, '
• • t
''
X ~~~'" 1 .-.. J
·Hw~
. . '
. lSv! r ~ k.rvL-v ll 0 t- J t)~
f.,.__,t p,,
Q i. BvJ
"L : ..Jc.,.,.~- '().,;:.
tJ •!", Q~:.
0. Cf .,, .
.t:,--...~
.V .;__:
I/,f
1.:-·· ·. ( . IL f.
~
•g~Ac •.
·./f-=·[f"]·.;. \.:-_. _··[· 0!:
L .II,.··]··.· ... -· .
. · U
SO-)' . >"'}'C.. b.J
I " · . I .. V'l- . J' J . . . d-J-1-o4V"l. ..
. . - . . : · · ol
~i.J_n .· . · ·
· . , _ e · - - '
---c-.. '
~ f'L . . .• . . ' . ' ·.. • . • .·. .· . . . cAh "'"~ ..
-.--:. -v-r:[l'r~,lv, s'"(O-Jv'~llb,.rc;'Jj .. ,
. ()\ t.,, . . . ·. ·. ' .. ..· . . ..·· '.
I · , ·
d p . ' ''. . . ~ ', ' ' '' .·· ... ' ' ' ' . . .· '
,j;,_ ;:. v ._\ h-.l u [- ~UYl -~- \kd v, c
-1(.h -r,- '' ~.r6·J . :.rl"Y.,,_\Vi. c.:} ( f-~--: r~ +_&3. ifr·J
~ o. )") :r-···
-~
·_s,·-; {"'''/ ~a~ . . . ..
' . -~:. -.f.4bLf'
: ot Q ~ II
1:\ 'l_: ;: . ' . .. .,_ f\JI(· r , '() v'l- .- . . . . . " .
' '
.
,6.43. (a). Step 1
•.
By inspection:
.~ j12.5 +j10.0 +j2.5 +j10.0 ~j15.0 +j5.0 +j2.5 :rj5.0 -j7.5 .. '8
2(0}= ~
1
(0) =0~ V2(0) ~ 1.0· ·•· Compute · ~y(O) ···
P2(X) = 1.0[10cos (-90°)+5 cos(-90°)] = 0
. . .
P3 (X) ~ 2.5 cos (-90°)
+
5 cos ( -90°) = 0 .Q
2(X) = 1.0[10 sin (-90°)+
15+5si~
(-90°)] =0. ·· [p2- P2(X)].
·r· -2.0-01 .
'[-2.0]:, .
~y(O)
= P3 ...:p3 (X) =. 1.0-0~.
1.0· · . Q
2-Q2(X) ~.5-0 -0.5 '(b) Step 2 Compute ,l(O) (see Table 6.5 text)
1122 =
~i ·=-V 2 [~l;
sin.(82-8.
;-·-'82,1)+f231'; sin (82 -83 -823 )]2 ~ . .:..1.0 [1 0(1) sin (-;-90°) + 5(1) sin ( -90°)] = 15.
. .
a~. ·· .. ·. · .· · .·... .
o .. · ·1123 = - = V
2Y
23V
3stn (82 -83,-823 ) = (1.0){5) sm (-90 )=-5.
. . . ac5.
' 3. ·.
.. . .
' . '.
. /
- ·aR . · • ·
J232 =a~_= ~~2 cos
(o
3 -o
2 -: 832 )= o
' ? " . . ' . .' ' ' "
_ J322
= ~~ =
v2[~·l~
cos (o2-<5; ~8 21 )].+ 1'; 3 ~
cos (82,:-~ -0
23 )= o .. · ·
a{? ··. , . . :.
JJ23
=a/
=-J.ir;J~ cos (o2 -~ -823)=03 . .
·[mt·
.J2]· [15.
-5:OJ•·- .. ·:
~(0)
=
!_. 3l
4 ~ -5 7.5 0 p~r u~it. 0 ' 0 15 ...
' ,, ' ':~ . ,
Step 3 ·_ Solve'} &
=
11yH ~~ ~~J[!~H~o:J
. ' .
Using Gauss elimination, multiply the first equation by (-:-5115) and subtract from the second
equation: · · · · ·
[ 15 . -5 . 0Jr1182
1 . r···
-2.0 .1 .
. p .
5.833333 o. ..Ao
3=
0.33333· o · o t5 11~. ~o.s
• ' > ,
Back substitution:
. 11 V2
=
-0.5115=
-0.033333110'_, =
(133333/5.833333=
0.0571428511o
2=
F-2.o+5(o.o5714285) J/15= -0.1142857. . . r11o:
1
r-0.1142S57J . . . . . ..
&
= 110'_, =
,.0.05714285· 11 V2 -o.033333 ..
Step 4 Compute x( 1) . .
~(l)
=r~ ::;J =
.x(O) +&= r.~J+r· ~. ~~J;:~:;J ~·r~~i;:~~;J :::=: .
' '. . v2 (l) ·' 1 -:0333333 . 0.96666667 p~r umt
, ' . . . .
Check Q03 using Eq. (6.5.3)'
..
'
·-
' '
Q3 =V
3[Y
31
v;
sin (£53 -J'1
-B31
)+Y3
~V2
sin (£53 -£52 -B32
)+Y33
~ sin (-833 )]=
1[(2.5)(1) sin(o.o5714 :_ ")+
5(0.966666) sin (.0.~5714+0.114~9-
") · · .· radoans 2 . 2
,' ' . .· . .
+7.5{l)sin ( ;)]
Q3
=
1[-2.4959- 4.7625+7.5] =0.2416 per unit · QG3 =Q3 +QL3 ::;:0.2416-t0~0.2416 per unit Since Qa3
~
0.2416 is~ithin
the limits [-5.0;+5.0], bus 3 'remains a voltage-controlled bus.This completes the first N~wton~Raphson iteratio~. · · ·
.
-l .. '
.~ . '
,'•'
>- ~~~
&a::=f-::::::::;::::>
· ... P,ru~~~]
...
Solution The Newton-Rhapson method is described by the following equation
' ' _'. : ~ • ' ' ' • ' . . < ' •
. : . .
~(i + 1) == ~(l) ~-,L-1L[~(i)], . where the Jacobian, ,L, is evaluated at ~( i) ~nd defi11~d as
... " · ... [dh
df ··. , 'd-.
J--= . - X)
- - dx .··- dh
. J'!='!(•) - ..
. . . .· ,·... . dxr.
If we consider the given equations to be It and. !2 respectively; the Jacobian is found to be
\ ' "' .
· The first iteration can then·be computed as follows
~(1)
=
~(0)-:- I_\1.l.[~(O)j, where ~(0), ll'!(o) and L[~(O)] are given respectively as ..
~(O) =rn
· .:· I..l_x(O) =[4 . 2]
3 ~1 · · ..Continuing the same process, it is seen that the values converge 'to within 3 decimal places (f= 0.001) in 4
iterations. · ' · · · · · ·
·.. ' :.·.·, . ' ' -.
Table 1: Newton-Rhaps.on Results After 4 Iterations.
Iteration 0 1 2 3 '· '.4
. X1 1 2.1 1.8284 1.8092 1.8091
X2 1 1.3 1.2122 1.2061 1.2060 '•
._,.
..
, I
-·,
. •
. r .
· : o-~r? ~·t P\ , r
C)[v; ~ o. or11
%Problem\)
%solv~ for xi x2 syms xlx2
fl:Xl~~+3*X2A2-31;
f2=xl+xl;x2A2-20;
f = [fl; f2];
x=[xl, x2];
J
=
jacobian(f, x);solution=[l; 1]; %initial guess
· maxi teration=B;
epsilon=O.OOl;
x_old=solution(i,l);
Jinv=inv(J);
i=O;
while (i<maxiteration)
end
x_new
=
x_old+(subs(Jinv,x,x_old)*(-subs(f,x,x_old)));error=max(abs(x_new~x_old));
if (error<epsilon) i=maxiteration;
end i=i+l;
x old=f{.:_new;
solution=[solution x_new];
%% . .
%Problem~
£.\:01.clear all syms theta;
Vl=l;
V2=0.95;
P=l. 5;
X=0.2;
fl=P+Vl*V2*sin(theta)/X;
J
=
jacobian(fl, thet~);solution=[pi/2]; %initial guess maxiteration=B;
epsilon=0.005;
theta_old=solution(l);
Jinv=inv(J);
i=O;
while (i<maxiteration)
theta_new = theta_old+(subs(Jinv,theta,theta_old)*(-subs(fl,theta,theta_old)) error=max(abs(theta_new-theta_old));
if (error<epsilon)
2
I
Newton_HwB.mi=maxiteration;
end i=i+l;
theta old=theta_new;
solution=[solution.theta_new];
end
solution=solution./pi*lBO
%%
%Problem
!5Q 41o
clear all clc
syms theta2 V2;
Vl=l;
.P=l.S;
Q=0.2;
X=0.2;
fl=P+Vl*V2*sin(theta2)/X;
f2=Q+V2*V2/X-V2*cos(theta2)/X;
J = jacobian([fl; f2], [theta2;.V2]);
solution=[O; 1]; %initial guess maxiteration=20;
epsilon=O.OOOl;
x_old=solution(:,l);
Jinv=inv(J);
i~O;
while (i<maxiteration)
x_new = x_old+(subs(Jinv, [theta2, V2],x_old)*(-subs([fl;f2], [theta2, V2],x_ol error=max(abs(x_new-x_old));
if (error<epsilon) i=maxiteration;
end i=i+l;
x old=x_new; '
solution=[solution x_new];
end
iolution(l,:)=solution(l,:)./pi*180