Objectives
• dimensional homogeneity
• nondimensionalize the equations
• dimensional analysis, in which the combination of dimensional variables, nondimensional variables, and dimensional constants into nondimensional parameters reduces the number of necessary independent parameters in a problem.
زیلانآ • یداعبا
: بیکرت اهریغتم
و یاهرتماراپ هلأسم
( دعب
،راد یب
،دعب تباوث و
...
) ب ه روظنم
شهاک دادعت
یاهریغتم ریگرد
( لقتسم )
رد هلأسم
Nondimensionalization of Equations
• divide each term in the equation by a collection of variables and constants whose product has those same dimensions, the equation is rendered nondimensional.
Nondimensionalization of Equations
• As a simple example:
𝑫𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒂𝒍 𝒓𝒆𝒔𝒖𝒍𝒕: 𝒛 = 𝒛𝟎 + 𝒘𝟎𝒕 − 𝟏
𝟐 𝒈𝒕𝟐 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝒎𝒐𝒕𝒊𝒐𝒏: 𝒅𝟐𝒛
𝒅𝒕𝟐 = −𝒈
𝒘: 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚 𝒊𝒏 𝒛 − 𝒅𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏 𝑎𝑡 𝑡 = 0: 𝑧 = 𝑧0 & 𝑤 = 𝑤0
Nondimensionalization of Equations
• To nondimensionalize equation of motion, we need to select scaling parameters, based on the primary dimensions contained in the original equation.
• In a typical fluid flow problem, the scaling parameters usually include:
• Other parameters and fluid properties such as density, viscosity, and gravitational acceleration enter the problem as well.
Nondimensionalization of Equations
𝑵𝒐𝒏𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒂𝒍𝒊𝒛𝒆𝒅 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔: 𝒛∗ = 𝒛
𝒛𝟎 , 𝒕∗ = 𝒘𝟎𝒕 𝒛𝟎
𝒅𝟐𝒛
𝒅𝒕𝟐 = 𝒅 𝒅𝒕
𝒅𝒛
𝒅𝒕 = 𝒅 𝒅𝒕
𝒅 𝒛𝟎𝒛∗ 𝒅 𝒕∗𝒛𝟎 𝒘𝟎
= 𝒅 𝒅𝒕
𝒘𝟎𝒅𝒛∗
𝒅𝒕∗ = 𝒘𝟎 𝒅 𝒅 𝒕∗𝒛𝟎
𝒘𝟎
𝒅𝒛∗ 𝒅𝒕∗ = 𝒘𝟎𝟐
𝒛𝟎 𝒅 𝒅𝒕∗
𝒅𝒛∗
𝒅𝒕∗ = 𝒘𝟎𝟐 𝒛𝟎
𝒅𝟐𝒛∗ 𝒅𝒕∗𝟐 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝒎𝒐𝒕𝒊𝒐𝒏: 𝒅𝟐𝒛
𝒅𝒕𝟐 = −𝒈
𝒅𝟐𝒛
𝒅𝒕𝟐 = 𝒘𝟎𝟐 𝒛𝟎
𝒅𝟐𝒛∗
𝒅𝒕∗𝟐 = −𝒈 → 𝒘𝟎𝟐 𝒈𝒛𝟎
𝒅𝟐𝒛∗
𝒅𝒕∗𝟐 = −𝟏
Nondimensionalization of Equations
𝑭𝒓𝒐𝒖𝒅 𝒏𝒖𝒎𝒆𝒃𝒓: 𝑭𝒓 = 𝒘𝟎 𝒈𝒛𝟎
𝑵𝒐𝒏𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒂𝒍𝒊𝒛𝒆𝒅 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝒎𝒐𝒕𝒊𝒐𝒏: 𝒅𝟐𝒛∗
𝒅𝒕∗𝟐 = − 𝟏 𝑭𝒓 𝟐
𝑵𝒐𝒏𝒅𝒊𝒆𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒂𝒍 𝒓𝒆𝒔𝒖𝒍𝒕: 𝒛∗ = 𝟏 + 𝒕∗ − 𝟏
𝟐 𝑭𝒓𝟐 𝒕∗𝟐 𝑎𝑡 𝑡 = 0: 𝑧 = 𝑧0 → 𝑧∗ = 1
& 𝑤 = 𝑤0 ∴ 𝒘 = 𝒅𝒛
𝒅𝒕 = 𝒅 𝒛𝟎𝒛∗ 𝒅 𝒕∗𝒛𝟎 𝒘𝟎
= 𝒘𝟎𝒅𝒛∗
𝒅𝒕∗ = 𝒘𝟎 → 𝒂𝒕 𝒕 = 𝟎:𝒅𝒛∗
𝒅𝒕∗ = 𝟏
Advantages of Nondimensionalization
Advantages of
Nondimensionalization of an Equation
Advantages of Nondimensionalization
Trajectories of a steel ball falling in a vacuum: a) z0 variations, w0 fixed; b) w0 variations, z0 fixed
Advantages of Nondimensionalization
Trajectories of a steel ball falling in a vacuum. Data a & b are nondimensionalized and combined onto one plot.
Nondimensionalization of Equations
Mass conservation equation:
Navier-Stokes equations:
Nondimensionalization of Equations
To nondimensionalize these equations, divide all lengths by a reference length, L,
and all velocities by a reference speed, 𝑽∞, which usually is taken as the freestream velocity.
and the pressure by 𝝆𝑽∞𝟐 (twice the freestream dynamic pressure).
Nondimensionalization of Equations
Mass conservation equation:
Navier-Stokes equations (x-dir):
Nondimensionalization of Equations
Reynolds number
Nondimensionalization of Equations
Dimensional Analysis & Similarity
• There are 3 necessary conditions for complete similarity between a model and a prototype.
Dimensional Analysis & Similarity
• In a general flow field, complete similarity between a model and prototype is achieved only when there is geometric, kinematic, and dynamic similarity.
• You are already familiar with one 𝚷 “Froude number, Fr”.
𝚷: 𝒅𝒆𝒏𝒐𝒕𝒆 𝒂 𝒏𝒐𝒏𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒂𝒍 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓
Dimensional Analysis & Similarity
• In a general dimensional analysis problem,
• Where k is the total number of 𝚷′𝒔.
• To ensure complete similarity, the model and prototype must be geometrically similar, and all independent pi groups must match between model and prototype.
1 dependent 𝜫: 𝜫𝟏
Other 𝜫′𝒔: 𝜫𝟐, … 𝒆𝒕𝒄. : 𝒊𝒏𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔
𝜫𝟐,𝒎 = 𝜫𝟐,𝒑; 𝜫𝟑,𝒎 = 𝜫𝟑,𝒑; … ; 𝜫𝒌,𝒎 = 𝜫𝒌,𝒑
𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒂𝒍 𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔𝒉𝒊𝒑 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝜫′𝒔: 𝜫𝟏 = 𝒇(𝜫𝟐, 𝜫𝟑, … , 𝜫𝒌)
Dimensional Analysis & Similarity
• Under these conditions the dependent pi of the model is guaranteed to also equal the dependent pi of the prototype.
𝒊𝒇 𝜫𝟐,𝒎 = 𝜫𝟐,𝒑; 𝜫𝟑,𝒎 = 𝜫𝟑,𝒑; … ; 𝜫𝒌,𝒎 = 𝜫𝒌,𝒑 𝒕𝒉𝒆𝒏 𝜫𝟏,𝒎 = 𝜫𝟏,𝒑
Dimensional Analysis & Similarity
Dimensional Analysis & Similarity
• The Reynolds number is the most well known and useful dimensionless parameter in all of fluid mechanics.
• In this problem there is only one independent pi; & it was said if the independent pi match (the Reynolds numbers match); then the independent pi also match.
magnitude of the aerodynamic drag on the car Reynolds number
𝒊𝒇 𝜫𝟐,𝒎 = 𝜫𝟐,𝒑 (𝑹𝒆𝒑 = 𝑹𝒆𝒎) 𝒕𝒉𝒆𝒏 𝜫𝟏,𝒎 = 𝜫𝟏,𝒑
Dimensional Analysis & Similarity
• This enables engineers to measure the aerodynamic drag on the model car and then use this value to predict the aerodynamic drag on the prototype car.
Dimensional Analysis & Similarity
Dimensional Analysis & Similarity
Dimensional Analysis & Similarity
Dimensional Analysis & Similarity
Dimensional Analysis & Similarity
• The power of using dimensional analysis and similarity to supplement experimental analysis is: actual values of the dimensional parameters (density, velocity, etc.) are irrelevant. As long as the corresponding independent Pi’s are set equal to each other, similarity is achieved, even if different fluids are used.
Buckingham Pi Theorem
هیرظن • یاپ
ماهگنیکاب :
کی • هدیدپ یکیزیف
ار رد رظن دیریگب هک
رد نآ رتماراپ هتسباو
یعبات n-1 زا
رتماراپ لقتسم
دشاب .
• 𝒒𝟏 = 𝒇 𝒒𝟐, 𝒒𝟑, … , 𝒒𝒏 𝒐𝒓 𝒈 𝒒𝟏, 𝒒𝟐, 𝒒𝟑, … , 𝒒𝒏
یارب • هطبار
یم g n ناوت
رتماراپ هداد
هدش ار
تروصب تبسن n-m
یب دعب لقتسم هورگ
یدنب درک
. نیا تبسن اه
ار یاهرتماراپ یاپ
یم دنیوگ و
تروصب ریز
هتشون یم
نوش د .
• 𝑮 𝚷𝟏, 𝚷𝟐, … , 𝚷𝒏−𝒎 = 𝟎 or
• 𝚷𝟏 = 𝑮𝟏 𝚷𝟐, 𝚷𝟑, … , 𝚷𝒏−𝒎 = 𝟎
Buckingham Pi Theorem
• Now: how to generate the nondimensional parameters, i.e., the pi’s
• several methods; the most popular (and simplest) method is the method of repeating variables, popularized by Edgar Buckingham (1867–1940)
6 steps
• As a simple first example, consider a ball falling in a vacuum as discussed before.
Pi’s Variables?
Buckingham Pi Theorem
• List the parameters (dimensional variables, nondimensional variables, and dimensional constants) and count them.
• Let n be the total number of parameters in the problem, including the dependent variable.
Step 1
𝑬𝒙𝒂𝒎𝒑𝒍𝒆: 𝑳𝒊𝒔𝒕 𝒐𝒇 𝒓𝒆𝒍𝒆𝒗𝒂𝒏𝒕 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔:
𝒛 = 𝒇 𝒕, 𝒘𝟎, 𝒛𝟎, 𝒈 𝒏 = 𝟓
𝑫𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒂𝒍 𝒓𝒆𝒔𝒖𝒍𝒕: 𝒛 = 𝒛𝟎 + 𝒘𝟎𝒕 − 𝟏
𝟐 𝒈𝒕𝟐 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝒎𝒐𝒕𝒊𝒐𝒏: 𝒅𝟐𝒛
𝒅𝒕𝟐 = −𝒈
Buckingham Pi Theorem
• List the primary dimensions for each of the n parameters.
Step 2
𝒛 𝒕 𝒘𝟎 𝒛𝟎 𝒈
𝑳𝟏 𝒕𝟏 𝑳𝟏𝒕−𝟏 𝑳𝟏 𝑳𝟏𝒕−𝟐
𝑬𝒙𝒂𝒎𝒑𝒍𝒆:
𝑫𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒂𝒍 𝒓𝒆𝒔𝒖𝒍𝒕: 𝒛 = 𝒛𝟎 + 𝒘𝟎𝒕 − 𝟏
𝟐 𝒈𝒕𝟐 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝒎𝒐𝒕𝒊𝒐𝒏: 𝒅𝟐𝒛
𝒅𝒕𝟐 = −𝒈
Buckingham Pi Theorem
• Guess the reduction j.
• As a first guess, set j equal to the number of primary dimensions represented in the problem.
• The expected number of Pi’s (k) is equal to n minus j, according to the Buckingham Pi theorem.
• Example: As a first guess, j is set equal to 2, the number of primary dimensions represented in the problem (L and t).
– Reduction: 𝒋 = 𝟐
• If this value of j is correct, the number of Pi’s predicted by the Buckingham Pi theorem is:
Step 3
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒆𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝜫’𝒔: 𝒌 = 𝒏 − 𝒋 = 𝟓 − 𝟐 = 𝟑
Buckingham Pi Theorem
• Choose j repeating parameters that will be used to construct each Pi.
• Example:
• We need to choose two repeating parameters since j=2.
Step 4
𝑹𝒆𝒑𝒆𝒂𝒕𝒊𝒏𝒈 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔: 𝒘𝟎 & 𝒛𝟎
Buckingham Pi Theorem
• Generate the Pi’s one at a time by grouping the j repeating parameters with one of the remaining parameters, forcing the product to be dimensionless.
Step 5
Buckingham Pi Theorem
𝜫𝟏 = 𝒛𝒘𝟎𝒂𝟏𝒛𝟎𝒃𝟏
𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒔 𝒐𝒇 𝜫𝟏: 𝜫𝟏 = 𝑳𝟎𝑻𝟎 = 𝒛𝒘𝟎𝒂𝟏𝒛𝟎𝒃𝟏 = 𝑳𝟏 𝑳𝟏𝑻−𝟏 𝒂𝟏𝑳𝒃𝟏 𝑻𝒊𝒎𝒆: 𝒕𝟎 = 𝒕−𝒂𝟏 𝟎 = −𝒂𝟏 𝒂𝟏 = 𝟎
𝑳𝒆𝒏𝒈𝒕𝒉: 𝑳𝟎 = 𝑳𝟏𝑳𝒂𝟏𝑳𝒃𝟏 𝟎 = 𝟏 + 𝒂𝟏 + 𝒃𝟏 𝒃𝟏 = −𝟏 𝜫𝟏 = 𝒛
𝒛𝟎
Buckingham Pi Theorem
𝜫𝟐 = 𝒕𝒘𝟎𝒂𝟐𝒛𝟎𝒃𝟐
𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒔 𝒐𝒇 𝜫𝟐: 𝜫𝟐 = 𝑳𝟎𝑻𝟎 = 𝒕𝒘𝟎𝒂𝟐𝒛𝟎𝒃𝟐 = 𝑻𝟏 𝑳𝟏𝑻−𝟏 𝒂𝟐𝑳𝒃𝟐 𝑻𝒊𝒎𝒆: 𝑻𝟎 = 𝑻𝟏𝑻−𝒂𝟐 𝟎 = 𝟏 − 𝒂𝟐 𝒂𝟐 = 𝟏
𝜫𝟐 = 𝒘𝟎𝒕 𝒛𝟎
𝑳𝒆𝒏𝒈𝒕𝒉: 𝑳𝟎 = 𝑳𝒂𝟐𝑳𝒃𝟐 𝟎 = 𝒂𝟐 + 𝒃𝟐 𝒃𝟐 = −𝟏
Buckingham Pi Theorem
𝜫𝟑 = 𝒈𝒘𝟎𝒂𝟑𝒛𝟎𝒃𝟑
𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒔 𝒐𝒇 𝜫𝟐: 𝜫𝟑 = 𝑳𝟎𝑻𝟎 = 𝒈𝒘𝟎𝒂𝟑𝒛𝟎𝒃𝟑 = 𝑳𝟏𝑻−𝟐 𝑳𝟏𝑻−𝟏 𝒂𝟑𝑳𝒃𝟑 𝑻𝒊𝒎𝒆: 𝑻𝟎 = 𝑻−𝟐𝑻−𝒂𝟑 𝟎 = −𝟐 − 𝒂𝟑 𝒂𝟑 = −𝟐
𝜫𝟑 = 𝒈𝒛𝟎 𝒘𝟎𝟐
𝑳𝒆𝒏𝒈𝒕𝒉: 𝑳𝟎 = 𝑳𝟏𝑳𝒂𝟑𝑳𝒃𝟑 𝟎 = 𝟏 + 𝒂𝟑 + 𝒃𝟑 𝒃𝟑 = 𝟏
𝜫𝟑,𝒎𝒐𝒅𝒊𝒇𝒊𝒆𝒅 = 𝒈𝒛𝟎 𝒘𝟎𝟐
− 𝟏𝟐
= 𝒘𝟎
𝒈𝒛𝟎 = 𝑭𝒓
Buckingham Pi Theorem
• Check that all the Pi’s are indeed dimensionless. Write the final functional relationship in the form.
• Example:
Step 6
𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒂𝒍 𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔𝒉𝒊𝒑 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝜫′𝒔: 𝜫𝟏 = 𝒇(𝜫𝟐, 𝜫𝟑, … , 𝜫𝒌) 𝑹𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔𝒉𝒊𝒑 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝜫′𝒔: 𝜫𝟏 = 𝒇(𝜫𝟐, 𝜫𝟑)
𝒛
𝒛𝟎 = 𝒇(𝒘𝟎𝒕
𝒛𝟎 , 𝒘𝟎 𝒈𝒛𝟎)
𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒂𝒍 𝒓𝒆𝒔𝒖𝒍𝒕 𝒐𝒇 𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒂𝒍 𝒂𝒏𝒂𝒍𝒚𝒔𝒊𝒔: 𝒛∗ = 𝒇(𝒕∗, 𝑭𝒓)
Buckingham Pi Theorem
• fundamental limitation of dimensional analysis and the method of repeating variables: This method cannot predict the exact mathematical form of the equation.
Buckingham Pi Theorem
Buckingham Pi Theorem
Buckingham Pi Theorem
Buckingham Pi Theorem
Buckingham Pi Theorem
Buckingham Pi Theorem
Buckingham Pi Theorem
Buckingham Pi Theorem
Guidelines for Repeating parameter
• 1- Never pick the dependent variable. Otherwise, it may appear in all the 𝚷′𝒔, which is undesirable.
In the present problem we cannot choose z
𝑫𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒂𝒍 𝒓𝒆𝒔𝒖𝒍𝒕: 𝒛 = 𝒛𝟎 + 𝒘𝟎𝒕 − 𝟏
𝟐 𝒈𝒕𝟐 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝒎𝒐𝒕𝒊𝒐𝒏: 𝒅𝟐𝒛
𝒅𝒕𝟐 = −𝒈
Guidelines for Repeating parameter
• 2- The chosen repeating parameters must not by themselves be able to form a dimensionless group. It would be impossible to generate the rest of 𝚷′𝒔.
We could not, for example, choose 𝒕, 𝒘𝟎, and 𝒛𝟎, because (𝒕𝒘𝟎/𝒛𝟎) is a 𝚷.
𝑫𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒂𝒍 𝒓𝒆𝒔𝒖𝒍𝒕: 𝒛 = 𝒛𝟎 + 𝒘𝟎𝒕 − 𝟏
𝟐 𝒈𝒕𝟐 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝒎𝒐𝒕𝒊𝒐𝒏: 𝒅𝟐𝒛
𝒅𝒕𝟐 = −𝒈
Guidelines for Repeating parameter
• 3- The chosen repeating parameters must represent all primary dimensions.
In the present problem we cannot choose L and 𝒘𝟎
𝑫𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒂𝒍 𝒓𝒆𝒔𝒖𝒍𝒕: 𝒛 = 𝒛𝟎 + 𝒘𝟎𝒕 − 𝟏
𝟐 𝒈𝒕𝟐 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝒎𝒐𝒕𝒊𝒐𝒏: 𝒅𝟐𝒛
𝒅𝒕𝟐 = −𝒈
Guidelines for Repeating parameter
• 4- Never pick parameters that are already dimensionless. These are 𝚷′𝒔.
For example 𝜽
Guidelines for Repeating parameter
• 5- Never pick two parameters with same dimensions or dimensions that differ by only an exponent.
In the present problem we cannot choose z and 𝒛𝟎. Or in another problem: z[m] and V[m3] (volume)
𝑫𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒂𝒍 𝒓𝒆𝒔𝒖𝒍𝒕: 𝒛 = 𝒛𝟎 + 𝒘𝟎𝒕 − 𝟏
𝟐 𝒈𝒕𝟐 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝒎𝒐𝒕𝒊𝒐𝒏: 𝒅𝟐𝒛
𝒅𝒕𝟐 = −𝒈
Guidelines for Repeating parameter
• 6- If possible: choose dimensional constants over dimensional variables.
In the present problem choose 𝒕𝟎 instead of 𝒕
𝑫𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒂𝒍 𝒓𝒆𝒔𝒖𝒍𝒕: 𝒛 = 𝒛𝟎 + 𝒘𝟎𝒕 − 𝟏
𝟐 𝒈𝒕𝟐 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝒎𝒐𝒕𝒊𝒐𝒏: 𝒅𝟐𝒛
𝒅𝒕𝟐 = −𝒈
Guidelines for Repeating parameter
• 7- Pick common parameters
Do not choose 𝝁 or surface tension 𝝈𝒔
Guidelines for Repeating parameter
• 8- Pick simple parameters over complex parameters
It is better to pick parameters with only one or two basic dimensions (e.g., a length, a time, a mass, or a velocity) instead of parameters that are composed of several basic dimensions (e.g., an energy or a pressure).
Buckingham Pi Theorem
DRAG FORCE ON A SMOOTH SPHERE:
The drag force, F, on a smooth sphere depends on the relative speed, V, the sphere diameter, D, the fluid density, 𝝆, and the fluid viscosity, 𝝁. Obtain a set of dimensionless groups that can be used to correlate experimental data.
Buckingham Pi Theorem
Buckingham Pi Theorem
Buckingham Pi Theorem
Buckingham Pi Theorem
Buckingham Pi Theorem
Significant dimensionless groups in fluid mechanics
یاهورین • لوادتم
رد نایرج لایس
دنترابع زا
:
یاهورین – یسرنیا
یاهورین – یشان
زا هتیزوکسیو (
تجزل )
یاهورین – یراشف
یورین – هبذاج
یورین – ششک
یحطس
یورین – یشان
زا مکارت یریذپ
• Inertia force )یسرنیا یورین(
– 𝝆𝑽𝟐𝑳𝟐: 𝐦𝐤𝐠𝟑 𝐦𝐬 𝟐 𝐦𝟐 = 𝐤𝐠.𝐦𝐬𝟐 ≈ 𝝆𝑽𝟐𝑨 = 𝝆𝑽𝑨𝑽 = ሶ𝒎𝑽
Significant dimensionless groups in fluid mechanics
• compare the relative magnitudes of various fluid forces to the inertia force
Significant dimensionless groups in fluid mechanics
• زدلونیر ددع
• 1880s by Osborne Reynolds, the British engineer, who studied the transition between laminar and turbulent flow regimes in a tube.
• رلوا ددع
• In aerodynamic, Leonhard Euler, the Swiss mathematician. Euler is credited with being the first to recognize the role of pressure in fluid motion;
≈ 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡
Significant dimensionless groups in fluid mechanics
ددع • نویساتیواک
نویساتیواک • :
لیکشت (bubble/void) بابح
رد لایس و
داجیا یحاون
liquid-free .
رد
رثا تارییغت یناهگان
راشف رد
یحاون مک
راشف خر
یم دهد . بابح اه
هب یحاون اب
راشف رتلااب
هک یم
،دنسر یم
دنکرت و
(shock wave) کوش داجیا
یم دننک .
لماع • یلصا
شیاسرف تسا
.
ندیکرت • بوانتم
بابح اه
هب حطس cyclic stress یزلف
دراو یم دنک .
Inertial cavitation • :
هسورپ یا
تسا هک
رد نآ بابح اه
هب تعرس یم
دنکرت .
Non-inertial cavitation • :
بابح یاراد
رییغت لکش
یناسون اب
لامعا کی
یژرنا
یجراخ (
نادیم کیتسوکآ
)
Significant dimensionless groups in fluid mechanics
• دورف ددع
• Froud number: William Froude was a British architect. Together with his son, Robert Edmund Froude, he discovered that the parameter.
Significant dimensionless groups in fluid mechanics
Significant dimensionless groups in fluid mechanics
• ربو ددع
• Weber number: ratio of inertia to surface tension forces. The value of the Weber number is indicative of the existence of, and frequency of, capillary waves at a free surface.
Significant dimensionless groups in fluid mechanics
• خام ددع
• Mach number: Austrian physicist Ernst Mach introduced the parameter. Mach number is a key parameter that characterizes compressibility effects in a flow.
• ratio of inertia forces to forces due to compressibility. For truly incompressible flow (and note that under some conditions even liquids are quite compressible), 𝒄 = ∞ so that 𝑴 = 𝟎.
Significant dimensionless groups in fluid mechanics