١
Nonlinear control
ﺱﺭﺪﻣ : ﺩﻮﻨﺷﻮﺧ ﺪﻴﺠﻤﻟﺍﺪﺒﻋ ﻥﺍﻮﻨﻋ ﻝﺮﺘﻨﮐ
ﯽﻄﺧﺮﯿﻏ
ﻝﻭﺍ ﻞﺼﻓ :
ﻪﻣﺪﻘﻣ ) ﻝﺮﺘﻨﮐ ﻪﭽﺨﻳﺭﺎﺗ (
1868 First article of control on governor by Maxwell 1877 Routh stability criterion
1892 Liapunov stability condition 1895 Hurwitz stability condition 1922 The first form of PID controller 1932 Nyquist
1943 Neural Networks 1945 (1938) Bode 1947 Nichols 1948 Root locus
1949 Wiener optimal control research
1950 Adaptive Control, Sliding mode control
٢
ﻝﻭﺍ ﻞﺼﻓ :
ﻪﻣﺪﻘﻣ 1955 Kalman filter and controllability observability analysis
1956 Artificial Intelligence
1957 Bellman optimal and adaptive control 1960-1963 Kalman filter
1962 Pontryagin optimal control 1962 Stability of nonlinear systems 1965 Fuzzy set
1972 Vidyasagar multi-variable optimal control and Robust control
1981 Doyle Robust control theory 1990 Neuro-Fuzzy
ﻝﻭﺍ ﻞﺼﻓ :
ﻪﻣﺪﻘﻣ
Control Liapunov Functions Feedback linearization Sliding mode control
Back stepping (1987-1999)
؟ﻥﻮﻨﮐﺎﺗ
ﯽﺒﻴﮐﺮﺗ ﯼﺎﻫ ﺵﻭﺭ Robust Adaptive
Intelligent adaptive/ Artificial /NN Model Switching
ﻝﺮﺘﻨﮐ ﯼﺎﻫ ﻢﺘﺴﻴﺳ Multi Agent
٣
ﯽﮑﻴﻣﺎﻨﻳﺩ ﯼﺎﻫ ﻢﺘﺴﻴﺳ ﯼﺭﺍﺪﻳﺎﭘ ﻡﻮﻬﻔﻣ ﻝﺩﺎﻌﺗ ﻪﻄﻘﻧ
: ﻥﺁ ﺭﺩ ﻥﺪﻧﺎﻣ ﯽﻗﺎﺑ ﻭ ﻪﻄﻘﻧ ﻦﻳﺍ ﺯﺍ ﺖﮐﺮﺣ ﻉﻭﺮﺷ
؟ﯽﻫﺎﮔﺪﻳﺩ ﻪﭼ ﺯﺍ ﯼﺭﺍﺪﻳﺎﭘ
ﯽﺗﺍﺫ ﺮﻴﻏ ﺎﻳ ﯽﺗﺍﺫ ﯽﻣﻮﻬﻔﻣ )
ﯼﺎﻫ ﻢﺘﺴﻴﺳ Affine
(
؟ﻝﺩﺎﻌﺗ ﻪﻄﻘﻧ ﯼﺭﺍﺪﻳﺎﭘ ﺎﻳ ﻢﺘﺴﻴﺳ ﯼﺭﺍﺪﻳﺎﭘ•
ﻝﻭﺍ ﻞﺼﻓ :
ﻪﻣﺪﻘﻣ ) ﻪﻳﺎﭘ ﺚﺣﺎﺒﻣ ﯼﺭﻭﺁﺩﺎﻳ (
ﻑﻮﻧﺎﭘﺎﻴﻟ ﯼﺭﺍﺪﻳﺎﭘ ﻩﺎﮔﺪﻳﺩ• ﻝﺩﺎﻌﺗ ﻪﻄﻘﻧ ﺮﻫ ﯼﺍﺮﺑ ﺮﮔﺍ ﺖﺳﺍ ﺭﺍﺪﻳﺎﭘ x=0
> 0 ﺪﺷﺎﺑ ﻪﺘﺷﺍﺩ ﺩﻮﺟﻭ
> 0 ﻪﮐ
:
(0) < ≫ < ε, ∀ ≥ 0
ﯼﺭﺍﺪﻳﺎﭘ•
۴
ﻝﻭﺍ ﻞﺼﻓ :
ﻪﻣﺪﻘﻣ ) ﻪﻳﺎﭘ ﺚﺣﺎﺒﻣ ﯼﺭﻭﺁﺩﺎﻳ (
ﯼﺭﺍﺪﻳﺎﭘ ﻩﺎﮔﺪﻳﺩ• ﻑﻮﻧﺎﭘﺎﻴﻟ
ﻝﺩﺎﻌﺗ ﻪﻄﻘﻧ ﺖﺒﺜﻣ ﺭﺍﺪﻘﻣ ﮏﻳ ﻭ ﺪﺷﺎﺑ ﻑﻮﻧﺎﭘﺎﻴﻟ ﺭﺍﺪﻳﺎﭘ ﺮﮔﺍ ﺖﺳﺍ ﯽﺒﻧﺎﺠﻣ ﺭﺍﺪﻳﺎﭘ x=0
ﺪﺷﺎﺑ ﻪﺘﺷﺍﺩ ﺩﻮﺟﻭ ﺮﻳﺯ ﺕﺭﻮﺻ ﻪﺑ ﺖﺑﺎﺛ :
ﯽﺒﻧﺎﺠﻣ ﯼﺭﺍﺪﻳﺎﭘ • Asymptotic Stability
ﯼﺮﺳﺍﺮﺳ ﯼﺭﺍﺪﻳﺎﭘ • Global Stability
• ﺮﻫ ﯼﺍﺯﺍ ﻪﺑ ﺮﮔﺍ ﺖﺳﺍ ﯼﺮﺳﺍﺮﺳ ﯼﺭﺍﺪﻳﺎﭘ ﺭﺩ ﻝﺩﺎﻌﺗ ﻪﻄﻘﻧ ﺪﺷﺎﺑ ﻖﻘﺤﻣ ﻉﻮﺿﻮﻣx(0)
.
ﻝﻭﺍ ﻞﺼﻓ :
ﻪﻣﺪﻘﻣ ) ﻪﻳﺎﭘ ﺚﺣﺎﺒﻣ ﯼﺭﻭﺁﺩﺎﻳ (
ﯼﺭﺍﺪﻳﺎﭘ ﻩﺎﮔﺪﻳﺩ• ﻑﻮﻧﺎﭘﺎﻴﻟ
ﻝﺩﺎﻌﺗ ﻪﻄﻘﻧ ﺖﺑﺎﺛ ﻭ ﺖﺒﺜﻣ ﺮﻳﺩﺎﻘﻣ ﺮﮔﺍ ﺖﺳﺍ ﻲﻳﺎﻤﻧ ﺭﺍﺪﻳﺎﭘ x=0
c, k, ﻪﺘﺷﺍﺩ ﺩﻮﺟﻭ
ﻪﮐ ﺪﻨﺷﺎﺑ :
Exponentially stability
ﻲﻳﺎﻤﻧ ﯼﺭﺍﺪﻳﺎﭘ ﯽﻄﺧ ﯼﺎﻫ ﻢﺘﺴﻴﺳ ﺎﺑ ﻥﺁ ﻁﺎﺒﺗﺭﺍ
۵
ﻑﻮﻧﺎﭘﺎﻴﻟ ﯼﺭﺍﺪﻳﺎﭘ ﻩﺎﮔﺪﻳﺩ• ﻢﻴﻘﺘﺴﻣ ﺮﻴﻏ ﺵﻭﺭ ،ﯽﻣﻮﻫﻮﻣ ﺭﻮﺤﻣ ﭗﭼ ﺖﻤﺳ ﺭﺩ ﻩﮋﻳﻭ ﺮﻳﺩﺎﻘﻣ ﺭﺍﺮﻘﺘﺳﺍ ،ﯽﻄﺧ ﯼﺎﻫ ﻢﺘﺴﻴﺳ ﯼﺯﺎﺳ ﯽﻄﺧ ﯽﻣﻮﻫﻮﻣ ﺭﻮﺤﻣ ﯼﻭﺭ ﻭ ﺖﺳﺍﺭ ﺖﻤﺳ ﻢﻴﻘﺘﺴﻣ ﺵﻭﺭ ﻊﺑﺎﺗ ﺮﮔﺍ ﺕﺭﻮﺻ ﻪﺑ V
: →
ﻭ ﻪﺘﺳﻮﻴﭘ ﻭ ﻩﺪﺷ ﻒﻳﺮﻌﺗ
ﻭ ﺪﺷﺎﺑ ﻦﻴﻌﻣ ﺖﺒﺜﻣ ﺰﻴﻧ ﻭ ﺪﺷﺎﺑ ﺮﻳﺬﭘ ﻖﺘﺸﻣ
̇ ≤ 0
ﻪﻄﻘﻧ ﺖﺳﺍ ﺭﺍﺪﻳﺎﭘx=0
.
ﺮﮔﺍ .ﺩﻮﺑ ﺪﻫﺍﻮﺧ ﯽﺒﻧﺎﺠﻣ ﺭﺍﺪﻳﺎﭘ x=0 ﻪﻄﻘﻧ ̇ < 0
ﻝﻭﺍ ﻞﺼﻓ :
ﻪﻣﺪﻘﻣ
ﻪﻴﻀﻗ• ﯼﺭﺍﺪﻳﺎﭘ دﻮﺷ ﯽﻣ ﻦﯿﻌﻣ ﻪﻤﯿﻧ ﯽﻔﻨﻣ فﻮﻧﺎﭘﺎﯿﻟ ﻊﺑﺎﺗ ﻖﺘﺸﻣ ﻪﮐ يدراﻮﻣ رد دﺮﺑرﺎﮐﻝﺎﺳﻻ . Invariant set ﺎﯾ ادروﺎﻧ يﺎﻫ ﻪﻋﻮﻤﺠﻣ ﻒﯾﺮﻌﺗ ﻪﻋﻮﻤﺠﻣ ﮏﯾ: ﯽﮑﯿﻣﺎﻨﯾد ﻢﺘﺴﯿﺳ ﻪﺑ ﺖﺒﺴﻧ ار M
Xd=f(x) ﺪﻨﻣﺎﻧ ﺮﯿﻐﺘﻣﺎﻧ ﻪﻋﻮﻤﺠﻣ
ﺮﮔا : 0 ∈ ⇒ ∈
ﺮﮕﯾد ترﺎﺒﻋ ﻪﺑ رد ﻪﻟدﺎﻌﻣ ﻞﺣ ﺮﮔا ﻪﮐ ﺖﺳا ﯽﻃﺎﻘﻧ ﻪﻋﻮﻤﺠﻣM
راﺮﻗ نآ ردt=0
رد هراﻮﻤﻫ هﺎﮕﻧآ دﺮﯿﮔ ﺪﻧﺎﻣ ﯽﻣ ﯽﻗﺎﺑ M
.
۶
ﻝﻭﺍ ﻞﺼﻓ :
ﻪﻣﺪﻘﻣ
بﻮﺴﺤﻣ ادروﺎﻧ ﻪﻋﻮﻤﺠﻣ ﮏﯾ دﻮﺧ لدﺎﻌﺗ ﻪﻄﻘﻧ اﺬﻟ لدﺎﻌﺗ ﻪﻄﻘﻧ ﻪﺑ ﻒﯾﺮﻌﺗ ﺖﻫﺎﺒﺷ• دﻮﺷ ﯽﻣ . يﺪﺣ يﺎﻫ ﻞﮑﯿﺳ ياﺮﺑ ﻒﯾﺮﻌﺗ ﻪﻌﺳﻮﺗ•
ﻝﺎﺳﻻ ﻪﻴﻀﻗ• ﺪﯿﻨﮐ ضﺮﻓ
: →
و ﺪﺷﺎﺑ ﺮﯾﺬﭘ ﻖﺘﺸﻣ و ﻪﺘﺳﻮﯿﭘ ﻊﺑﺎﺗ ﮏﯾ
⊂ ﻪﻟدﺎﻌﻣ ﻞﺣ ﻪﺑ ﺖﺒﺴﻧ ﺮﯿﻐﺘﻣﺎﻧ ﻪﻋﻮﻤﺠﻣ ﮏﯾ Xd=f(x)
ﺰﯿﻧ و ﺪﺷﺎﺑ
̇ ≤ 0 رد
وM
= : , ̇ = 0 و
رد ﺮﯿﻐﺘﻣﺎﻧ ﻪﻋﻮﻤﺠﻣ ﻦﯾﺮﺘﮔرﺰﺑN لﺎﺣ ،ﺖﺳاE
رد ﻪﮐ ﯽﻠﺣ ﺮﻫ ﻪﺑ ﯽﻧﺎﻣز ﺖﯾﺎﻬﻧ ﯽﺑ رد دﻮﺷ عوﺮﺷ M
دﻮﺷ ﯽﻣ ﻢﺘﺧ N
. لﺎﺜﻣ و ﺎﯾاﺰﻣ ،دﺮﺑرﺎﮐ هﻮﺤﻧ
ﻝﻭﺍ ﻞﺼﻓ :
ﻪﻣﺪﻘﻣ ) ﻪﻳﺎﭘ ﺚﺣﺎﺒﻣ ﯼﺭﻭﺁﺩﺎﻳ (
ﯼﺭﺍﺪﻳﺎﭘﺍﺮﻓ Hyper stability
ﻊﺟﺮﻣ ﻝﺪﻣ ﯽﻘﻴﺒﻄﺗ ﻝﺮﺘﻨﮐ ﯼﺎﻫ ﻢﺘﺴﻴﺳ ﺭﺩ ﺩﺮﺑﺭﺎﮐ ﺎﻳ ﯽﻟﺎﻌﻓﺮﻴﻏ Passivity
ﺯﺍ • ۱۹۶۱ ﺖﺳﺍ ﻩﺪﺷ ﻪﺋﺍﺭﺍ .
ﺖﺳﺍ ﻩﺪﺷ ﺎﻨﺑ ﻢﺘﺴﻴﺳ ﺭﺩ ﯼﮊﺮﻧﺍ ﺶﻫﺎﮐ ﺱﺎﺳﺍ ﺮﺑ • .
ﺩﺭﺍﺩ ﻁﺎﺒﺗﺭﺍ ﯽﻄﺧﺮﻴﻏ ﻢﺘﺴﻴﺳ ﯽﺟﻭﺮﺧ ﻭ ﯼﺩﻭﺭﻭ ﺎﺑ ﺎﻬﻨﺗ • .
Linear
Nonlinear
٧
ﯼﺭﺍﺪﻳﺎﭘﺍﺮﻓ Hyper stability
ﯽﻟﺎﻌﻓﺮﻴﻏ ﻭ ﯼﺭﺍﺪﻳﺎﭘﺍﺮﻓ ﻒﻳﺮﻌﺗ ﺮﻳﺩﺎﻘﻣ ﺎﺑ ﺮﮔﺍ ﺪﻨﻣﺎﻧ ﺭﺍﺪﻳﺎﭘﺍﺮﻓ ﺍﺭ ﻭﺮﺑﻭﺭ ﻢﺘﺴﻴﺳ ﯼﺎﻫ ﻞﺣ ﻪﻤﻫ ﯼﺍﺮﺑ ﺐﻳﺍﺮﺿ ﺖﺒﺜﻣ ﯽﻘﻴﻘﺣ X(x(t0),t ) ﻢﻴﺷﺎﺑ ﻪﺘﺷﺍﺩ
:
ﻻﺎﺑ ﻪﻄﺑﺍﺭ ﺮﮕﻳﺩ ﻥﺎﻴﺑ :
≤
ﻪﻄﺑﺍﺭ ﺪﺷﺎﺑ ﯽﻣ ﯽﻟﺎﻌﻓﺮﻴﻏ ﻁﺮﺷ ﻥﺎﻤﻫ X
) . ﻢﺘﺴﻴﺳ ﯼﮊﺮﻧﺍ (
W=f(v,t,T) ) t ( u ) t ( D ) t ( x ) t ( c y
) t ( u ) t ( B ) t ( x ) t ( A x
+
=
+
=
) ) t ( x ( ) t (
x <δ 0 +γ
u v
w
ﻝﻭﺍ ﻞﺼﻓ :
ﻪﻣﺪﻘﻣ ) ﻪﻳﺎﭘ ﺚﺣﺎﺒﻣ ﯼﺭﻭﺁﺩﺎﻳ (
ﯼﺭﺍﺪﻳﺎﭘﺍﺮﻓ ﺮﻴﺴﻔﺗ
=
ﻪﻠﺻﺎﻓ ﺭﺩ ﻩﺪﺷ ﮏﻠﻬﺘﺴﻣ ﯼﮊﺮﻧﺍ t0,t1
+ ﻥﺎﻣﺯ ﺭﺩ ﺩﻮﺟﻮﻣ ﯼﮊﺮﻧﺍ t1
ﺭﺩ ﻪﻴﻟﻭﺍ ﻩﺪﺷ ﻩﺮﻴﺧﺫ ﯼﮊﺮﻧﺍ +t0
ﻪﻠﺻﺎﻓ ﺭﺩ ﺝﺭﺎﺧ ﺯﺍ ﻢﺘﺴﻴﺳ ﻪﺑ ﻩﺪﺷ ﻞﻘﺘﻨﻣ ﯼﮊﺮﻧﺍ t0,t1
∫
+
=
+ 0 2
2
1 ) D x(t ) uvdt
t ( x
Linear
Nonlinear
w v
u
٨
ﻝﻭﺍ ﻞﺼﻓ :
ﻪﻣﺪﻘﻣ ) ﻪﻳﺎﭘ ﺚﺣﺎﺒﻣ ﯼﺭﻭﺁﺩﺎﻳ (
ﯼﺭﺍﺪﻳﺎﭘﺍﺮﻓ ﺮﻴﺴﻔﺗ ﻥﻮﭼ D>0 :
ﯼﺭﺍﺪﻳﺎﭘﺍﺮﻓ ﻁﺮﺷ ﻖﺒﻃ ﻭ
ﻪﺠﻴﺘﻧ ﺭﺩ : ﺪﺣﺍﻭ ﺮﺑﺍﺮﺑ ﺎﺘﻟﺩ
∫
≤ 0 2 +
2
1) x(t ) uvdt
t ( x
γ2
∫
uvdt<2 2 0 2
1 ) ≤ x(t ) +γ t
( x
γ t x t x
γ t x γ t x t
x
+
+ +
)
≤ ( )
⇒ (
) ) (
≤( )
≤ ( ) (
0 1
2 0 2 2
0 2 1
ﻝﻭﺍ ﻞﺼﻓ :
ﻪﻣﺪﻘﻣ ) ﻪﻳﺎﭘ ﺚﺣﺎﺒﻣ ﯼﺭﻭﺁﺩﺎﻳ (
ﯼﺭﺍﺪﻳﺎﭘﺍﺮﻓ Hyper stability
ﯼﺭﺍﺪﻳﺎﭘﺍﺮﻓ ﻂﻳﺍﺮﺷ :
ﺪﺷﺎﺑ ﯽﻘﻴﻘﺣ ﺖﺒﺜﻣ ﯽﻄﺧ ﻢﺘﺴﻴﺳ - .
PR
ﺪﺷﺎﺑ ﺭﺍﺮﻗﺮﺑ ﺮﻳﺯ ﯼﮊﺮﻧﺍ ﯼﻭﺎﺴﻣﺎﻧ - :
ﯽﻄﺧﺮﻴﻏ ﻥﺎﻤﻟﺍ ﯼﺩﻭﺭﻭ ﺮﮔﺍ ﻥﺁ ﯽﺟﻭﺮﺧ ﻭv
ﻢﻳﺭﺍﺩ ﺪﺷﺎﺑw ) :
ﺱﻼﮐ ﻊﺑﺍﻮﺗ (p
≥ − ﺎﻳ
≤
Linear
Nonlinear
w v
u
٩
ﺖﺒﺜﻣ ﯽﻄﺧ ﻊﺑﺍﻮﺗ ﻥﺩﻮﺑ ﯽﻘﻴﻘﺣ
ﻊﺑﺎﺗ ﻢﻴﺷﺎﺑ ﻪﺘﺷﺍﺩ ﺮﮔﺍ ﻢﻴﻣﺎﻧ ﯽﻣ ﯽﻘﻴﻘﺣ ﺖﺒﺜﻣ ﺍﺭG(s)
:
Re(G(s))>=0 for all Re(s)>=0
ﻝﺎﺜﻣ : G(s)=1/(s+1) S=a+jb, G(a+jb)=1/(a+jb+1)=(a+1-jb)/((a+1)^2+b^2) Re(G(s))=(a+1)/((a+1)^2+b^2)
For all a>=0 Re(G(s))>=0 G(s) is Positive real
ﻝﻭﺍ ﻞﺼﻓ :
ﻪﻣﺪﻘﻣ ) ﯽﻘﻴﺒﻄﺗ ﻝﺮﺘﻨﮐ ﺮﺑ ﯼﺍ ﻪﻣﺪﻘﻣ (
ﻒﻠﺘﺨﻣ ﯽﮑﻴﻣﺎﻨﻳﺩ ﯼﺎﻫ ﻢﺘﺴﻴﺳ• LTI ﯽﺳﺎﻨﺷﺭﺎﮐ ﻩﺭﻭﺩ ﻝﺮﺘﻨﮐ/ LTV/ NLTI/ NLTV
ﻝﺮﺘﻨﮐ ﻑﺍﺪﻫﺍ :
ﯼﺭﺍﺪﻳﺎﭘ ﺏﻮﻠﻄﻣ ﺩﺮﮑﻠﻤﻋ ﺵﺎﺸﺘﻏﺍ ﻭ ﺰﻳﻮﻧ ﻑﺬﺣ ﻡﺍﻮﻗ ﺎﻳ ﯼﺭﺍﺪﻳﺎﭘ ﺐﺳﺎﻨﻣ ﻪﻴﺷﺎﺣ
ﺎﻫﺮﮕﻠﻤﻋ ﺩﻭﺪﺤﻣ ﺢﻄﺳ ﺎﻫ ﯽﮔﺪﺷ ﺖﻔﺟ ﻑﺬﺣ
١٠
ﻝﻭﺍ ﻞﺼﻓ :
ﻪﻣﺪﻘﻣ ) ﯽﻘﻴﺒﻄﺗ ﻝﺮﺘﻨﮐ ﺮﺑ ﯼﺍ ﻪﻣﺪﻘﻣ (
ﯽﻨﻴﻌﻣﺎﻧ ﻡﻮﻬﻔﻣ• (uncertainty)
ﯽﮑﻴﻣﺎﻨﻳﺩ ﯼﺎﻫ ﻢﺘﺴﻴﺳ ﺭﺩ
ﯽﮑﻴﻣﺎﻨﻳﺩ ﻢﺘﺴﻴﺳ ﮏﻳ ﺭﺩ ﺮﻴﻴﻐﺗ ﻭ ﯽﻨﻴﻌﻣﺎﻧ ﺯﻭﺮﺑ ﻪﺑ ﻒﻠﺘﺨﻣ ﯼﺎﻫ ﻩﺎﮕﻧ ﻥﺎﻣﺯ ﺐﺴﺣ ﺮﺑ ﺎﻫﺮﺘﻣﺍﺭﺎﭘ ﺮﻴﻴﻐﺗ )
ﻦﻴﻌﻣﺎﻧ ﻭ ﻦﻴﻌﻣ (
ﻝﻭﺍ ﻞﺼﻓ :
ﻪﻣﺪﻘﻣ ) ﯽﻘﻴﺒﻄﺗ ﻝﺮﺘﻨﮐ ﺮﺑ ﯼﺍ ﻪﻣﺪﻘﻣ (
ﯼﺭﺎﺘﺧﺎﺳ ﻩﺎﮕﻧ ﻭ ﻖﻴﻗﺩ ﺮﻴﻏ ﯼﺯﺎﺴﻟﺪﻣ )
ﯼﺮﺘﻣﺍﺭﺎﭘ ( ﯼﺭﺎﺘﺧﺎﺳ ﺮﻴﻏ ﻭ
) ﻩﺪﺸﻧ ﻝﺪﻣ ﮏﻴﻣﺎﻨﻳﺩ (
Parametric or Structural and Non-structural ﻩﺪﺷ ﯽﻄﺧ ﯼﺎﻫ ﯽﻄﺧ ﺮﻴﻏ ﻭ ﻖﻴﻗﺩ ﺮﻴﻏ ﯼﺯﺎﺴﻟﺪﻣ
ﺵﺎﺸﺘﻏﺍ ﻭ ﺰﻳﻮﻧ ﺩﻭﺭﻭ )
ﯽﺟﺭﺎﺧ ﺎﻳ ﯽﻠﺧﺍﺩ (
ﻥﺁ ﻥﺍﺰﻴﻣ ﻭ ﺵﺎﺸﺘﻏﺍ ﻉﻮﻗﻭ ﻥﺎﻣﺯ
ﻡﻭﺎﻘﻣ ﻪﺑ ﯼﺭﺎﺘﺧﺎﺳ ﺮﻴﻏ ﻭ ﯽﻘﻴﺒﻄﺗ ﻝﺮﺘﻨﮐ ﻪﺑ ﯼﺭﺎﺘﺧﺎﺳ ﯽﻨﻴﻌﻣﺎﻧ ﻊﺟﺍﺮﻣ ﯽﺧﺮﺑ ﺭﺩ ﺖﺳﺍ ﻩﺪﺷ ﻩﺩﺍﺩ ﻉﺎﺟﺭﺍ .
ﻢﻳﺯﺍﺩﺮﭘ ﯽﻣ ﻪﻟﺎﺴﻣ ﻦﻳﺍ ﻪﺑ ﺮﺗ ﯼﺩﺎﻴﻨﺑ ﺮﮕﻳﺩ ﯽﻫﺎﮕﻧ ﺭﺩ .
ﻲﻨﻴﻌﻣﺎﻧ matched ﻭ
unmatched
Xd=(A+d1)X+(B+d2)U ﺎﻳ
Xd=AX+BU+d1+d2
١١
ﺮﻴﻈﻧ ﯽﻟﻮﻤﻌﻣ ﺭﻮﺨﺴﭘ ﻝﺮﺘﻨﮐ•
؟ﺪﻫﺩ ﯽﻣ ﺏﺍﻮﺟ ﺎﺠﮐ ﺎﺗ PID
ﻝﺎﺜﻣ ﺎﺑ ﺵﻭﺎﮐ ﮏﺷﻮﻣ ﮏﻳ ﻭﺎﻳ ﻝﺎﻧﺎﮐ ﯽﮑﻴﻣﺎﻨﻳﺩ ﻢﺘﺴﻴﺳ :
ﻩﺪﻨﻨﮐ ﻝﺮﺘﻨﮐ
4 PID
3 2
2 1
a s a s
a s a r
r
ﻝﻭﺍ ﻞﺼﻓ :
ﻪﻣﺪﻘﻣ ) ﯽﻘﻴﺒﻄﺗ ﻝﺮﺘﻨﮐ ﺮﺑ ﯼﺍ ﻪﻣﺪﻘﻣ (
ﻪﺘﺴﺑ ﻭ ﺯﺎﺑ ﻪﻘﻠﺣ ﺦﺳﺎﭘ•
0 5 10 15 20 25 30
4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
0 5 10 15 20 25 30
-1 0 1 2 3 4 5
١٢
ﻝﻭﺍ ﻞﺼﻓ :
ﻪﻣﺪﻘﻣ ) ﯽﻘﻴﺒﻄﺗ ﻝﺮﺘﻨﮐ ﺮﺑ ﯼﺍ ﻪﻣﺪﻘﻣ (
ﺎﺑ ﻪﺘﺴﺑ ﻪﻘﻠﺣ ﺦﺳﺎﭘ• ۱
ﺮﻴﺧﺎﺗ ﻪﻴﻧﺎﺛ
) ﺏﻮﻠﻄﻣﺎﻧ ﺩﺮﮑﻠﻤﻋ ﺎﻣﺍ ﯼﺭﺍﺪﻳﺎﭘ ﻆﻔﺣ (
ﻪﺘﺴﺑ ﻪﻘﻠﺣ ﺦﺳﺎﭘ•
ﺖﻣﻼﻋ ﻥﺎﻤﻫ ﺎﺑ ﻞﻳﺪﺒﺗ ﻊﺑﺎﺗ ﺐﻳﺮﺿ ﺮﻴﻴﻐﺗ ﺎﺑ ) ﺏﻮﻠﻄﻣﺎﻧ ﺩﺮﮑﻠﻤﻋ ﺎﻣﺍ ﯼﺭﺍﺪﻳﺎﭘ ﻆﻔﺣ (
0 5 10 15 20 25 30
-5 -4 -3 -2 -1 0 1 2 3 4 5
0 5 10 15 20 25 30
-1 0 1 2 3 4 5
ﻝﻭﺍ ﻞﺼﻓ :
ﻪﻣﺪﻘﻣ ) ﯽﻘﻴﺒﻄﺗ ﻝﺮﺘﻨﮐ ﺮﺑ ﯼﺍ ﻪﻣﺪﻘﻣ (
ﺮﻴﻴﻐﺗ ﺎﺑ ﻪﺘﺴﺑ ﻪﻘﻠﺣ ﺦﺳﺎﭘ• ﺎﻫﺮﺘﻣﺍﺭﺎﭘ ﺯﺍ ﯽﮑﻳ ﺖﻣﻼﻋ )
ﯼﺭﺍﺪﻳﺎﭘﺎﻧ (
ﻪﺘﺴﺑ ﻪﻘﻠﺣ ﺦﺳﺎﭘ•
ﯼﺮﻴﮔ ﻩﺯﺍﺪﻧﺍ ﺰﻳﻮﻧ ﻝﺎﻤﻋﺍ ﺎﺑ
) ﺏﻮﻠﻄﻣﺎﻧ ﺩﺮﮑﻠﻤﻋ ﺎﻣﺍ ﯼﺭﺍﺪﻳﺎﭘ ﻆﻔﺣ (
0 5 10 15 20 25 30
0 0.5 1 1.5 2 2.5
3x 105
0 5 10 15 20 25 30
-1 0 1 2 3 4 5
١٣
؟ﺪﻨﺷﺎﺑ ﻢﻫ ﺎﺑ ﻪﻤﻫ ﺮﮔﺍ ﺪﺷ ﻡﺎﺠﻧﺍ ﻞﻘﺘﺴﻣ ﺭﻮﻃ ﻪﺑ ﺮﻴﻴﻐﺗ ﺩﺭﺍﻮﻣ ﺯﺍ ﮏﻳﺮﻫ ﻝﺎﻤﻋﺍ• ﻢﺘﺴﻴﺳ ﯼﺎﻫﺮﺘﻣﺍﺭﺎﭘ ﺭﺩ ﻲﻳﺰﺟ ﺮﻴﻴﻐﺗ ﻭ ﺮﻴﺧﺎﺗ ﻥﺎﻣﺰﻤﻫ ﻝﺎﻤﻋﺍ
0 5 10 15 20 25 30
-100 -50 0 50 100 150 200
ﻝﻭﺍ ﻞﺼﻓ :
ﻪﻣﺪﻘﻣ ) ﯽﻘﻴﺒﻄﺗ ﻝﺮﺘﻨﮐ ﺮﺑ ﯼﺍ ﻪﻣﺪﻘﻣ (
ﯼﺭﺎﺘﺧﺎﺳ ﻉﻮﻧ ﺯﺍ ﯽﻨﻴﻌﻣﺎﻧ• )
ﻞﻳﺪﺒﺗ ﻊﺑﺎﺗ ﺯﺍ ﯽﻌﻗﺍﻭ
ﻪﺳ ﻪﺒﺗﺮﻣ ﻭﺩ ﻪﺒﺗﺮﻣ ﯼﺍﺮﺑ ﺎﻣ ﻭ ﻩﺩﻮﺑ
ﻢﻳﺍ ﻩﺩﺮﮐ ﯽﺣﺍﺮﻃ (
5 10 15 20 25 30
-6 -4 -2 0 2 4 6
8 3rd order
2nd order
١۴
ﻝﻭﺍ ﻞﺼﻓ :
ﻪﻣﺪﻘﻣ ) ﯽﻘﻴﺒﻄﺗ ﻝﺮﺘﻨﮐ ﺮﺑ ﯼﺍ ﻪﻣﺪﻘﻣ (
ﻢﺘﺴﻴﺳ ﯼﺮﮔ ﯽﻄﺧ ﺮﻴﻏ• ﯽﻄﺧ ﻢﺘﺴﻴﺳ ﺭﺩ ﻥﺁ ﻑﺬﺣ ﻭ ﯽﻄﺧﺮﻴﻏ ﻢﺘﺴﻴﺳ ﺭﺩ ﯽﮔﺪﺷ ﺖﻔﺟ - Coupling
ﺎﻬﻧﺁ ﺶﻘﻧ ﻭ ﻻﺎﺑ ﻪﺒﺗﺮﻣ ﯼﺎﻫ ﻡﺮﺗ - High order terms
ﻞﻣﺎﺷ ﯽﻄﺧ ﺮﻴﻏ ﯼﺎﻫ ﻢﺘﺴﻴﺳ ﯼﺎﻫ ﯽﮔﮋﻳﻭ - :
ﺵﺮﭘ ﻩﺪﻳﺪﭘ Jumping
ﺏﻮﺷﺁ ﻪﻳﺪﭘ Chaos
ﯼﺪﺣ ﻞﮑﻴﺳ Limit cycle
ﮏﻴﻧﻮﻣﺭﺎﻫﺮﻳﺯ ﻩﺪﻳﺪﭘ Sub-harmonic
ﮏﻳﺮﺘﻣﺍﺭﺎﭘ ﮏﻳﺮﺤﺗ Parametric excitation
ﻥﺪﺷ ﻪﺘﺴﺑ ﻭ ﺯﺎﺑ ﻩﺪﻳﺪﭘ
ﻝﻭﺍ ﻞﺼﻓ :
ﻪﻣﺪﻘﻣ ) ﯽﻘﻴﺒﻄﺗ ﻝﺮﺘﻨﮐ ﺮﺑ ﯼﺍ ﻪﻣﺪﻘﻣ (
ﻩﺪﺷ ﻪﺋﺍﺭﺍ ﯼﺎﻫ ﻞﺣ ﻩﺍﺭ• :
ﻡﻭﺎﻘﻣ ﻝﺮﺘﻨﮐ /LTI
ﺩﺮﮑﻠﻤﻋ ﺖﻳﺩﻭﺪﺤﻣ /
ﯼﺭﺍﺪﻳﺎﭘ ﻭ ﯽﺿﺎﻳﺭ ﯽﻧﺎﺒﻣ
ﯼﻮﻗ ﺭﺎﻴﺴﺑ ﯽﻘﻴﺒﻄﺗ ﻝﺮﺘﻨﮐ /NLTV
ﯽﺒﻳﺮﻘﺗ ﺩﻭﺪﺤﻣﺎﻧ ﺩﺮﮑﻠﻤﻋ /
ﯽﻧﺎﺒﻣ
ﺩﻮﺟﻮﻣ ﯽﺿﺎﻳﺭ ﯽﺒﻳﺮﻘﺗ ﺩﻭﺪﺤﻣﺎﻧ ﺩﺮﮑﻠﻤﻋ ﺪﻨﻤﺷﻮﻫ ﻝﺮﺘﻨﮐ /
Soft
computing ﻒﻴﻌﺿ ﯼﺭﺍﺪﻳﺎﭘ ﯽﻧﺎﺒﻣ ﻭ ﺕﺎﻴﺿﺎﻳﺭ ﺎﻫ ﺵﻭﺭ ﻪﻤﻫ ﺮﺑ ﯽﺸﺷﻮﭘ ﯽﻄﺧﺮﻴﻏ ﯼﺎﻫ ﺵﻭﺭ ﻩﺎﮕﻳﺎﺟ /
ﯽﻫﺎﮔﺪﻳﺩ
ﯼﺩﺮﺑﺭﺎﮐ
١۵
ﻊﺟﺍﺮﻣ Applied nonlinear control, Slotin, 1991.
Nonlinear systems, H. Khalil, 3rd edition, 2002.
Nonlinear oscillation, A. H. Nyfeh,
Adaptive Control, K. J. Astrom, Wesley, 1995.
Adaptive Control Tutorial, P. Ioannou, B. Fidan, SIAM, Advanced in Design and Control, 2006
Adaptive Control, L. D. Landau, R. Lozano, Springer-Verlag London Limited 2011 -
ﺱﺭﺩ ﯽﻠﺻﺍ ﻦﺘﻣ )
۵۰ ﻡﺮﺗ ﻥﺎﻳﺎﭘ ﻥﺎﺤﺘﻣﺍ ﺭﺩ ﺪﺻﺭﺩ (
ﯼﺭﺍﺬﮔ ﺵﺯﺭﺍ -
ﯼﺯﺎﺳ ﻪﻴﺒﺷ )
۴۰ ﺎﻫ ﻩﮊﻭﺮﭘ ﺭﺩ ﺪﺻﺭﺩ
( (ﯽﻟﺎﺳرا ﻪﻟﺎﻘﻣ)
-
ﻖﻴﻘﺤﺗ ) ۱۰ ﺭﺎﻨﻴﻤﺳ ﺎﻳ ﻩﮊﻭﺮﭘ ﺐﻟﺎﻗ ﺭﺩ ﺪﺻﺭﺩ (
ﯼﺯﺎﺴﻟﺪﻣ ﻭ ﻪﻟﺎﻘﻣ ﯼﻮﺠﺘﺴﺟ
۹ • ﻞﻣﺎﺷ ﻩﺮﻤﻧ ۲ ﻩﺮﻤﻧ ) ﺭﺎﻨﻴﻤﺳ ﺎﻳ ﻦﻳﺮﻤﺗ (
۷ ﻡﺮﺗ ﻥﺎﻳﺎﭘ ﻩﺮﻤﻧ
ﺱﺭﺩ ﻊﺟﺍﺮﻣ ﻭ ﺕﺎﺤﻴﺿﻮﺗ ﺮﻳﺎﺳ ﺎﻫ ﻞﺼﻓﺮﺳ
ﯽﺷﺰﻐﻟ ﺩﻮﻣ ﻝﺮﺘﻨﮐ •
ﺐﻘﻋ ﻪﺑ ﻡﺎﮔ ﻭ ﺭﻮﺨﺴﭘ ﯼﺯﺎﺳ ﯽﻄﺧ •
ﯽﻘﻴﺒﻄﺗ ﻝﺮﺘﻨﮐ •
١۶