Homepage: https://jwim.ut.ac.ir/
University of Tehran Press
Investigation of Water and Energy Consumption in Qazvin Irrigation Network Farms
Vahid Ashoori1 | Seyyed Ebrahim Hashemi Garmdareh2 | Seied Mehdy Hashemy Shahedani3 | Abbas Roozbahani4
1. Department of Water Engineering, College of Aburaihan, University of Tehran, Iran. E-mail: [email protected] 2. Corresponding Author, Department of Water Engineering, College of Aburaihan, University of Tehran, Iran. E-mail:
3. Department of Water Engineering, College of Aburaihan, University of Tehran, Iran. E-mail: [email protected] 4. Department of Water Engineering, College of Aburaihan, University of Tehran, Iran. E-mail: [email protected]
Article Info ABSTRACT
Article type:
Research Article
Article history:
Received: 4 May 2021 Received in revised form:
16 August 2021
Accepted: 6 January 2022 Published online: 2 July 2023
Keywords:
Performance evaluation, Energy,
Irrigation systems, Crop area.
One of the major consumers of water and energy sources is agriculture and evaluating the performance of irrigation systems to determine the efficient use of these two sources is one of the priorities of sustainable agriculture. In this regard, the present study has conducted a spatial analysis of water and energy consumption in Qazvin irrigation network. For this purpose, first, the dominant cropping pattern of the study area was extracted and then the water requirement was estimated for the products in the cropping pattern using CropWat 8.0 software. To estimate energy consumption, energy consumption in the sprinkler and drip irrigation systems, groundwater pumping, diesel fuel, labor, seeds, machinery (tractors and combines), chemical fertilizers, and pesticides for each available secondary field in the irrigation network was calculated. The results showed that the highest energy consumption in all secondary farms indirect energy consumption is related to diesel fuel with 40% of total energy consumption and in indirect energy consumption belongs to nitrogen fertilizer with 20% of total energy consumption. Also, in the energy used to pump water in irrigation systems at different heads required for pumping for crops in the dominant cropping pattern, alfalfa consumed the most energy with a value of 4811.44 Kwh / ha and corn consumed the least energy with a value of 1194.19 Kwh / ha. According to the results, the impact of diesel fuel, chemical fertilizers, and water pumping on energy consumption are high, thus controlling the consumption of these inputs would significantly reduce energy consumption.
Cite this article: Ashoori, V., Hashemi Garmdareh, S. E., Hashemy Shahedani, S. M., & Roozbahani, A. (2023).
Investigation of Water and Energy Consumption in Qazvin Irrigation Network Farms. Journal of Water and Irrigation Management, 13 (2), 295-310. DOI: https://doi.org/10.22059/jwim.2022.323089.869
© The Author(s). Publisher: University of Tehran Press.
DOI: https://doi.org/ 10.22059/jwim.2022.323089.869
نا هﺎﮕﺸ اد تارﺎﺸ ا
یرﺎﯿآ و بآ
Homepage: https://jwim.ut.ac.ir/
:ﯽﯿوﺮ !ﻟا #ﺎﺷ ۹۹۳۱ - ۲۳۸۲
|1
2 3 |
4 |
1 .
. :!
2 . # $% % .
:!
3 . .
:!
4 . .
:!
! " # $%
&'
: ! " ) ( ) *+ ,
* + , - + ./
14: / 02 / 1400
* + , 0 25 : / 05 / 1400
* + , 12 + 3 16 : / 10 / 1400
* + , 45 11 : / 04 / 1402
67 8 :
1 2345
6 7
! ( 7 8 7
5 1 . 9 : 1 2
76 ;< 45 =
! 2345 1 71 = >?
7 (
@ + 1 ;< A = BC D8 A88E 9 ( 7 8 A .@ 71 = 7 (
4 A DF 7 8 !2<G HI 76 9 : D8 J83 ! K F L M >( ) C !,I N+ O @ = 7 + C P A 7 .@
!E+ I QR : 7 S T ?C
K 1 BC @ = 7 + U DV
CropWat 8.0
1 8 76 7 . G
! 76 9 : D8 V : IF 7 8 7 (
1 6 S4 7 #D @W 8 1
A8G X = 7 8 5 1 ( 7 K 4 848G 7 ( = (A <4= C= ) QR
!= [ C . G !< 7 8 !2<G U !U
>8 4 V : 76 A
! \ 76 ]8,C% 9 : !U 5 1 7 ( #D @W
40 76 J= 1 ^
8O 9 : V : 6 C8 = ! _3EC 76 ]8,C%
20 .@ V : 76 J= 1 ^
](
A8 `
! 6 S4 7 V : 76 6 S4 7 K1R a3C? Q 5 B 7 8 7 (
!b N+ O @ = 7 + U QR : 7
>8 , 76 A 4
/ 4811 @5 Q 38=
C2(
Q d ]=
, 76 A 19
/ 1194 C2( @5 Q 38=
.@ = 9 :
D8 [ C ! !U 8fg
R 76 9 : 6 S4 848G 7 ( = #D @W
A 9 : D8 # C = h5 (
>( =
! D . G ( W 76 9 :
:- 95 G 5 7 M 8 i 4G ( i]8( 8
4G ( ( G 7 8 1
j <5 ) 1402 .(
8 D 9 : 6
7 HI
k D
!2<G 8 7 DF A 7 8 @ ! . 13
) 2 ( 295 - 310 . DOI:https://doi.org/10.22059/jwim.2022.323089.869
Q C !% m : .
. % ©
1 .
"#
2 1 = Q D+ 1 7
BC
= 6 1 7 @ 7 8
6 1 7 1 = >?
7 ! n
DV
>
E4U 8
@ L @ = J F
>
V !
>8 1
# M DV
>
@ )
Pelle Saraee et
al., 2013
( C% L M # M . 71 = >?
! o J F U 6 ; ! 7
<o 1 @W p 8E
# O1 q !CV > DV
@ A
# E ! KD3C%
9 : 8+
6 7
>? A
@
)
Rahimian, 2015
.(
7 +8 1 = QR : 7
1 ( 7 B3C?
G K 4 = X r4(
8 4 8
=
V : G
8 A QR b 8 Q D
71 =
BC @W G
)
Dalgaard et al., 2001
.(
6 1 fm BC 7
1 = >?
7 >, 7
+8 8
! 1 7 :CF 7 sBM
;
X b
( 38%V @W ) + >( =
. ( Db
! 3 8 J ( + 7 U 9 : 6 7 t 88 (
>?
1 =
7 1
+ EV f 8
@ ( 7
% # E 8
I F BC
8 )
Rahimizadeh
et al., 2007
( . 6 , 7 9 : + G 8
V 7 1
; 1 = QR : 7
! 8 D J F U
@ R
)
Khoshnevisan et al., 2015
( b 1
!=
+8 # : A8 g XO
! ,C% o 8
] 6 7
@ 4(
.
A 9 : 6 N , 7
uv = = fm BC L
7
@ )
Mohammadi & Omid.,
(2010
.
@ 6 7 >( = Q f B 1
@%
8 I ](
A8 ` DV
>
= 8
@ +8 Q
1 =
7 h5
>( ) 7 ( 1 7 Db
! 3 8 J 9 : 6 7 1 = 7
@ G )
Hatirli et al., 2006
.(
+ %2 W ]83F 88t J 5 k 4b V o 1 @G @8E4U G 8W 7 (
h5 ; 1 !
@ G ; a5 w V b )
Gadami Firouzabadi, 2015
.(
! o 7 @G !=
; 1 !
!5 4 h5 8 1 1 8 G
1 >
90
@G 1 ^
@ G 8 1 1 1 @G @ U = J= 7 (
)
Kamrani et al., 2020
! x D 7 8 @ L %CM 71 = >? 9 : D8 .(
10000
A8 NE2 C x 7 1 # : 8+ y C .@ C2( NE2 C 900
38= x K K
G + M 8 , A !=
! o y C 3 / 2 K 38=
A . G >? A 9 : 7
!U ! 1R ]= 8%
>8 >? A 9 : # C = @ U G
)
Shahrestani, 2013
.(
Zahedi et al.
)
2015b
(
!E+ I 7
!
= 9 : 6 7
` 8 ]C%
C = J G Q d
!V 35 7 - K Q d
!V 35 7 - U Q d
! 7 - U U - [ CW
. C [
!=
J=
6 7
V :
! 8 N Q <5
@ 1 39006 4 / 35827 02 / 33711 86 / 48045
@5 Q 38=
C2(
!=
>8 A
9 : 6 7
@W
#D E
1
! N8
=
!<
( 7 K K
!CG .
Lorzadeh et
)al.
(2012
>8 C 1 W C ;F X C G Q d k D \ V : 76 ] A
]( . = { D 6 C8 = !
= != >( ) A8 `
!V 35 Q d # : 7 !8 Q ^ 7
>8 @V , 848G 7 ( = ! \ V : 76 ;< A
47 / 51
! ^ @
)
Vural&
Efecan., 2012
!E+ I .(
7
Taki et al.
) (2013
! 6 # E 7
8 A 7 6 7 ( 7 U W M (
+8
!U V ! ?3
CW B^ C C .
[ !E+ I ( !=
7 +8
!U V
, 6 7 8
/ 4657 C2( @5 Q 38=
.@ G 9 : ](
A A8 ` @W
#D 40
^ 7 ( = G 8 4 8 = 30
^ 1 R A 6 7 ( 7 7 7 +8
!U V .
!E+ I 7
Ghadami Firouzabadi et al.
) ( 2015
! 8
D 6 9 : 7
6 Q B3 7
C%
( 7
| 1 6 S4 83
o
# ( 7 1388 1390 4( C G k D CW
. C [ (
6 y C 7
a3 G C%
( 7 !E+ I 84
/ 4 + 8C
| 1 8 J . @5 >( = fm J 5 1
6 1 7 U K 5 }4 ~v C
7 V 8 N C ?C K 5 }4 N
K }4 .
( )
Aliabadi et al.
)
! (2015
7 V : 76 C2+
2 + 8 Q d
7 X
CW 7 L W
.
>( ) A C2+ 76 ! @<% 7 X Q d 7
2 V :
! ! 8
7 C IF
7 ,
!%
C .@V F [
•W G != J^ M
C2+ 76 7 2
V : 1 6 S4 7
;
! 8 N 682 / 0 838 / 0 448 / 0
= 8 K 3 Q d X
x
= 8 Q 3 C2+ 76 @5
2 .@
](
!= [ C A8 ` C2+ 76 7
2 V :
!
>8
! 1 7 (
8 7 C IF
@ 7 .
Sabzealipour & Bagherpour
) (2019
!E+ I
! Db ! 7 3
8 J
# V : 76 71 +
8 Q V 1 k D
8 7 1
! 7 ( 4G (
<:5 !2<G 5 :
<:5 T C C !
<I 71 V 8,
R `
! ) B8 ( 8
. CW # V1 G C
[ !E+ I (
7 76 J=
! # : A 7 U W N8
44 / 10071 12
/ 8335 .@ C2( @5 Q 38=
>8 A 8 D 9 : ,
83 / 5038 Q 38=
] C2( @5 50
= ! 7 ^ .@G _3E 848G 7 (
!E+ I 7
Bolandnazar et al.
)
! (2020
1 + 7 6 9 : 7
C ?C A
{ 8 A
# ( 7 8 IW ) ! ` (MLR
1
R ` CS
! ) (MLP
; 2
! 5 EG ) (RBF
G 3
8 A C 8<
) (SVM
7 4
6 7 U W
8 N 1 8 U C G 8
@V U ;F C
= CW
C . [
!E+ I
8 8 A 6 J=
7
7 M 22 / 23419 6 J= y C
7 U W 32 / 36171 C2( @5 Q 38=
.@
8 7 36
^ ( = 26
^ ] A 7 6 7 + 8 N8 . 8 1
;4U 7 Q E+ I
! G != (
8 D 9 : 76 ( = y<
848G 7 V :
30
50
^
! ( 7 8 7 10 35
^ #D @W 30
40
^ .@
A E 88 A D8 9 : 76
>? ( !
Q 5vo 3 =
= 1 6 9 :
7 ( 5 1
!U
!
= . ](
A8 `
2
! ( = 7
! >? ( 9 : >( =
•? ! U Q ^
4 . A
! L M >( )
D8 J83 9 :
! 76 9 : 9 ( k D 76 @W 848G 7 ( = 7 8 7 (
% 7 8 #D 71 = QR A8G
.@ G !CW 76 9 : fm 7 (
2 .
% &
'
J2G >( ) K b 3= 7 4G .@ G A DF 7 8 !2<G k D 76 9 : >( ) A ) 1 .@ ( 4(
o ( !=
C G 7 (
1 8 U 1 !34U1 ; 1 >( ) A
71 = ! C 71 = 1395
;4U !,I N+ O @ = 7 + S 7
!E+ I 7 . G T ?C
K 1 BC N+ O @ = 7 + U QR : DV
CropWat 8.0
ACV P 1 8
=
) !5 D 70
) 7 8 !2<G ; 1 # ,C ! !U S ( ^ 5
/ 82 ) ( ^
Abbasi et al.,
9 : D8 (2015
;4U Q 5vo 1 BC . G !U 5 1 7 ( 7
D8 G
76 9 : 7 (
fm 9 : ]C%8 J8<F 1 76
! ) 6 S4 7 ( T ?C 7 8 7 (
A8G 71 = K 4 +D @W X 848G 7 ( = ( 8 1 1 7 = 7 8 71 = QR
7 76 9 : D8 !U 5 1 ( 7 S . G !U 5 1 7 ( #
5 1 96 - 95 . G !<
Figure 1. Research overview
2 - 1 . # )
*+ &
!E+ I !,I G
A
>( )
!2<G 7 8 2(1 C
DF A
@ ]C%8 . BC 7 8 7 (
]C%8 J G !2<G A IF I 7 8 7 (
7
! D8 7 1 8 G Q ^
A8 g 8 1 1 1 @G ,+ o A DF 7 8 !2<G 1 ~ C . G
8 D + { 8
! C
DF A M 318 83 C 7 ( y C 14
C !U
>8 .@
A ]=
A
@<f k B G
7 A C
! N8 2971 1100
M y C C 1250
1 C HI .@
!2<G 7 8
A8 A DF 2(1 36
!U 20
€ 5 !,8F + 4G
49 !U 40
!,8F
# o F G 36
!U
€ 5
+ 4G 50
!U 35
!,8F
# o F G ;F G
@ .
!2<G A 7 8
2(1 9 (
# ,C
! W
,+ o 1 J V
1
!
@G A DF
• M G M
80000 C2(
1 L
@G 1
>G F (
.
# = 3^
!2<G
!
# o 94 C C 38=
@8V ‚ 30 NE2 C
!8 f C
3
NE2 C
!8 f
!CW G
@ .
!2<G 7
12
!CG
# =
!U 2
!
@8V ‚ 6 / 0 4 / 7 C NE2
!8 f
!=
# o ( k 4b ƒ+
214 C 38=
J2G) G 2
7 8 @ ( >( ) A .(
# = K !U 5 1 !U 7 ( . G 7 X
J G !U 7 (
L1 L2 L3 L4a
L4b L5 L6 L7 L8 L9 L10
@ L20
7 (
L4a
7 ( L4b L10
]( L20
! G _8B3 N8
L4
K L10
) G 7 D
Hosseini Jolfan et al., 2020
1 K = ( @M % .(
) # U !U 5 1 7 ( 1
4( .@ G ! ( != o
( G
„ D L3
A
!U 5 1 27
@M % J= 1 ^ x` =L5
!U 5 1 A 2
@M % J= 1 ^
]C%8 k Q 5vo U K 5 ! !U .@
A 7 8 7 ( 1 KvEC , A (
1 ;3I G =
!,I
! A DF C 71 = U 7 # U) G !CV P < , Q ^
2 .(
Collection of meteorological information of the study area, crops and consumption of energy
consumption index inputs
Estimation of water consumption to produce dominant crop pattern products
using CropWat 8.0 software
Energy consumption on the water pumping
Energy consumption on the Fertilizer
(N, P, K) Energy consumption on
the Diesel Oil Energy consumption on
the machinery
Energy consumption on
the pesticides Energy consumption
on the human labor and seed Investigate water and energy
consumption
Table 1. Area of each second grade crop area (hectares)
L10 L9
L8 L7
L6 L5
L4 L3
L2 L1
Name
4480 2500
13045 7800
9802 2346
6654 21700
7303 5772
Area
Table 2. Irrigation system area in each second-grade crop area (%) Drip irrigation (%) Sprinkler irrigation (%)
Surface irrigation (%) Name
10 20
70 L1
11 21
68 L2
12 23
65 L3
15 25
60 L4
18 27
55 L5
21 29
50 L6
23 32
45 L7
25 35
40 L8
27 38
35 L9
30 40
30 L10
Figure 2. Geographical location of Qazvin irrigation and drainage network
2 - 2 .
, "- . -
'
Q 5vo ! !U C
!
@
@ = QR : 71 = ! A DF C 71 = U 1 G
K b Q E+ I 71 = ! 1 BC 1 . G T ?C C
@ = QR : G !2<G G
T ?C 7 8 !2<G N+ O @ = 7 + S K 1 BC
DV
CropWat 8.0
@ = 7 + 7 1 8
( N+ O !U 5 1
! Q ^ U
= %CM ! 70
!< 7 ^ W K . G
, ; 1 # ,C ! !U !U 5 1 ( K1R 5
/ 82
^ )
Abbasi et al., 2015
(
. G !CV P
! •W G _<o V : 76 D8 G
y
El-Gagy
) ( 2017
!=
! Q ^ 9 : 76 k 4b 7 G
# : 8+
C2( x c
) 1 A8 1 (ha
G !CV P t
G !< T
!+ E ) 1 .(
!I 1 (
. ℎ . . . . . . . . .
!=
. . . . . . .
! N8 9 : 76 % 7 8 y G
!/ℎ) A8G ( ) (A <4= C= J G) QR
!/ℎ
@W ( 38%V 7 (
) (#D )
!/#
) = (
!/$%
(
@V a35 >=
) >=
!/$%
) X (
!/$%
) 8 1 1 6 S4 ( IF 7 8 (Kwh
) 7
Kwh/ha
7 8 (
)
Kwh/ha
(
! # : @ = 7 1 .@ c
& . ' . . . . . . . . . . ℎ .
! N8
) % 7 8 = @5
ℎ/ℎ(
A8G = @5 (
ℎ/ℎ() QR
@W D8 ( 9 : 38%V
#/ℎ() G D8 (
=
$%/ℎ() G ) ] D8 (
$%/ℎ(
X D8 (
$%/ℎ() G J D8 ( G
)
m3/ha
# : @ = 7 1 ( .@ c
) 8 1 1 6 S4 76 !< 7 Iw
(
! !+ E 1 y G
Karimi et al., )
( 2012
!+ E A . G BC
! Q ^ !+ E ) @ 1 2
:(
!=
: EC
J=
76 V : N%M
(kwh)
k B :D
) T ?C
! o y C 45 4 7 C
5 1 7 ( M (
]bM :V
T ?C : OPE
) }4 70 ( ^ Q B3 :TL
# ,C
; 1 ) y,V 7 }4 (
2 C2+
p ^
@ 7 }4 ( B^
@ .(
! V : 76 !< 7 ) 7 8 7 (
.
( C
>8 QR : 1 8 A
7 8 10
?C 1 = = !5 D 1 C2( x 7 K1R ACV P # : ( 7 S
21 @5
! <G . G ?C }4 x 1 }4 ?C 7
K @ 1 @= G }4 ?C DV
}4 . G BC
, @ = }4 = = Q 5 j QR : 4 7 S N%M C2( x V : 76
IF 7 8 ! 7 8 ! }4 = = a3C? k B ! 7 C2( @5 Q 38=
!< 7
! < k B != G 7 8
J G 100 50 47 C
! 7 8 IF 7 J G 70 20
47 C
!=
! N8 7 6 S4 ]8,C%
8 1 1
!
! 7 8 6 S4 I
! 7 8 6 S4
8 1 1
! HI A8 1 G
.
1 BC , !+ E ) 76 9 : •W G U 7 (
1 ) # U k D ( 3
A .@ (
BC D8 # U A8G = = D8 = 7 8 = Q 5 X
D8 #D @W D8 71 = QR
1 x ( 76 # E D8 .@ C2( x 71 = K 4 848G 7 ( = U 7 (
>( ) ! !U 76 9 : •W G !CV Q ^ 76 != B3C? 7 (
) # U ?C @ 4
(
>( ) 1 ( V : 76 D8 A != A {v . G ! G K b = JW != (
[ C G T ?C
!
@ ]( !,I = y G . G !CG W
Table 3. Estimated values of energy index inputs
Crop Seed
(kg/ha)
Human labor (h/ha)
Tractor (h/ha)
Combine (h/ha)
Diesel Oil (L/ha)
N (kg/ha)
P (kg/ha)
K (kg/ha)
Herbicide (kg/ha)
Pesticide (kg/ha)
Wheat 293.5 495 52 1.3 579.3 161.9 137.4 162.2 3.9 1.2
Barely 232.7 350.3 47.3 1.3 486.9 183.6 121.3 91.7 3.1 1.7
Canola 6 208 7.1 1.5 141 131 110.5 46 2.2 2
Sugar beet 5.3 932.9 39.7 0 498.6 130.3 129.6 108.8 2.6 5
Tomato 0.5 1093.2 46.3 0 153.5 406.4 418.5 105.6 0 2.2
Silage Corn 71.7 489.5 43.1 0 633.1 214.4 90.5 57.5 5.1 1.6
Alfalfa 40 316.9 140.9 0 380.4 92 57.5 138 0 1.5
!I 2 (
) 2.73 × × .
/0 × 1 − 3# × 100
Table 4. Energy equivalent of inputs in agricultural production
Inputs Energy equivalent Unit Reference
Human labor 1.95 (Mj/hr) Zahedi et al., (2015) (b)
Tractor 62.7 (Mj/hr) Zahedi et al., (2015)(b)
Combine 306.7 (Mj/hr) Ovtit-Canavate. and Hernanz, (1999)
Diesel Oil 50.23 (Mj/L) Zahedi et al., (2015) (b)
N 75.46 (kgr/ha) Zahedi et al., (2015) (b)
P 12.44 (kgr/ha) Taki et al., (2013)
K 11.15 (kgr/ha) Zahedi et al., (2015) (b)
Herbicide 238.32 (kgr/ha) Zahedi et al., (2015) (b)
Pesticide 101.2 (kgr/ha) Zahedi et al., (2015)(b)
Wheat 20.1 (Mj/kg) Zahedi et al., (2015)(b)
Barely 14.7 (Mj/kg) Firat & Gokdogan, (2014)
Canola 27.6 (Mj/kg) Unakitan et al., (2010)
Sugar beet 50 (Mj/kg) Zahedi et al., (2015)(a)
Tomato 1 (Mj/kg) Canakci et al., (2005); Esengun et al., (2007)
Silage Corn 14.7 (Mj/kg) Zahedi et al., (2015)(b)
Alfalfa 28.1 (Mj/kg) Asgharipour et al., (2016)
3 . 0- 1 2
3 - 1 . .
x82B ! T ?C N+ O @ = 7 + 7 G { _<o !U 5 1 ( •+ W 1 8 , ) # U @ = 7 + U QR : 5
.@ G ! ( 4(
o ( # U A !=
G 61 ^
@ = ] 1 != @ K ! \ 7 8 !2<G G
!b8C
>8 A 8 1 , 69
/ 347 838
. 7 8 !2<G J= NE2 C ]=
@ = @M % A ! \ 7 8 !2<G @ = ] 1 ^ ! G
!V 35 Q d != @ 7
]=
, 1 8 A 65
/ 11 •+ W 1 8 J= k 4b . NE2 C 838
<G 7 8 !2 7
/ 564 .@ !( @B( @ = N+ O @ = 7 + 7 NE2 C 838
Table 5. The area under cultivation of the dominant cultivation pattern and its net water requirement in each range Range
Crop L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 Sum
Wheat* 3578 5180 15278 4021 1438 5037 5448 5455 1485 3129 50050 WR5** 24.8 35.9 106.1 27.94 9.99 34.99 37.85 37.9 10.3 21.74 347.69
Barely 153 290 897 497 247 653 438 732 336 392 4634
WR 0.78 1.46 4.53 2.51 1.25 3.3 2.21 3.7 1.7 1.99 23.46
Canola 399 548 1670 397 160 565 608 622 126 345 5442
WR 2.32 3.2 9.75 2.31 0.93 3.29 3.55 3.63 0.75 2.01 31.87
Sugar beet 0 24 584 439 176 1958 385 704 141 129 4540
WR 0 0.18 4.43 2.2 1.34 14.88 2.92 5.34 1.07 0.98 34.51
Tomato 388 329 680 169 68 215 109 5217 155 196 7526
WR 3.15 2.66 5.52 1.36 0.55 1.75 0.89 42.33 1.25 1.59 61.07
SilageCorn 692 107 819 0 66 275 277 140 105 75 2556
WR 3.15 0.49 3.74 0 0.3 1.25 1.27 0.63 0.48 0.34 11.65
Alfalfa 563 825 1772 1130 190 1099 535 176 150 214 6654
WR 4.7 6.9 14.84 9.47 1.6 9.2 4.48 1.47 1.25 1.79 55.72
*Area= hectare, ** Water requirement = million M3
•? 1 # ,C ! !U (•+ W 1 8 ) 9 : D8 ( •+ W 1 8 G
) # U [ C != G ; 1 6
.@ ( 4(
o ( !=
9 : D8 G
5 1 L3
55 / 180 != NE2 C 838
>8 A8 , A 7 8 !2<G !U 5 1 7 (
5 1 7 1 @
9 : L5
35 / 19 NE2 C 838 ]=
@ = 9 : , A
7 ( ; 1 # ,C !U 7 8 !2<G •+ W 1 8 , . ! 52
/ 684 NE2 C 838
]bM G 1 8
8 1 1 ; !,I U I ; _ o 1 G A8 g
_<o G
!
! G
!,I @= G !38 C 7
7 8 !2<G 7 I , A DF 75
/ 330 838
J F , I ; <4= !U .@ NE2 C 8 1 1 ; 1 ]bM A 1 U
A8 g
G 8 ACV F ! !U !=
>
1 90
% C ^ 8
J 1 ; 1
8
@G = (
7
!5 4
)
Kamrani et al., 2020
!2<G 7 7 IW q 1 ( .@ 8 1 1 ! !C% 7 8 7 (
Table 6. Water consumption in each second grade crop area
Name Area under cultivation (ha) Net water requirement (million M3) Gross water requirement (million M3)
L1 5772 38.97 67.24
L2 7303 50.90 61.70
L3 21700 148.95 180.55
L4 6654 45.80 55.51
L5 2346 15.96 19.35
L6 9802 68.68 83.25
L7 7800 53.17 64.45
L8 13045 95.03 115.19
L9 2500 16.83 20.40
L10 4480 30.44 36.90
Sum 81403 564.7 684.52
3 - 2 . .
7 D8
9 : 76 ( ) QR E 1 5 1
1 ) ( 2 ( . G BC [ C
J^ M 1 Q <
76
I ) V : 6 S4 7 V : 1
8 ( 76 7 x82B ! N+ O @ = 7 + 1 # : (
V : 6 S4 !
7 8 IF 7
! 7 8 ](
) # U 8 1 1 T ?C A8 ` 7
( 7 (
# : x
C2(
4( .@ G ! ( # U A != o
G C [ 6 9 : 7
! 7 8
IF 7 (
>8 A 6 7 V : 7
!b k B 70
20 C 7
! N8 59
/ 3259
50 / 1336 C2( @5 Q 38=
@ . 1 9 o ]=
A 6 7 V : k B
70 C 7 7 , U
16 / 1693 C2( @5 Q 38=
k B 20
C 7 7 , K 18
/ 641 C2( @5 Q 38=
@ C . [
6 9 : 7
! 7 ( 7 8 (
>8 A 6 7 V : A
! 7 8 7
!b
k B 100 50 C 7
! N8 , 41 / 4811 34 / 3234 @5 Q 38=
@ C2(
1 . 7 ]=
A 6 7
V : k B
100 50 7 C 7
! K , N8 7
/ 2388 37 / 1546 .@ C2( @5 Q 38=
](
T ?C 7 76 9 : [ C A8 ` , !b (
71 / 2405 Q d C2( @5 Q 38=
!V 35 , 7 19
/ 1194
! C2( @5 Q 38=
>8 N8 ]= A
… :CW W ! V : 76 A .
Table 7. Energy consumption of groundwater pumping for each product in irrigation and water extraction systems (kWh per hectare)
Crop Sprinkler irrigation system Drip irrigation system Water extraction
Head 100 Head 50 Head 70 Head 20 Head 47
Wheat 2388.7 1546.37 2011.54 641.18 1194.35
Barely 2573.6 1666.07 1693.16 690.81 1286.8
Canola 3245.77 1622.88 2127.79 883.57 1496.66
Sugar beet 4724.57 2325.66 3207.61 988.86 1794.61
Tomato 4685.75 2306.55 3232.8 980.74 1779.86
Silage Corn 3143.9 1547.58 2169.05 658.03 1194.19
Alfalfa 4811.42 3234.34 3259.59 1336.5 2405.71
J= V : 76 7 5 1 7 (
!E+ I 7 V : 76 C † I 7 (
!+ E 1
! Q ^ J2G [ C != G Db ) 7 (
3 ) ( 7 .@ (
! [ C ) J2G G
3 (
( G
>8 A ]=
X V : 76 , A
! N8 30 ^ L3
2 / 3 ^
7 = 7 8 V : 76 , N8 A84( ! @ L5
24 L3
^
L5
7 / 2 .@ ^
[ C
! ) J2G G 4
( ( G
>8 A ]=
@W ! V : 76 , A
! A <4= C= #D N8
1 / 28 2 / 27 7 / 29 ^ L3
2 / 3 3 2 / 3 ^
L5
.@
](
A8 ` ! x D 9 : #D @W 40
J= 1 ^ V : 76
>8 !2<G J= 9 : , A
! [ C . J2G) 71 = K 4 V : 76 7 G
5 J2G) 848G 7 ( = ( 6
( ( -
848G 7 ( = V : 76 G 7 (
L3
! L8
o A8 8
! N8 25 22 ^
>8 A
9 :
! L5
o A8 8 5
/ 2 ^ ]=
.@ 9 : A ](
A8 ` M 6 C8 = 20
1 ^
! 7 8 !2<G V : 76 J=
71 = K 4 V : 76 .@ … :CW W
L3
5 / 26 ^
>8 9 : A ^ ! L5
]=
.@ 9 : A
! 6 S4 7 V : 76 [ C IF ) 7 8 7 (
) J2G 8 1 1 T ?C (7 7
(
@ G ! 4(
o ( !=
7 8 ! V : 76 G 7 (
L3
2 L8
/ 21
4 / 21 ^
>8 9 : A 7 L5
/ 2 ^ ]=
IF 7 8 ! .@ 9 : A 7
7 L8
/ 23 ^
>8 76 9 : A 8 L5
/ 2 ^ ]=
T ?C . 76 9 : A
8 1 1 7 (
L3
9 L8
/ 20 1 / 21 ^ 8 L5
/ 2 ^ ]=
9 : A . 76
[ C ! !U
!
@ 8fg
O 8 8,C%
] 6 9 : 7
7 8 !2<G ;F !U 5 1 7 ( =
8 6 C
>8 A 6 9 : 7
! … :CW W 8fg
,C%
8 ] 6 9 : 7
@W
#D
>8 A
6 9 : 7
!
… :CW W
@ .
C _<o [
>( ) Q ^ 7 ( 6 C8 = Q d !b K 8+ V : 76 ] !CV
22 ^ 19
#D @W ^ 28
^ C2+
% 8
!C ) @ G
Yousefi & Damghani, 2013
]( (
>8 A8 ` A
!U 8+ 76 ] 7 ( = V
848G 51
) ^
Raei et al., 2011
>8 ( 8+ 76 ] A
#D @W F t`
5 / 40 6 C8 = ^ 9
/ 15 ) ^
Zahedi et al., 2015a
.@ G { D (
Figure 3. Seed and labor consumption energy in each second grade crop area 0
20 40 60 80 100 120
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
Energy consumption (TJ)
seed Human labor
>( )
>8 6 C8 = D3= 8+ 76 ] A 32
#D @W ^ 52
@W ) ^
A8G 6 S4 V : ) @ G { D (71 = QR
Fathi et al., 2019
>( ) [ C .(
7 (
Q ^ !CG @, I >( ) A G T ?C [ C !CV 1 76 9 : (
@W 7 (
.@ 848G 7 ( =
Figure 4. Machinery and disel oil consumption energy in each second grade crop area
Figure 5. Herbicide and pesticide consumption energy in each second grade crop area
Figure 6. Fertilizer (N, P &K) consumption energy in each second grade crop area 0 1 2 3 4 5 6 7 8
0 100 200 300 400 500 600
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
Energy consumption in Diesel & Combine(TJ)
Energy consumption in Tractor (TJ)
tractor Diesel Oil Combine
0 5 10 15 20
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
Energy consumption (TJ)
Herbicide Pesticide
0 50 100 150 200 250 300
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
Energy consumption (TJ)
N P K
Figure 7. Water pumping consumption energy in each second grade crop area
# : ( 8+ 7 76 9 : [ C ) J2G !U 5 1 7 (
8 4( .@ G ! ( != o
(
>8 G 9 ^ 76 A
D8 K ! \ 7 8 !2<G # : x 8+ 7 G
21 / 878907432 != @ @5 Q 38=
5 / 63 ]= .@ V : 76 J= 1 ^ 9 ^ 76 A
8+ 7 G
D8 D3= ! \ 7 8 !2<G # : 65
/ 537010816 Q 38=
!= @ @5 8
/ 3 V : 76 J= 1 ^
8+ 7 V : 76 D8 G =d QR : @ = 1 HI 8fg .@
[ C ( C A84( G
9 ^ 76 D8 N+ O @ = 7 + U QR : 7 [ C != G C2( x 8+ 7 G
U ) # 8
>8 ! [ C .@ G ! ( ( 9 ^ 76 A
!V 35 Q d ! \ 8+ 7 G 7
, 02 / 21335 ]= C2( @5 Q 38=
9 ^ 76 A , D3= ! \ G
89 / 9867 @5 Q 38=
.@ C2(
C _<o [
>( ) 7 ( Q ^
!CV 9 ^ 76 G
7 +8
!V 35 Q d 7
68 / 25170 @5 Q 38=
C2(
)
Iman Mehr et al., 2016
9 ^ 76 ( G
7 +8 D3=
100
!E+ I !5 D
= = 8
! 76 / 5082
) C2( @5 Q 38=
Unakitan et al., 2010
( 9 ^ 76 G
7 +8 K 30 / 11681 C2( @5 Q 38=
!b 29 / 15544 C2( @5 Q 38=
)
Yousefi & Damghani, 2013
( 9 ^ 76 G
7 +8
!U V
06 / 18111 ) C2( @5 Q 38=
Raei et al., 2011
9 ^ 76 ( G
7 +8 F t`
84 / 17183 Q 38=
C2( @5 )
Zahedi et al., 2015a
. @, I L M >( ) [ C != @ (
Figure 8. Energy consumed to produce crops dominant 0
10 20 30 40 50 60 70
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
Energy consumption (TJ)
Sprinkler IRR Drip IRR Water extraction
0 200 400 600 800 1000 1200
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
Energy consumption (TJ)
Wheat Barely Canola Sugar beet Tomato Silage Corn Alfalfa
Table 8. Energy consumed to produce crop pattern crops
Crop Wheat Barely Canola Sugar beet Tomato Silage Corn Alfalfa Energy (MJ/hr) 63218.3 64537.1 35524.5 60999.5 64352.5 76801.3 55401.3
) J2G [ C != G !U 5 1 ( V : 76 , @ 9
( (
! [ C _<o . G J2G A G
>8 ! _3EC 7 8 !2<G U @8EL V : 76 A
5 1 , L3
6 9 : 7
16 / 362172714
@5 Q 38=
9 : 55
/ 180 NE2 C 838
]=
5 1 ! _3EC 7 8 !2<G U @8EL V : 76 A , L5
6 9 : 7
71 / 39535610
@5 Q 38=
9 : 34
/ 19 2<G J= V : D8 .@ NE2 C 838 7 8 !
52 / 684 7 8 !2<G J= V : 76 D8 NE2 C 838 11
/ 1384069692 Q 38=
@5 . G
Figure 9. The amount of water and energy consumption in status quo of each second grade crop area
4 . 4 2 5
[ C _<o
!
@ 7 8 !2<G N+ O @ = 7 + 7 V : J=
52 / 684 G NE2 C 838
!=
>8 L3
A ]= L5
. V : A
>8 A 8 1 , •+ W 69
/ 347
K ! _3EC NE2 C 838 61
@ = 1 HI ^ ]=
, •+ W 1 8 A 65
/ 11 NE2 C 838
!V 35 Q d ! _3EC 7 8 !2<G @ = 1 HI ^ ! 7
76 9 : [ C . G
! 7 8 7 (
>8 , !b 7 V : 76 A 41
/ 4811 C2( @5 Q 38=
]=
V : 76 A
K U 7
! N8 , 16 / 1693 18 / 641 C2( @5 Q 38=
. G
>8 9 ^ 76 A G
8 !2<G # : x 8+ 7 D8 K ! \ 7
5 / 63 V : 76 J= 1 ^ ]=
76 A
9 ^ D8 D3= ! \ 7 8 !2<G # : x 8+ 7 G 8
/ 3 .@ V : 76 J= 1 ^
! x D 9 : #D @W 40
M 6 C8 = ^ 20
<G V : 76 J= 1 ^ 7 8 !2
>8
! 76 9 : , A … :CW W
. ](
A8 ` 5 1
]= L5
76 @M % A
V : 71 / 39535610
@5 Q 38=
9 : 34
/ 19 NE2 C 838 5 1 G
L3
>8 V : 76 @M % A 16
/ 362172714 Q 38=
@5 9 : 55
/ 180 NE2 C 838 . G
[ C ! !U
!
@ d 9 o 1
EB ; ! 7 8 !2<G C% >( = 7 N Q 484:
0 200 400 600 800 1000 1200 1400
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
Energy consumption (TJ), water consumption (MM3)
Energy consumption Water consumption
7 J8<F 1 76 9 : >( = 8 1 1 76 1 BC ! 7
! C% >( = 7 X b 7 (
7 38%V @W 848G 7 ( = ! C% >( = 7 x8 71 = ! 7
! ) Q ^ 6 C8 =
. X [ C j
!
@ 1 8 L M >( ) G
8fg 76 9 : D8 x8 71 =
! !U 8fg ! x D 20
848G 7 ( = 7 ^
](
A8 ` ; ! k D C% >( = ! 8 1
T ?C @ U V : 76 >( = @ U 8 1 1 8fg
F 1 D8 76 9 : D8
. 8
5 . 7 8 &
' 1. Multiple Linear Regressions
2. Multilayer Perceptron 3. Radial Basis Function 4. Support Vector Machine 5. Water Requirement
6 . :. ) ; *<
‡8(
. U % y EV € E !
7 . : )
Abbasi, F., Sohrab, F., & Abbasi, N. (2017). Evaluation of irrigation efficiencies in iran. Irrigation and Drainage Structures Engineering Research, 17(67), 113-120.(In Persian)
Abbasi, F., Sohrab, F., & Abbasi, N. (2015). Technical report: Irrigation efficiencies and its temporal and spatial changes in Iran, Ministry of Agricultural Jihad, Agricultural Technical Research and Engineering Institute. (In Persian)
Aliabadi, H., Alizadeh, A., & Erfani, A. (2015). Energy and water productivity under different irrigation systems, (Case Study of Corn in Jovain Agro-Industry). Iranian Journal of Irrigation & Drainage, 9(4), 571-582.(In Persian)
Asgharipour, M. R., Mousavinik, S. M., & Enayat, F F. (2016). Evaluation of energy input and reenhouse gases emissions from alfalfa production in the Sistan region, Iran. Energy Reports, 2, 135-140.
Bolandnazar, E., Rohani, A., & Taki, M. (2020). Energy consumption forecasting in agriculture by artificial intelligence and mathematical models. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(13), 1618-1632.
Canakci, M., & Akinci, I. (2006). Energy use pattern analyses of greenhouse vegetable production. Energy, 31(8-9), 1243-1256.
Canakci, M., Topakci, M., Akinci, I., & Ozmerzi, A. (2005). Energy use pattern of some field crops and vegetable production: case study for Antalya region, Turkey. Energy Convers Management, 46, 655-66.
Dalgaard, T., Halberg, N., & Porter, J. R. (2001). A model for fossil energy use in Danish agriculture used to compare organic and conventional farming. Agriculture, Ecosystem and Environment, 1, 51-65.
El-Gafy, I. (2017). Water–food–energy nexus index: analysis of water–energy–food nexus of crop’s production system applying the indicators approach. Applied Water Science, 7(6), 2857-2868.
Esengun, K., Erdal, G., Gunduz, O., & Erdal, H. (2007). An economic analysis and energy use in stake-tomato production in Tokat province of Turkey. Renewable Energy, 32, 1873-1881.
Fathi, R., kheiralipour, K., & Azizpanah, A. (2019). Assessment of the pattern of energy consumption in dryland rape production and its environmental effects in ilam province.
Quarterly energy economics review. 15 (62), 155-180. (In Persian)
Firat, M., & Gokdogan, O. (2014). Energy input/output analysis of barley production in Thrace region of Turkey. American-Eurasian Journal of Agriculture and Environment Science, 14(11), 1255-1261.
Ghadami Firouzabadi, A., Dehghani Sanich, H., Khoshravesh, M., Sidan, M. (2015). Evaluation of energy efficiency and water consumption in gasoline pumping stations. Journal of Water Research in Agriculture, 29.3(3), 367-377. (In Persian)
Hatirli, S. A., Ozkan, B., & Fert, C. (2006). Energy inputs and crop yield relationship in greenhouse tomato production.Renewable Energy, 31(4), 427-38.
Hosseini Jolfan, M., Hashemy Shahdany, S. M., Javadi, S. (2020). Assessing the effectiveness of the centralized proportional-integral control system in improving operation management of the main irrigation canal and aquifer storage and recovery in water shortage conditions (case study: Qazvin irrigation district). Water and Irrigation Management, 10(2), 281-299.
(In Persian)
Iman Mehr, A., Soltani Kazemi, M., & Abdanan Mehdizadeh, S. (2016). Evaluation of energy efficiency and productivity of fodder corn production in Markazi province. The Second National Conference on Mechanization and New Technologies in Agricultural, agriculture and natural resources university of Khuzestan.(In Persian)
Kamrani, K., Roozbahani, A., & Shahdany, S.M.H. (2020). Using bayesian networks to evaluate how agricultural water distribution systems handle the water-food-energy nexus. Agricultural Water Management, 239, 106265.
Karimi, P., Qureshi, A. S., Bahramloo, R., & Molden, D. (2012). Reducing carbon emissions through improved irrigation and groundwater management: A case study from Iran.
Agricultural Water Management, 108, 52-60.
Khoshnevisan, B., Bolandnazar, E., Shamshirband, S., Motamed, H., Badrul, N., Mat, L., &
Kiah, M. L. M. (2015). Decreasing environmental impacts of cropping systems using life cycle assessment (LCA) and multi-objective genetic algorithm. Journal of Cleaner Production, 86, 67-77.
Lorzadeh, S. H., MahdaviDamghani, A., Enayatgholizadeh, M. R., & Yousefi, M. (2012).
Reasearch of energy use efficiency for maize production systems in Izeh, Iran, Acta Agriculturae Slovenica, 99, 137-142.
Mohammadi, A., & Omid, M. (2010). Economical analysis and relation between energy inputs and yield of reenhouse cucumber production in Iran. Applied Energy, 87, 191-196.
Ovtit-Canavate, J., & Hernanz, J. L. (1999). Energy analysis and saving. In CIGR handbook of agricultural engineering. energy and biomass engineering. ASAE Publication; MI., 13-23.
Prophetic Staircase, A. (2014). Modeling and optimization of energy consumption and emission rate using expert systems in the dominant cultivation pattern of Astana Ashrafieh and Langrud counties in Gilan province Master's thesis. University of Tabriz, Iran. (In Persian)
Raei Jadidi, M., Homayounifar, M., Sabuhi Sabuni, M., & Kheradmand, V. (2011).
Determination of energy use efficiency and productivity in tomato production. Journal of Agricultural Economics and Development, 24(3), 363-370. (In Persian)
Rahimian, B. (2015). Determining economic, energy and environmental indicators in the cultivation of several crops (sugar beet, wheat and chickpeas) in West Azerbaijan province with the help of computational intelligence techniques. Master Thesis. University of Tehran, 129. (In Persian)
Rahimizadeh, M., Madani, H., Rezadoost, S., Mehraban, A., & Marjani, A. (2008). Energy analysis in the ecosystem of agricultural systems and strategies to increase energy efficiency.
Sixth National Energy Conference, Tehran, 12. (In Persian)
Sabzealipour, F., & Bagherpour, H. (2019). Modeling energy consumption of strawberries on the basis of energy consumption pattern using artificial neural network and anfis and regression in Dezfoul county. Plant Products Technology (Agricultural Research), 19(1), 207-219.(In Persian)
Shahrestani, H. (2013). Organize and manage optimal consumption water in agriculture, agricultural and natural resources engineering, 45, 37-41. (In Persian)
Taki, M., Abdi, R., Akbarpour, M., & Mobtaker, H. G. (2013). Energy inputs–yield relationship and sensitivity analysis for tomato greenhouse production in Iran. Agricultural Engineering International: CIGR Journal, 15(1), 59-67.
Unakitan, G., Hurma, H., & Yilmaz, F. (2010). An analysis of energy use efficiency of canola production in Turkey. Energy, 35, 3623-3627.
Vural, H., & Efecan, I. (2012). An analysis of energy use and input costs for maize production in Turkey. Journal of Food, Agriculture and Environment, 10, 613-616.
Yousefi, M., & Mahdavi Damghani, A. (2013). Evaluating the water and energy productivity of irrigated agroecosystems in Kermanshah Province, Iran. Journal of Agroecology, 5(2), 113- 121.(In Persian)
Zahedi, M., Eshghizadeh, H. R., & Mondani, F. (2015a). Energy efficiency and productivity in potato and sugar beet production systems in Isfahan province. Journal of Crop Production and Processing, 5(17), 181-191. (In Persian)
Zahedi, M., Mondani, F., & Eshghizadeh, H. R. (2015b). Analyzing the energy balances of double-cropped cereals in an arid region. Energy Reports, 1, 43-49.