• Tidak ada hasil yang ditemukan

,j;,_ ;:. v ._\ h-.l u [- ~UYl -~-\kd v, c -1 (.h -r,- '' ~.r6·J

N/A
N/A
Protected

Academic year: 2024

Membagikan ",j;,_ ;:. v ._\ h-.l u [- ~UYl -~-\kd v, c -1 (.h -r,- '' ~.r6·J"

Copied!
8
0
0

Teks penuh

(1)

, '

t

''

X ~~~'" 1 .-.. J

·Hw~

. . '

. lSv! r ~ k.rvL-v ll 0 t- J t)~

f.,.__,t p,,

Q i

. BvJ

"L : ..

Jc.,.,.~- '().,;:.

tJ

!", Q~:.

0. Cf .

,, .

.t:,--...~

.V .;__:

I

/,f

1.:-

·· ·. ( . IL f.

~

g~Ac •.

·./f

-=·[f"]·.;. \.:-_. _··[· 0!:

L .

II,.··]··.· ... -· .

. · U

SO-)' . >"'}'C.. b

.J

I " · . I .. V'l- . J' J . . . d-J-1-

o4V"l. ..

. . - . . : · · ol

~i.

J_n .· . · ·

· . , _ e · - - '

---c-.. '

~ f'L . . .• . . ' . ' ·.. • . • .·. .· . . . cAh "'"~ ..

-.--:. -v-r:[l'r~,lv, s'"(O-Jv'~llb,.rc;'Jj .. ,

. ()\ t.,, . . . ·. ·. ' .. ..· . . ..·· '.

I · , ·

d p . ' ''. . . ~ ', ' ' '' .·· ... ' ' ' ' . . .· '

,j;,_ ;:. v ._\ h-.l u [- ~UYl -~- \kd v, c

-1

(.h -r,- '' ~.r6·J . :.rl"Y.,,_\Vi. c.:} ( f-~--: r~ +_&3. ifr·J

~ o. )") :r-···

-~

·_s,·-; {"'''/ ~a~ . . . ..

' . -~:. -.f.4bLf'

: ot Q ~ II

1:\ 'l_: ;: . ' . .. .,_ f\JI(· r , '

() v'l- .- . . . . . " .

' '

(2)

.

,

6.43. (a). Step 1

•.

By inspection:

.~ j12.5 +j10.0 +j2.5 +j10.0 ~j15.0 +j5.0 +j2.5 :rj5.0 -j7.5 .. '8

2(0}= ~

1

(0) =0~ V2(0) ~ 1.0

· ·•· Compute · ~y(O) ···

P2(X) = 1.0[10cos (-90°)+5 cos(-90°)] = 0

. . .

P3 (X) ~ 2.5 cos (-90°)

+

5 cos ( -90°) = 0 .

Q

2(X) = 1.0[10 sin (-90°)

+

15+5

si~

(-90°)] =0

. ·· [p2- P2(X)].

·r· -2.0-0

1 .

'[-2.0]:

, .

~y(O)

= P3 ...:p3 (X) =. 1.0-0

~.

1.0

· · . Q

2-Q2(X) ~.5-0 -0.5 '(b) Step 2 Compute ,l(O) (see Table 6.5 text)

1122 =

~i ·=-V 2 [~l;

sin.(82

-8.

;-·-'82,1)+f231'; sin (82 -83 -823 )]

2 ~ . .:..1.0 [1 0(1) sin (-;-90°) + 5(1) sin ( -90°)] = 15.

. .

a~

. ·· .. ·. · .· · .·... .

o .. · ·

1123 = - = V

2Y

23V

3stn (82 -83,-823 ) = (1.0){5) sm (-90 )=-5.

. . . ac5.

' 3

. ·.

.

. . .

' . '

.

. /

(3)

- ·aR . · • ·

J232 =a~_= ~~2 cos

(o

3 -

o

2 -: 832 )

= o

' ? " . . ' . .' ' ' "

_ J322

= ~~ =

v2

[~·l~

cos (o2

-<5; ~8 21 )].+ 1'; 3 ~

cos (82,:-

~ -0

23 )

= o .. · ·

a{? ··. , . . :.

JJ23

=a/

=-J.ir;J~ cos (o2 -~ -823)=0

3 . .

·[mt·

.J

2]· [15.

-5:

OJ•·- .. ·:

~(0)

=

!_. 3

l

4 ~ -5 7.5 0 p~r u~it

. 0 ' 0 15 ...

' ,, ' ':~ . ,

Step 3 ·_ Solve'} &

=

11y

H ~~ ~~J[!~H~o:J

. ' .

Using Gauss elimination, multiply the first equation by (-:-5115) and subtract from the second

equation: · · · · ·

[ 15 . -5 . 0Jr1182

1 . r···

-2.0 .

1 .

. p .

5.833333 o. ..

Ao

3

=

0.33333

· o · o t5 11~. ~o.s

' > ,

Back substitution:

. 11 V2

=

-0.5115

=

-0.033333

110'_, =

(133333/5.833333

=

0.05714285

11o

2

=

F-2.o+5(o.o5714285) J/15= -0.1142857

. . . r11o:

1

r-0.1142S57J . . . . . ..

&

= 110'_, =

,.0.05714285

· 11 V2 -o.033333 ..

Step 4 Compute x( 1) . .

~(l)

=

r~ ::;J =

.x(O) +&

= r.~J+r· ~. ~~J;:~:;J ~·r~~i;:~~;J :::=: .

' '. . v2 (l) ·' 1 -:0333333 . 0.96666667 p~r umt

, ' . . . .

Check Q03 using Eq. (6.5.3)'

..

'

·-

(4)

' '

Q3 =V

3[Y

31

v;

sin (£53 -J'

1

-B

31

)+Y

3

~V

2

sin (£53 -£52 -B

32

)+Y

33

~ sin (-833 )]

=

1[(2.5)(1) sin(o.o5714 :_ ")

+

5(0.966666) sin (.

0.~5714+0.114~9-

") · · .

· radoans 2 . 2

,' ' . . .

+7.5{l)sin ( ;)]

Q3

=

1[-2.4959- 4.7625+7.5] =0.2416 per unit · QG3 =Q3 +QL3 ::;:0.2416-t0~0.2416 per unit Since Qa

3

~

0.2416 is

~ithin

the limits [-5.0;+5.0], bus 3 'remains a voltage-controlled bus.

This completes the first N~wton~Raphson iteratio~. · · ·

.

-

l .. '

.~ . '

(5)

,'•'

>- ~~~

&a::=f

-::::::::;::::>

· ... P,ru~~~]

...

Solution The Newton-Rhapson method is described by the following equation

' ' _'. : ~ • ' ' ' ' . . < '

. : . .

~(i + 1) == ~(l) ~-,L-1L[~(i)], . where the Jacobian, ,L, is evaluated at ~( i) ~nd defi11~d as

... " · ... [dh

df ··. , 'd-.

J--= . - X)

- - dx .··- dh

. J'!='!(•) - ..

. . . .· ,·... . dxr.

If we consider the given equations to be It and. !2 respectively; the Jacobian is found to be

\ ' "' .

· The first iteration can then·be computed as follows

~(1)

=

~(0)-:- I_\1.l.[~(O)j, where ~(0), ll'!(o) and L[~(O)] are given respectively as .

.

~(O) =rn

· .:· I..l_x(O) =

[4 . 2]

3 ~1 · · ..

Continuing the same process, it is seen that the values converge 'to within 3 decimal places (f= 0.001) in 4

iterations. · ' · · · · · ·

·.. ' :.·.·, . ' ' -.

Table 1: Newton-Rhaps.on Results After 4 Iterations.

Iteration 0 1 2 3 '.4

. X1 1 2.1 1.8284 1.8092 1.8091

X2 1 1.3 1.2122 1.2061 1.2060 '•

._,.

..

, I

-·,

. •

(6)

. r .

· : o-~r? ~·t P\ , r

C)

[v; ~ o. or11

(7)

%Problem\)

%solv~ for xi x2 syms xlx2

fl:Xl~~+3*X2A2-31;

f2=xl+xl;x2A2-20;

f = [fl; f2];

x=[xl, x2];

J

=

jacobian(f, x);

solution=[l; 1]; %initial guess

· maxi teration=B;

epsilon=O.OOl;

x_old=solution(i,l);

Jinv=inv(J);

i=O;

while (i<maxiteration)

end

x_new

=

x_old+(subs(Jinv,x,x_old)*(-subs(f,x,x_old)));

error=max(abs(x_new~x_old));

if (error<epsilon) i=maxiteration;

end i=i+l;

x old=f{.:_new;

solution=[solution x_new];

%% . .

%Problem~

£.\:01.

clear all syms theta;

Vl=l;

V2=0.95;

P=l. 5;

X=0.2;

fl=P+Vl*V2*sin(theta)/X;

J

=

jacobian(fl, thet~);

solution=[pi/2]; %initial guess maxiteration=B;

epsilon=0.005;

theta_old=solution(l);

Jinv=inv(J);

i=O;

while (i<maxiteration)

theta_new = theta_old+(subs(Jinv,theta,theta_old)*(-subs(fl,theta,theta_old)) error=max(abs(theta_new-theta_old));

if (error<epsilon)

(8)

2

I

Newton_HwB.m

i=maxiteration;

end i=i+l;

theta old=theta_new;

solution=[solution.theta_new];

end

solution=solution./pi*lBO

%%

%Problem

!5Q 41o

clear all clc

syms theta2 V2;

Vl=l;

.P=l.S;

Q=0.2;

X=0.2;

fl=P+Vl*V2*sin(theta2)/X;

f2=Q+V2*V2/X-V2*cos(theta2)/X;

J = jacobian([fl; f2], [theta2;.V2]);

solution=[O; 1]; %initial guess maxiteration=20;

epsilon=O.OOOl;

x_old=solution(:,l);

Jinv=inv(J);

i~O;

while (i<maxiteration)

x_new = x_old+(subs(Jinv, [theta2, V2],x_old)*(-subs([fl;f2], [theta2, V2],x_ol error=max(abs(x_new-x_old));

if (error<epsilon) i=maxiteration;

end i=i+l;

x old=x_new; '

solution=[solution x_new];

end

iolution(l,:)=solution(l,:)./pi*180

Referensi

Dokumen terkait

Penyelesaian sengketa di luar pengadilan dilakukan melalui Lembaga Alternatif Penyelesaian Sengketa atau dengan mengajukan permohonan kepada OJK untuk memfasilitasi

Di antaranya ketika masyarakat terpencil yang mengalami hambatan untuk datang ke kantor pengadilan karena alasan jarak, transportasi dan biaya, ternyata akses pada keadilan dapat

Data dilengkapi wawancara dengan Prayitno, Kepala Seksi Sengketa Konflik dan Perkara pada Kantor Pertanahan Kabupaten Semarang, 14 April 2014, transkrip wawancara ada pada

Pasal 19 Undang - Undang Nomor 8 Tahun 1999 tentang Perlingungan Konsumen, mengatur Pelaku Usaha berkewajiban untuk mengganti rugi apabila konsumen dirugikan akibat

Perkara ini diputus dengan membebankan ganti rugi pada tergugat berdasarkan strict liability. Strict liability merupakan konsep pertanggungjawaban perdata yang berlaku dalam sistem

(3) Dalam hal hasil penjualan sebagaimana dimaksud pada ayat (1) tidak cukup untuk melunasi piutang yang bersangkutan, Kreditor pemegang hak tersebut dapat mengajukan tagihan

Hasil: Berdasarkan hasil penelitian didapatkan hasil bahwa ekstrak dan suspensi ekstrak daun bayam duri (Amaranthus spinosus L.) mempunyai efektivitas dalam menurunkan volume udema

Faktor lainnya yang menyebabkan maraknya pembalakan liar khususnya di Kota Batam adalah kebutuhan masyarakat akan areal tanah, bahwa berdasarkan hasil wawancara dengan