninFig.1isusedtofor- mulatetheproblemingeneralterms.Itwillbeshownbelowthat

theimpedanceofadjacentlineswithoutanyinformationaboutthe systemloaduntilthecoordinationstudyphase.Inthecoordina- tionstudyphase,thetransmissionlineownerchecksallsettings againstapplicablestandards.Thisisexplainedindetailin[11].In thefollowingparagraphs,wewillsetuptherelaysettingsfirstthen discusswhathappensinsystemwidecascadingevents.

InFig.1,thedistanceprotectionrelaythatwillbestudiedisthe relayatpointAoflineA–C.LineA–Cisconnectedtothree(3)lines, namelyC–M,C–NandC–P.Thenumberoflinesconnectedtoline A–Cwillnotaffectzone1orzone2settingsbutwillaffectzone3 settings.Aswillbeseenbelow,trippinginzone3becomesmore insecurewithmorelinesconnectedtolineA–Caszone3reach becomeslarger.Tosimplifytheanalysis,alllinesareassumedto havethesameimpedanceaswellastheshortcircuitlevel.How- ever,aswillbeexplainedbelow,thissimplificationdoesnotaffect thegeneralityoftheproblemformulation.Theimpedanceandthe ratingofthelinesare60and 3000Amp, respectivelyandare takenfrom[12].Thesettingofzone1 isassumedtobe0.85of thelineimpedance.Zone2settingisassumedtobe1.2oftheline impedance.However,someconsiderationisneededtosetthethird zone.Thethirdzonehastobesetsuchthatitcanprotectthelongest adjacentline(assumedtobelineC–Pinthiscase)andtoprotect 20%beyondthatlinetoprovidebackuptotheremotecircuitbreak- ers.IncaseofaboltedthreephasefaultonlineC–Pandassuming thattheshortcircuitcontributionsofallbusesisgiveninFig.1by Iindexwhereindexisthebusname(beingM,N,AorP),thevoltage atdistanceprotectionsystematAcanbewrittenasgiveninEq.(1).

VA=IA×ZA+ZP×(IM+IA+IN) (1) TheimpedancethatisseenbytherelayAcanthenbewritten asin(2)

ZR=VA

IA =ZA+ZP

1+IM+IN IA

(2) Eq.(2)willonlybeapplicabletofaultsonlineC–P,ifweneedto include20%forthelinethatisbeyondbusP,thentheimpedanceZP in(2)hasbereplacedby1.2×ZP.Usingthedatain[12]andassum- ingalllinesareidenticalaswellastheirshortcircuitcontribution, thenthesettingofzone3willbeZA+3.6×ZP=4.6×ZA.Thethree zonesareplottedinFig.2.

Aftersettinguptherelaylocally,applicablestandardsanddirec- tivesneedtobeappliedtothesettingsforcompliancepurposes.

Thisstepinvolvesrunningworstcasepowerflowinthesummer peakcase.Themostnotabledirectiveistheloadencroachment.

Theloadencroachmentzoneisanareaoftheprotectionzonein whichtheloadimpedance“encroaches”–intrudes–uponthefault impedance.Loadencroachmentwillobviouslycausemisoperation andshouldberemovedfromthezoneofprotection[12].Toplotthe loadencroachmentzoneaccordingtoNERCdirectives[6,12,13],the loadzoneshouldincludethepointwhichcorrespondsto150%line loadingand0.85perunitvoltage.Thustheloadencroachmentlocus ofthedistancerelayatAwillconsistoftwoparts.Thefirstpartwill beanarcofcircleofradiusgiveninEq.(3)whichisgivenasarc RITinFig.1.ThisarcRITcorrespondstotheleastimpedancethat therelayshouldnotissueatripcommandfor.Theothercharacter- isticloadlineswillbetwolinesmakinganangleof±30withthe

(3)

Fig.1. Systemconfigurationforformulatingtheproblem.

Fig.2. DistanceprotectioncharacteristicforsysteminFig.1.

x-axis(±30 representsthepowerfactorofthelineunderworst caseloadingcondition)

Zload= VA

IA =

345kV 3 ×0.85

1.5×3000 =57 (3)

TheorangehashedareaRLQTistheloadencroachmentarea.

NERCdirectives[6,12,13]statesthatthisloadencroachmentzone hastoberemovedfromtherelayoperatingzone.Itcanbeseenat oncethatiftheimpedanceseenbytherelaylieswithinthesolid greenareaURIthenarelaymayconfusethisoperatingpointfor afaultsincethepointliesalreadyinzone3.Thisconfusionarises ifthefaultresistanceishighenoughtocausethefaultpointto liewithinthesolidgreenareaURI.InFig.2,thisfaultresistance rangesfrom30to90.Thefaultresistancecanbeobtainedby measuringthedistancebetweenthediameterABofzone3circle topointRandUofthegreenzone.Ifitisknowninadvancethat thefaultresistancecalculatedcannotbeattainedalongtherouteof thetransmissionline,thentheriskofmisoperationisnonexistence andthegreenareacanberemovedfromzone3withoutaffecting thesecurityorreliabilityofthedistanceprotectionsystem.How- ever,faultresistancealongtherouteofthetransmissionlineisnot knowninadvance.Also,oneshouldnotethatsolidstateandelec- tromechanicalrelayscannotbeprogrammed,onlymicroprocessor

relayscan.Thisreallymeansthatolderrelayswillhavetocomply withNERCstandardsbydisablingzone3altogether.Itisshown in[14]thatdisablingzone3insomecaseswillforceprotection engineerstoprovidebackupprotectionsolutionstoremotecircuit breakers.Thismightinvolveaconsiderablecost.Additionally,not allcountriesaroundtheworldhavestandardsasstrictasNERC, sothesolidgreenareaURIexistinthezoneofprotectionwithout regardfromtheprotectionengineer.Lastly,eveniftherelaycom- plieswithNERCdirectives,animpedancecanstillfallanywherein zone3,notonlythesolidgreenareaURI,understressedsystem conditionsasPhadkeandHorowitzpointedoutintheirpaper[14].

Thisshowsclearlytheimpedanceprotectionisinherentlyinsecure understressedsystemconditions.

Attentionisnowgiventotheassumptionsstatedinthebegin- ning.Itwasassumedthatalllineshavethesameimpedanceandall ofthemarecontributingequalcurrentstothefault.Itcanbeseenat oncefromFig.2thatthisassumptionisnotrestrictingthegeneral- ityoftheproblemformulation.Becauseinanycasethegreenarea URIwillexistdue totheloadprofileunderstressedconditions.

Additionally,thefaultcontributionofthetransmissionlineswill onlyaffectthediameterBAofzone3whichwillonlyaffectpoint U.PointUcorrespondtothemaxfaultresistance.Stateddiffer- ently,therewillalwaysbeanoverlapbetweenthedynamicrating ofthelineandzone3andtheshortcircuitlevelsfromnearbylines willonlyaffectthesizeoftheoverlap(areaURI)nottheoverlap itself.Lastly,toderiveEqs.(1)and(2),athreephasefaulthasbeen assumed.Thisisduetothefactthatlineoverloadisthreephase phenomenon.However,itshouldnotbehardtobeabletoenvision asinglelinetogroundfaultcausingthesameeffectifoneimpor- tantlineisoperatedwithonlyonephaseduetoalinetolinefault underheavyloadingconditions.

Itshouldbeapparentfromthedescriptionabovethatthemajor issuethatisfacedbytraditionalimpedanceprotectionsystemis that thesteadystateimpedance correspondingtoaheavy load iscoincidenttotheimpedanceunderafaultonaremotelineto whichthedistanceprotectionsystemprovidesbackupprotection.

Itcouldbearguedthatimpedanceprotectionshouldbesupervised byothersteadystateprotectionprinciplestoenhanceitsselec- tivity,i.e.,theabilitytodifferentiatebetweenaloadandafault current.However,otherprotectionprinciples–suchasovercur- rentprotection–thatcanmakethedistinctionbetweenaloadand afaultdependontheanticipatedpowerflowforoperationwhile theprobleminhandisdifferent.Theconfusionthatisseenbythe distanceprotectionisbecausethepowerflowundersystemwide cascadingfailureschangesconsiderablyfromtheplannedpower flow.Inotherwords,theloadencroachmentzonehastobesetfor systemwidecascadingscenariosthatarenotknowninadvance, whichisclosetoimpossibleundertaking.Oneoftheauthors[14]

statesthisfactas:

“TheoverwhelmingthrustoftheNERCrulesandotherinstructions regardingtheapplicationofzone3elementshasbeentoprevent itsoperationduringemergencyconditions.Althoughthisisadesir-

(4)

Fig.3.Impedancemarginandimpedancelocusplotforadistancerelayduringa wideareacascadingscenario.

ablegoal,itshouldberecognizedthatevenwithalltheintelligence availabletomoderncomputerrelays,theproblemofdistinguish- ingafaultfromaheavyloadinarelativelyshorttimeandusing onlythecurrentandvoltagesignalsavailabletotherelaycannotbe solvedineverysingleimaginable(andsomeunimaginable)power systemscenarios”.

3. Detectionandmitigationofzone3misoperationinthe planningstage

MostIndependentSystemOperators(ISOs)[15,16]todayuseN- 1criteriontojudgewhetherthesystemissecureaftertheremoval ofonelineinplanningstage.However,giventhatzone3distance protectionmisoperationisnottriggereduntiltwoorthreelinesgo outofservice[5],thedistributionofpowerflowishardtobetaken intoaccountintheplanningstageasitwouldmeanperformingN-2 andN-3contingencyanalysiswhichisexpensivecomputationally.

Thus,itisincreasinglyhardtoassessprotectionsystemcapability underthemoststressfulsystemconditions.Duetothat,theauthors in[17,18]providedanefficientmethodtostudythesensitivityof zone3undervariousoperatingconditionswithouttheneedfor performinglargenumberof powerflow studies.In[17,18],the authorsdefinealinearizedimpedancemarginofadistancerelay usingsystemvoltages,injectedpowerandshuntsusceptance.The impedancemarginisdefinedasthedistancebetweenthemeasured impedancelocusintheR–Xplanetotheboundaryoftheoperat- ingcharacteristicoftherelayandisshowninFig.3.Bydoingso, therelaysthatmaymisoperatecanbeanticipatedaheadoftime inanefficientmannerintheplanningstageusingsimpleformulas.

However,itisshowninthepaperthatifthechangesinthevoltages orpowerinjectionsareelectricallyfarawayfromtherelayunder study,asituationthatalwaysexistsinwideareacascadingscenar- ios,theerrorintheanalysisbecomesunacceptableespeciallyfor longlines.

In[19],theauthorsproposeblockingzone3ofcertaindistance relaysaheadoftimebasedonofflinesimulations.Theauthorspro- posethatthesystemoperatorperformcontingencyanalysisusing crediblehistoricalcontingenciesinplanningstagetoobservethe impedancetrajectory ateach distance relayin thesystem.The contingencyscenariostobeperformedhavetoincludemorethan onecontingencytocreateanimpedancetrajectory.Therelaysthat misoperateduringeachcontingencyscenarioduetotheimpedance trajectoryenteringzone3whennofaultconditionsexistshould beshortlisted.Ofthoserelaysthatareshortlisted,certainrelays

cadesinrealtime.Anindexthatisusedtomonitordistancerelays isalsoproposed.Iftheindicesassociatedwiththedistancerelays exceedtheirthreshold,thendistanceprotectionmisoperationis abouttooccurand thesystemoperator hastheoptionto stop distancerelaysfromoperation.However,inpracticeonlyN-1con- tingenciesarestudiedandthustheseverityindexischosenbased onthesecases.Nevertheless,ifthesystementersN-2orN-3con- tingencyconditions,tuningofthe“severity”thresholdwillbea difficulttaskcomputationally.

Lastly,distanceprotectionco-ordinationhasbeenexploredin [21,22].An SVM for each relayis trained using theimpedance trajectorythat isseen bytherelayduringfault conditions.The impedancetrajectoryisobtainedbyusingatransientstabilitypro- gram.SVMisthentrainedforvariousscenariostodistinguishzone 1,zone2andzone3faults.Trainingscenariosincludecasesfordif- ferentfaulttypesatdifferentdistancesawayfromtherelaythathas theSVMandatdifferentfaultresistances.TestingscenariosforSVM includefaultsthathavenotusedintraining.Byensuringthatthe relaysarewellco-coordinatedundervariouscontingencycondi- tions,unnecessarytripcouldbeavoided.However,theimpedance trajectorywilldependonthesystemtopologyatthetimeoffault occurrenceandthishasnotbeentakenintoconsiderationin[21,22]

whichcouldleadtolargeofflinetrainingset.

Duetothefactthatdistanceprotectionco-ordinationrequires large amount of offline simulations by performing many con- tingency conditions, theauthors in[23] introduced theidea of

“distance of impact” to automate the distance protection co- ordination. However, the authors use the super computer to performtheircomputationsatthefirststage.Oncethedistance ofimpactofeachrelayhasbeencalculated,co-ordinationofthe distancerelaysbecomesstraightforward.Ashortcomingofthedis- tanceco-ordinationapproachisthateventhoughitcanensurethat distancerelaysneveroverreachforfaultsbeyondtheirreach,little researchhasbeenperformedtostudywhethertheco-ordination canensurethatrelayswillnotmisoperateunder heavyloading conditions.

Ascanbeseenabove,anticipationdetectionofdistancepro- tectionmisoperationintheplanningstageisa hardtask. Tobe able tofully prevent distanceprotection misoperation, an N-x, wherexisgreaterthan1,contingencyanalysisneedtobedone.

Eventhough this couldbedone for small benchmarksystems, contingencyanalysis,underuncertainloadandgeneration,iscom- putationallyintensiveforlargesystemconsistingofthousandsof buses.ManyISOsmaynothaveaccesstosupercomputerstorun suchintensivecomputations.

4. Communicationassistedschemes

The2003blackoutspointedouttheimportanceofhavingevents alongwiththetimetheyoccurred.Investigatorsspentmuchoftheir timetryingtomatchupthewaveformstoreconstructthesequence ofeventsthatledtotheblackout. Itwasthen apparentthatto facilitatethetransferandcomparisonofwaveforms,allsamples needtohaveatimestampforthispurpose.PhasorMeasurement Unit(PMU)orsynchrophasortechnologywasthenrecommended

(5)

Fig.4. Protectionlogicofthepaperin[28].

toaddressthisshortcoming[5].Bythetimeof2003blackout,state estimationwasaverymaturefield,butPMUsopenednewareasfor theapplicationofstateestimationbyreducingthetimeneededto dostateestimationduetowidespreaddeploymentinthetransmis- sionnetwork.APMUmeasuresthepositivesequencevoltageand current(boththemagnitudeandangle),whichopensnewareasfor adaptiverelayingandwideareacontrolandprotection.Intypical distanceprotectionschemes,therelayisonlyappliedtoasingle transmissionline.However,inawideareaprotectionscheme,a completearea(severaltransmissionlines)canbeprotectedusing selectedPMUdeviceswithouttheneedtoapplyPMUstoeachsin- glebusinthesystem.BytransferringinformationinbetweenPMUs inthepowersystem,accuratedecisionregardingthenatureofthe impedancefallinginzone3canbemadeandmisoperationcanbe avoided.

WiththeintroductionofPMUs,severalfaultdetectionandloca- tionsmethodshave beenproposed. Thesalient featureof PMU detectionschemes[24]isthatusingthecommunicationlinksto transferdatabetweenthetwoendsofthelines,severalconclusions canbedrawnregardingwhetherthelineisundergoingabnormal conditions.AsalientfeatureofthePMUalgorithmistheabilityto monitorthestatusofthelineandcomputetheparametersofthe lineonlineinaveryaccurateway.

Duetothefactthatzone3ofdistancerelaysmaynotbeable differentiatebetweenheavylineloadandanactualfaultonthe system,theauthorsin[25]proposedthatatoolbeinstalledatthe controlcentre,alsoknownasIndependentSystemOperator(ISO), tocontinuouslysupervisetheoperationofzone3elements.The toolwillconsistoftwomodules,acentralcontrolunit(CCU)and severalregionalcontrolunits(RCUs).TheCCUwillbeinstalledin theISOwhiletheRCUswillbeinstalledatselectindividualsub- stations.The CCUmeasuresthe lineoutagedistributionfactors andgenerationshiftfactorsfortheentirepowergridandsends allfactorstotheindividualRCUs.RCUsuselocalmeasurementsat thesubstationandcommunicatewithoneanother.Theindividual RCUswilldifferentiatebetweenfaultsandtransferofpowerflow andsupervisedistancerelaysbasedontheinformationreceived fromtheCCUandotherRCUs.Eventhoughthissolutionmightbe abletopreventallzone-3misoperations,itneedsconsiderablecost toconstructthecommunicationinfrastructurethatisneededto transmitthedatabetweentheindividualsubstationandtheISO.

Theauthorsin[26]usessynchronizedsamplesfrombothends ofthelinetocheckwhetherthetransmissionlinehasbeentripped successfullyornot.Theinstantaneouspowerfrombothlineends arecalculated.Itisshowninthepaperthatafterfaultinception,the

instantaneouspoweratbothendsbecomespositive.Thisholdtrue evenundersystemswithweekinfeed.Themethodisapplicableto allsystemsotherthanradialsystems.However,duetotheneedto transferdatabetweenbothends,significantcostmaybeincurredto establishsuchalgorithmacrosseachtransmissionlineinthegrid.

Theapproachthathasbeenproposedin[26]hasbeenvalidated usingfielddatain[27].

In[28],distributedPMUsareusedtoreachadefinitivedecision abouttheexistenceofthefaultinthesystemusingasynchropha- sorstateestimator(SynSE).TheSynSEisusedtodetectnetwork topologychangesaswellasdeterminethefaultlocationsasshown in Fig. 4. However, the grid has be completely observable by PMUs.Thus, sitingPMUshastobedonecarefullytonotcreate unobservableislandsunderstressedsystemconditionsandcertain contingencyconditions.

In[29]synchrophasorsareproposedtosupervisezone3oper- ation.Specificindicesareproposedtoassertthefaultusingthe currentswhichresultinaveryrobustzone3distanceprotection system.Thealgorithmformsasupernodefromthecertaingroups ofPMUs. Bysummingthecurrent goingintothesupernode, a decision canbereachedwhetheradisturbanceexists ornot.If adisturbanceisdetected,anotherlogicisinvokedtodetermine whetheritisafaultforthegroupofPMUswiththehigherdeviation.

Thelogicthatisinvokedafterdisturbancedetectionisimpedance based.Aweightedfaultdetectionindexisdefinedforthispurpose.

Theweightsusedtodefinetheindexdependonthereachofthe respectivezone 3distanceprotectionrelay.If afterdisturbance detection,theweightedfaultindexisexceeded,afaultinzone3 isdeclaredandtherelayisrestrainedfromoperation.However,to fullytakeadvantageofthemethod,strategicallylocatedPMUshave toexistinthesystemwhichmakestheapproachhighlydependent onthetopologyandanytransmissionsystemupgrades.Addition- ally,certaincontingencyconditionscancausesomefaultsnottobe detectedduetothelocationofthePMUs.

In[30],agentsareusedtoaidzone3relayelementswithout enforcing adecision. Inthis scheme,eachimpedance relaywill havethecapabilitytocommunicatewithotheragentsinthenet- workthatprotectthesametransmissionline. Ifthemajorityof theagentsinformsthelocaldistancerelaythattheimpedancein itszone3reachisactuallyduetoafault,thenthelocaldistance relayshouldbeenergizedandatripcommandhastobeissued.

Anoptimizationapproachissetupsuchthatthecommunication delaybetweenthevariousagentsarelessthan1second,whichis thetimeofoperationofzone3.Asimilarapproachhasbeenpro-

(6)

willbeflaggedashavingafault.Nextcomesthetaskofidentify- ingthefaultedline.Fortheareathatisflaggedashavingafault,a distancequantitywillbecalculatedforeachlinewithinthearea, i.e.,eachlinewillbeassumedfaultedandadistancequantitywill becalculated.Ifthedistancequantityfallsbetween0to1then thefaultedlinewillbedetermined.Ifmorethanonelineisfound tobefaulted,anestimationofrelativeresidualerrorismadeand thelinewiththeminimumresidualerrorwillbeselectedasthe faultedline.Itisclearfromthisdescriptionthattwofaultswithin anyprotectedzoneorcrosscountryfaultswillbedetectedasone faultonly.Andeventhoughoneofthetwofaultsmayhavenot beencleared,thealgorithmmaynotbeabletodetectsuchsitua- tion.

In[33],abackupwideareaprotectionschemeisproposed.Short windowDFTisusedtoextractthephasorinformationfromthe threephasevoltagesandcurrents.Inthisscheme,theabsolutedif- ferenceofthebusanglesandcurrentsareusedtodetectthefault.

Theminimumvoltagemagnitudeestablishestheclosestbustothe faultandthemaximumcurrentangledifferencebetweenthebuses establishesthefaultedlines.However,forthemethodtowork,the minimumvoltagethresholdhastobeestablished.Itisshownin thepaperthatavoltagethresholdlessthan0.95meansthatthere isafaultonasystem.Thisimmediatelypointsoutthatincaseof voltageinstabilityconditions,themethodcanoperateerroneously.

In[34],anotherwideareaprotectionschemeisproposed.The solutionconsistsoftwocomponents:afaultelementidentification (FEI)andafaultareadetection(FAD).TheFEIisusedtoidentifythe faultedelementinthezonebeingprotected.Afterthat,thefault isolationisrealizedbycoordinationamongareacircuitbreakers breakers.AspartoftheFEI,themeasuredvoltageandcurrentofone terminaloftheprotectedareaareusedtoestimatethevoltagesat theotherend.Ifaninternalfaultoccurswithinthezonebeingmon- itored,thentheestimatedvaluewillbedifferentfromthemeasured valueatthatbuscausingafaulttobedetected.Ontheotherhand, thefaultedareaisdetectedthroughFAD.Thesubstationsthatare withinthefaultedareaneedtosendtheinformationtothecentral controlroom.Afterwards,thecentralcontrolroomwillsearchthe suspectedfaultylinesandidentifyactualfaultylinesquickly.The useofFADconceptreducesthecommunicationoverheadrequired bythescheme.

Theauthorsin[35]usePMUs,thatareinplaceaspartofawide areaprotectionscheme,todetectthepowerflowtransferduetothe removaloffaultedlinefromservice.In[35],theloadflowtransfer toalinecanbecalculatedusingthenetworktopologyviathedis- tributionfactors.Ifthemeasuredpowerflowtransfersignificantly mismatchesthecalculatedpowerflowtransfer,thenafaultwillbe declared.Basedonthatdetection,zone3isadaptivelyadjustedto preventmisoperationwhicheliminatedistanceprotectionzone3 misoperation.

EventhoughPMUbasedschemesandwide-areabasedschemes canofferattractivesolutionstoeliminatetheproblemofdistance protectionmisoperation,thesesolutionsrequiresignificantcom- municationinfrastructurecost.Additionally,thepowergridis a criticalinfrastructureandthecybersecurityriskmaybeeminentif thegridisbroughtonlineforcommunicationspurposes.

usedtodeterminewhetherafaulthasoccurredwithinthereach oflocaldistancerelay.TheDCdecayingfaultcomponentisrecon- structedfromthemeasuredcurrentsinallthreephases.Sincethe faultisthreephase,aDCdecayingcomponentmustexistinone ofthephases.Atransientmonitoringfunctionwillthenbedefined tobethemaximumofallthreephasesDCdecayingcomponentsin onecycle.Also,forthethreephasetobeasserted,thelineloadangle hastobegreaterthan50degrees.Boththemonitoringfunctionas wellasthelineloadanglehastobetrueforathreephasefault tobedeclared.Thedrawbackofthismethodisthatthefaultmust havesignificantdecayingDCcomponentwhichmakesitchalleng- ingforcertainfaultincipientanglesandtransmissionlinelengths asasignificantdecayingDCcomponentcanonlyoccurwhenthe faultoccursatcertainincipientanglesandundercertainX/Rratios.

Additionally,thepaperassumestheanglebetweenthecurrentand thevoltageattherelaytobemorethan50degreesasafaultindi- cator.However,ithasbeenpointedoutin[14]thatunderstressed systemconditionstheanglemayindeedexceedthatthresholdwith nofaultonthesystem.Also,iftheswingfrequencyinthesystemis anticipatedtobelargerthan5Hz,thresholdselectionfortransient monitoringbecomesahardtaskwhichcouldmisleadtheschemeto confusepowersystemswingforthreephasefaults.Lastly,theeffect offaultresistancehasnotbeenstudiedinthepaper.Faultresistance canpotentiallycausetroublesettingthethresholdforthetransient monitoringfunctionasitaffectstheDCdecayingcomponent.

In[37]therateofchangeofvoltageisusedasatriprestraintto supervisedistanceprotectionmisoperation.Theideaisthatfault occurrenceorfaultclearingcausesthevoltageseenbytherelay tochangedrastically.Theauthorsproposeifthelocalrelaysenses thatthesystemvoltageisstressedaccordingtotheconditionslisted in[38],therateofvoltagechange(V/t)willbeusedtoassert whetherafaulthasoccurredandclearedwithinzone3protection usingtwo thresholds for both fault occurrenceand fault clear- ing.Additionally,theauthorsproposedtouseathermal loading monitoringfunctiontodecidewhetherthemaximumconductor temperaturehasbeenreached.Thetemperaturemonitoringfunc- tionwillstartoperationafterthefaulthasbeendetected.Ifthe temperaturemonitoringfunctiondeclaresthatthelinetempera- turehasreachedmaximumlimit,thelinewillbetrippedwhether thefaulthasbeenclearedornot.However,forthetripcommand tobesecure,largeamountofofflinesimulationsneedtobecarried outtoknowtheworstcaserateofchangeofvoltage.Themajor disadvantageofthemethodisthatundervoltageinstability,the (V/t)criterionisnotexclusivepropertyforfaultsaspointedin [39]sinceundervoltageinstability,asuddengeneratortripping couldcausethesame(V/t).

Sinceitishardtodistinguishbetweenevolvingpre-blackout event and short circuit conditions using magnitude of voltage, anothertrip restraint quantity, namely (I/V)has beenused alongwith(V/t)criteriontotripzone3securelyin[39].The (I/V)thresholdvaluehasalsobeenobtainedusingofflinesim- ulations.Thedisadvantageofthemethodin[39]isthat neither contingencyanalysisnorsystemloadinglevelshavebeentaken intoconsideration.

Theuseoffaultgeneratedhighfrequencycomponentshasalso beeninvestigatedinliterature[40].Suchusagecangiveamore

(7)

Fig.5.Creationofadaptiveloadblinderin[45].

preciseanswerwhetherafaulthasoccurredthusmakingtripping inzone3moresecure.In[41],theenergyofthefirstthreecurrent levelsandthethirdapproximationisusedtotrainaprobabilis- ticclassifier.Theenergyiscalculatedusingcertainlevelsofthe discretewavelettransformofthethreephasecurrents.Usingthis energyfeatures,adecisionismadewhetheratransientsignalifdue toafaultornon-faultconditiononaline.Asimpleronlinetransient classifierhasbeenproposedin[42],wherethetransientevents occurringonthetransmissionlinesnearbyanydistancerelayare identified.Modaltransformationis usedtotransformthephase currentsintomodalcurrents.Thediscretewavelettransformcoef- ficientsoftheaerialmodes[43]arecombinedinacertainmanner totrainafeedforwardneuralnetworktoclassifythosetransients.

However,themajordrawbacksofboth[41,42]isthattheycan- notbeusedtotellwhetherthefaultiswithintherelayprotection reacheventhoughtheycantellwhetherafaulthasoccurredinthe network.Thesepaperscanonlybeusefulifamethodisfoundto usethetransientclassificationasanentrancepointtodetermining whetherthefaultiswithintheprotectionreachoftherelaybutthis hasnotbeendoneinliteraturetothebestofourknowledge.

Variousadaptivezone3settingswerealsoinvestigatedinliter- aturewherezone3reachisadjustedbasedonlocalinformation.In [44,45],ANNhasbeenusedtopredictthecorrectloadblinderunder varioussystemconditions.Theloadblinderisthencombinedwith thezone3settingstoblockanyundesirabletripping.Theloadblin- derisonlyactivatedunderbalancedconditionstomakesurethat theheavyloadingisnotconfusedforunbalancedfaultconditions.

Theloadblinderisdeterminedbasedonofflinesimulations.The simulationstakeintoaccounttheloadinglevelofthepowersys- tem,faultincipientangle,sourceimpedanceratio,faultresistance andfaultlocation.ThefeaturesusedtotrainANNistheactiveand reactivepower,voltageaswellastherateofchangeofboththe voltagesandcurrentsseenattherelayterminalasshowninFig.5.

Asimplelineconnectedtoanotherlinewithaloadin between isusedtotestthemethodwhichisadisadvantageofthemethod.

Also,theeffectofthesystemtopologywasn’tstudied.Itisalsofore- seenthattheinclusionforcontingencyanalysisinANNtrainingwill requirelargeofflinesimulationsandwillmakeloadblinderselec- tiondifficulttask.Additionally,onlythreephasefaultcurrentshas beenusedtotraintheANNandincaseasinglelinetogroundfault occursandcausethefeaturestobedifferentthantheonesusedin training,themethodisexpectedtofailbecauseANNisknownto havebadgeneralizationcapabilities[46].

In[47,48],theauthorsproposechangingzone3reachduring emergencyconditionstopreventdistanceprotectionmisoperation ifcertainsystemconditionsaremet.Ifthosesystemconditionsare met,zone3protectionreachwillbeshrunktozone2whichin turngivesmaximumsecurity.Duringstressedsystemconditions, theimpedanceseenbythelocalrelayapproachestheoriginalzone

Fig.6. TZMAandTZPAofthemethodin[47].

3border,whetherthisborder isMHOcharacteristicsorpolygo- nalone.Theauthorsproposetodefineafourthprotectionzone, calledthirdzoneproximityarea(TZPA),aswellasafifthprotection zone,calledthirdzonemodificationarea(TZMA),tochangezone 3protectionreachbasedoncertaincriteria.TheTZMAisaregion withinTZPAbutclosertozone3protectionzone.Theauthorspro- videdrulesonhowtosetbothTZMAandTZPA.Oncetheimpedance entersthisTZPAandcrosseszone3fastenough,thefaultwillbe declared.However,iftheimpedanceentersTZPAandstayswithin TZPA,theTZMAlogic willbeputintoaction. Zone3protection willbeshrunktozone2iftheimpedancecrossesTZMAwithina minute.Thisoneminuteisusedtoadjustforrestorativecorrective forcesofthegirdsuchasgeneratorexcitationcontrolsandtrans- formerloadtapchanger.Insummary,zone3protectionwillonlybe changediftheimpedancecrossesTZMAwithacertainratewithina specifiedtimedelayonceitstartschanginginTZPA.Theseideasare illustratedinFig.6.Although,theapproachisverypromising,afast evolvingsysteminstabilitycouldmisleadthescheme.Additionally, itcanbeseenthattheapproachproposedsacrificesdependability forsecurityasevidentbyshrinkingzone3;ifafaultoccurswithin theoriginalzone3protectionzonebeyondtheoriginalzone2reach afterzone3protectionzoneisshrunk,theapproachproposedby theauthorswillrelyheavilyontheclosestrelayandcircuitbreaker toclearthefault.However,ifthisrelayorcircuitbreakerfailsto clearthefault,thefaultwillgounclearedworseningthealready stressedsystemconditions.Lastly,theproposedalgorithmwillfail definitelyincasetheimpedancestayswithinTZPA,suddenlyjumps tooriginalzone3duetozone3faultbeforethetimedelayexpires thenstaysinzone3afterfaultclearingduetolineheavyloading conditions.

Lastly,theauthorsin[49]proposedtoidentifypowerflowover- loadbasedonanewlyproposedconcept.Thisconceptisbasedon thephasorrelationshipsinthecomplexphasorplane.Thepaper onlydifferentiatesbetweenthreephase faultsand overloadsas overloadsarethreephasebalancedphenomenon.Sincethepaper onlyaimstodistinguishthreephasefaultsfromoverload,anythree phase faultona transmissionlinecan beanalyzedwithoutthe needofinformationfromtheotherendofline.Thisisduetothe factthatthearcvoltageisnotaffectedbytheinfeedfaultcurrent makingthefaultpointgroundedthroughthearcresistance.This propertyisusedtoderivethecriteriontodifferentiatebetween

(8)

Insummary,theuseofrateofchangeofvoltagesandcurrents canpreventtheproblemofdistanceprotectionmisoperation in mostoccasionsbutdoesnotfullypreventit.Othermethodsuse previousoperationalexperiencewithdistancerelaystopropose solutionstotheproblemofdistanceprotectionmisoperation.How- ever,systemconditionsand scenarios thatwerenot previously encounteredcouldmisleadthoseproposedsolutions.Theuseof highfrequencyfaultgeneratedtransientsseemstobeapromising areabutitisscarcelyresearchedinliterature.

6. Conclusion

The problem of distance protection misoperation has been presented.Variousapproachestosolvetheproblemhavebeensur- veyedandorganizedintothreemaincategories.Themethodsin eachcategoryhavebeenexplained.Additionally,theadvantages anddisadvantagesofeachmethodhavebeenpointedout.

Thefirstcategoryisanticipationofdistanceprotectionmisop- erationintheplanningstage.Inthiscategory,distanceprotection misoperationcouldbeanticipateddayaheadbasedonthefore- casted load and generation as well as contingency conditions.

However,duetothelargesizeofmoderndaypowersystems,such anticipationiscomputationallyintensive.

The second category is communication assisted protection schemes.Themainideainthiscategoryisthatusinginformation frombothendsofthelineorinformationfromvarioussubstations inthenetwork,ablockingcommandcanbeissuedtotheaffected distancerelay.Nevertheless,thesecommunicationassistedpro- tectionschemeshavenotfoundwideindustryacceptancedueto cybersecurityrisksaswellastheeconomiccostthatisrequiredto buildsuchsystems.

Thethirdcategoryismodificationofthelocaldistanceprotec- tionfunctionusinglocalinformation.Themainideainthisfamilyof solutionsisthatusingoperationalsystemexperienceaswellasthe localdata,onecantellwithcertaintythatadistancerelayisaboutto misoperate.Bydetectingsuchconditions,ablockingcommandcan beissuedtoguardtherelayagainstmisoperation.Nevertheless,the methodsinthislastcategorymayfailundersystemconditionsthat werenottakenintoconsiderationwhiledevelopingthesemethods.

Themost appropriate methodtomitigate zone 3misopera- tionisdependentonwhatisthemostimportantfactor forthe utilitycompany.Forexample,oneutilitycompanymayprefera communication-assistedschemeusingremote measurementsto eliminatethepossibilityfordistanceprotectionmisoperationwhile accepting the cybersecurity vulnerabilities that are introduced.

Anotherutilitymaynotbewillingtoacceptthecybersecurityrisks orthecostofconstructingsuchschemeandrequiresasolution usinglocalmeasurementsorminimumremotemeasurements.The authorsthinkthatmethodswhichuselocalrelaydataareworthy ofresearchattentionascybersecuritythreatsarebecomingamajor concern.

References

[1]P.Hines,J.Apt,S.Talukdar,LargeblackoutsinNorthAmerica:historical trendsandpolicyimplications,EnergyPolicy37(12)(2009)5249–5259.

[5]B.Liscouski,W.Elliot,2004.

[6]NERC,StandardPRC-004-3ProtectionSystemMisoperationIdentification andCorrection(PRC-004-3),feb2014http://www.nerc.com/pa/Stand/

Project%20201005%20Protection%20System%20Misoperations%20DL/PRC 0043MisoperationsDraft620140718Clean.pdf.

[7]D.Novosel,M.M.Begovic,V.Madani,Sheddinglightonblackouts,IEEEPower EnergyMag.2(1)(2004)32–43.

[8]D.N.Kosterev,C.W.Taylor,W.A.Mittelstadt,ModelvalidationfortheAugust 10,1996WSCCsystemoutage,IEEETrans.PowerSyst.14(3)(1999)967–979.

[9]Entoso-E,FinalReportonBlackoutinTurkeyon31stMarch2015,Entoso-E, Tech.Rep.,2015,Available:http://www.nerc.com/comm/PC/

System%20Protection%20and%20Control%20Subcommittee%20SPCS%20DL/

Load%20Encroachment%20Final%2012-7-05.pdf(online).

[10]A.Abdullah,A.Esmaeilian,G.Gurrala,P.Dutta,T.Popovic,M.Kezunovic,Test bedforcascadingfailurescenariosevaluation,in:InternationalConferenceon PowerSystemsTransients,ConferenceProceedings,2012,pp.18–20.

[11]M.J.Thompson,D.L.Heidfeld,Transmissionlinesettingcalculationsbeyond thecookbook,in:201568thAnnualConferenceforProtectiveRelay Engineers,IEEE,2015,pp.850–865.

[12]S.ProtectionandC.T.F.oftheNERCPlanningCommittee,IncreaseLine LoadabilitybyEnablingLoadEncroachmentFunctionsofDigitalRelays, December2005,Availableonlineathttp://www.nerc.com/comm/PC/

System%20Protection%20and%20Control%20Subcommittee%20SPCS%20DL/

Load%20Encroachment%20Final%2012-7-05.pdf.

[13]S.ProtectionandC.T.F.oftheNERCPlanningCommittee,NERCStandard PRC-023-2,December2005,Availableonlineathttp://www.nerc.com.

[14]S.Horowitz,A.Phadke,Thirdzonerevisited,IEEETrans.PowerDeliv.21(1) (2006)23–29.

[15]ERCOT,ErcotNodalProtocolsSection5:TransmissionSecurityAnalysisand ReliabilityUnitCommitment,2017(online).

[16]CAISO,CaliforniaISOPlanningStandards,2015,Available:https://www.caiso.

com/Documents/TransmissionPlanningStandards.pdf(online).

[17]S.Li,N.Yorino,Y.Zoka,Operationmarginanalysisofzone3impedancerelay basedonsensitivitiestopowerinjection,IETGener.Transm.Distrib.1(2) (2007)312–317.

[18]S.Li,N.Yorino,M.Ding,Y.Zoka,Sensitivityanalysistooperationmarginof zone3impedancerelayswithbuspowerandshuntsusceptance,IEEETrans.

PowerDeliv.23(1)(2008)102–108.

[19]M.R.Aghamohammadi,S.Hashemi,A.Hasanzadeh,Anewapproachfor mitigatingblackoutriskbyblockingminimumcriticaldistancerelays,Int.J.

Electr.PowerEnergySyst.75(2016)162–172.

[20]H.Song,M.Kezunovic,Anewanalysismethodforearlydetectionand preventionofcascadingevents,Electr.PowerSyst.Res.77(8)(2007) 1132–1142.

[21]B.Ravikumar,D.Thukaram,H.Khincha,Anapproachfordistancerelay co-ordinationusingsupportvectormachines,in:TENCON2008-2008IEEE Region10Conference,IEEE,2008,pp.1–6.

[22]B.Ravikumar,D.Thukaram,H.Khincha,Anapproachusingsupportvector machinesfordistancerelaycoordinationintransmissionsystem,IEEETrans.

PowerDeliv.24(1)(2009)79–88.

[23]M.Tasdighi,M.Kezunovic,Automatedreviewofdistancerelaysettings adequacyafterthenetworktopologychanges,IEEETrans.PowerDeliv.31(4) (2016)1873–1881.

[24]J.Joe-Air,Y.Jun-Zhe,L.Ying-Hong,L.Chih-Wen,M.Jih-Chen,Anadaptive PMUbasedfaultdetection/locationtechniquefortransmissionlines.I.Theory andalgorithms,IEEETrans.PowerDeliv.15(2)(2000)486–493.

[25]S.-I.Lim,C.-C.Liu,S.-J.Lee,M.-S.Choi,S.-J.Rim,Blockingofzone3relaysto preventcascadedevents,IEEETrans.PowerSyst.23(2)(2008)747–754.

[26]P.Dutta,A.Esmaeilian,M.Kezunovic,Transmission-linefaultanalysisusing synchronizedsampling,IEEETrans.PowerDeliv.29(2)(2014)942–950.

[27]A.Esmaeilian,T.Popovic,M.Kezunovic,Transmissionlinerelay

mis-operationdetectionbasedontime-synchronizedfielddata,Electr.Power Syst.Res.125(2015)174–183.

[28]P.V.Navalkar,S.A.Soman,Secureremotebackupprotectionoftransmission linesusingsynchrophasors,IEEETrans.PowerDeliv.26(1)(2011)87–96.

[29]P.Kundu,A.K.Pradhan,Synchrophasor-assistedzone3operation,IEEETrans.

PowerDeliv.29(2)(2014)660–667.

[30]S.Garlapati,H.Lin,A.Heier,S.K.Shukla,J.Thorp,Ahierarchicallydistributed non-intrusiveagentaideddistancerelayingprotectionschemetosupervise zone3,Int.J.Electr.PowerEnergySyst.50(2013)42–49.

[31]M.A.Haj-ahmed,M.S.Illindala,Intelligentcoordinatedadaptivedistance relaying,Electr.PowerSyst.Res.110(2014)163–171.

(9)

[32]M.K.Neyestanaki,A.M.Ranjbar,AnadaptivePMU-basedwideareabackup protectionschemeforpowertransmissionlines,IEEETrans.SmartGrid6(3) (2015)1550–1559.

[33]M.Eissa,M.E.Masoud,M.Elanwar,Anovelbackupwideareaprotection techniqueforpowertransmissiongridsusingphasormeasurementunit,IEEE Trans.PowerDeliv.25(1)(2010)270–278.

[34]Z.He,Z.Zhang,W.Chen,O.P.Malik,X.Yin,Wide-areabackupprotection algorithmbasedonfaultcomponentvoltagedistribution,IEEETrans.Power Deliv.26(4)(2011)2752–2760.

[35]X.Lin,K.Yu,N.Tong,Z.Li,M.S.Khalid,J.Huang,Z.Li,R.Zhang, Countermeasuresonpreventingbackupprotectionmal-operationduring loadflowtransferring,Int.J.Electr.PowerEnergySyst.79(2016)27–33.

[36]P.K.Nayak,A.K.Pradhan,P.Bajpai,Securedzone3protectionduringstressed condition,IEEETrans.PowerDeliv.30(1)(2015)89–96.

[37]M.Jonsson,J.E.Daalder,Anadaptiveschemetopreventundesirabledistance protectionoperationduringvoltageinstability,IEEETrans.PowerDeliv.18 (4)(2003)1174–1180.

[38]K.Vu,M.M.Begovic,D.Novosel,M.M.Saha,Useoflocalmeasurementsto estimatevoltage-stabilitymargin,IEEETrans.PowerSyst.14(3)(1999) 1029–1035.

[39]M.Sharifzadeh,H.Lesani,M.Sanaye-Pasand,Anewalgorithmtostabilize distancerelayoperationduringvoltage-degradedconditions,IEEETrans.

PowerDeliv.29(4)(2014)1639–1647.

[40]S.A.Probert,Y.H.Song,Detectionandclassificationofhighfrequency transientsusingwaveletanalysis,in:2002IEEEPowerEngineeringSociety SummerMeeting,ConferenceProceedings,vol.2,2002,pp.801–806, Available:http://ieeexplore.ieee.org/ielx5/8076/22355/01043437.

pdf?tp=&arnumber=1043437&isnumber=22355(online).

[41]N.Perera,A.Rajapakse,Recognitionoffaulttransientsusingaprobabilistic neural-networkclassifier,in:2011IEEEPowerandEnergySocietyGeneral Meeting,2011,Available:<GotoISI>//WOS:000297469600037(online).

[42]A.Abdullah,Towardsanewparadigmforultrafasttransmissionlinerelaying, in:2016IEEEPowerandEnergyConferenceatIllinois(PECI),IEEE,2016,pp.

1–8.

[43]D.Hedman,Propagationonoverheadtransmissionlines.I.Theoryofmodal analysis,IEEETrans.PowerAppar.Syst.84(3)(1965)200–205.

[44]H.K.Zadeh,Z.Li,Artificialneuralnetworkbasedloadblinderfordistance protection,in:2008IEEEPowerandEnergySocietyGeneralMeeting ConversionandDeliveryofElectricalEnergyinthe21stCentury,IEEE,2008, pp.1–6.

[45]H.K.Zadeh,Z.Li,Adaptiveloadblinderfordistanceprotection,Int.J.Electr.

PowerEnergySyst.33(4)(2011)861–867.

[46]J.M.Zurada,IntroductiontoArtificialNeuralSystems,vol.8,1992,WestSt.

Paul.

[47]V.Nikolaidis,Emergencyzone3modificationasalocalresponse-driven protectionmeasureagainstsystemcollapse,IEEETrans.PowerDeliv.PP(99) (2016)1.

[48]V.Nikolaidis,N.Savvopoulos,A.Safigianni,C.Vournas,Adjustingthirdzone distanceprotectiontoavoidvoltagecollapse,in:PowerSystemsComputation Conference(PSCC),2014,ConferenceProceedings,IEEE,2014,pp.1–7.

[49]J.Ma,C.Liu,Y.Zhao,S.Kang,J.S.Thorp,Anadaptiveoverloadidentification methodbasedoncomplexphasorplane,IEEETrans.PowerDeliv.31(5) (2016)2250–2259.

Referensi

Dokumen terkait

List of Figures ix - xv List of Tables xvii List of Symbols xix Chapter-I Introduction to High- κ Dielectrics and Wide-bandgap Mott-Insulators 1 - 23 1.1 Background and

Keywords: rights, marriage, customs, civil law, jirga Introduction Unfortunately, in Afghanistan today we can find harmful traditional practices of marriage which are inconsistent in

List of figures and tables vii List of contributors ix Preface and acknowledgements xi Introduction JONATHAN MICHIE 1 PART I The 1997–1998 Asian crises 1 ‘Asian capitalism’ and

For this purpose, you are designing the following experimental procedure: i add deionized water and activated carbon at a volume to weight ratio of 1000 mL/g =1000 L/kg in a bottle, ii

Download free eBooks at bookboon.com Click on the ad to read more Accounting Cycle Exercises I 15 Problem 3 Solution 3 BOLOGNA COMPANY Income Statement For the Year Ending

Trong bai bao nay, chiing tdi d l xuat hai giai phap khac phyc nhirng nhuac diem da neu tren co sd tan dung cac cau tnic khdng gian kha thdng dyng: R-tree [4] va ludi tam giac Delaunay

Trong bai bao nay, chiing tdi d l xuat hai giai phap khac phyc nhirng nhuac diem da neu tren co sd tan dung cac cau tnic khdng gian kha thdng dyng: R-tree [4] va ludi tam giac Delaunay

TABLE OF CONTENTS Acknowledgments...iii Abstract...vi Table of Contents...viii List of Figures and Tables...xi Chapter I: Introduction...I-1 PART I: A COUPLED GEOCHEMICAL AND