• Tidak ada hasil yang ditemukan

PDF Journal of Water and Irrigation Management Online ISSN: 2382-9931

N/A
N/A
Protected

Academic year: 2024

Membagikan "PDF Journal of Water and Irrigation Management Online ISSN: 2382-9931"

Copied!
14
0
0

Teks penuh

(1)

Homepage: https://jwim.ut.ac.ir/

University of Tehran Press

An Experimental Investigation of Homogeneous Embankment Dams Overtopping Breach Hydraulic Results by Different Scenarios

Mahdi Ebrahimi1 | Mirali Mohammadi2 | Sayed Mohammad Hadi Meshkati3 | Farhad Imanshoar4

1. Department of Civil Engineering (Water and Hydraulic Structures), Faculty of Engineering, Urmia University, Urmia, Iran. E-mail: [email protected]

2. Corresponding Author, Department of Civil Engineering (Water and Hydraulic Structures), Faculty of Engineering, Urmia University, Urmia, Iran. E-mail: [email protected]

3. Department of Hydraulics and Hydro-Environmental Engineering, Water Research Institute, Tehran, Iran. E-mail:

[email protected]

4. Iranian Water Resources Management Company, Tehran, Iran. E-mail: [email protected]

Article Info ABSTRACT

Article type:

Research Article

Article history:

Received 4 February 2023 Received in revised form 9 July 2023

Accepted 1 July 2023

Published online 12 October 2023

Keywords:

Breach geometry Embankment dam Flow hydrograph Physical model Sedimentation pattern

Experimental investigation of embankment dams due to overtopping breach is a remarkable subject because it is the most possible failure reason, and it includes a complicated process. The mentioned phenomenon physical modeling has performed at energy ministry water research institute, hydraulics laboratory, and its hydraulic outputs compared with a benchmark model outcome in three scenarios framework. The results reveal that the breach process of physical models comprises three stages: i.e., initiation, development, and the end. Also, the development time is longer than that of the other stages. In first scenario, when shell gradation varied from 0.5mm to 1.7mm, 26 percent of peak discharge increased and 14 percent of breach time decreased. In second scenario in which lake water level maintained at overtopping threshold for two hours (for more saturation), 15 percent of peak discharge and 14 percent of breach time declined. In third scenario where the primary breach groove did not excavate, the highest difference in comparison with benchmark model results occurred, when 34 percent of peak discharge grew and 24 percent of breach time reduced. Moreover, asymmetrical sedimentation pattern happened in the last scenario. The Calculation of eroded material volume and mass was sedimentation pattern determination harvest.

Herein, the simultaneous measurements of breach geometry, flow hydrograph, and final sedimentation pattern are the research unique achievements.

However, further acquired analysis would be influential for the embankment dam's failure phenomenon management.

Cite this article: Ebrahimi, M., Mohammadi, M., Meshkati, S. M. H., & Imanshoar, F. (2023). An Experimental Investigation of Homogeneous Embankment Dams Overtopping Breach Hydraulic Results by Different Scenarios. Journal of Water and Irrigation Management, 13 (3), 651-664. DOI: https://doi.org/ 10.22059/jwim.2023.354765.1047

© The Author(s). Publisher: University of Tehran Press.

DOI: https://doi.org/10.22059/jwim.2023.354765.1047

(2)

نا هﺎﮕﺸ اد تارﺎﺸ ا

یرﺎﯿآ و بآ

Homepage: https://jwim.ut.ac.ir/

:ﯽﯿوﺮ !ﻟا #ﺎﺷ ۹۹۳۱ - ۲۳۸۲

!

"#$% & '

|1

2 3 |

4 |

1 . )

( ! "

. # $ $ % ! "

:$ ! # [email protected]

2 ()*+ +#)! . )

. # $ $ % ! " ! " ( :$ ! #

[email protected]

3 .

- . / 01

2 3 . # 4 5 6 6.4 $+

# :$ ! [email protected]

4 . . # 4 # 82 9# # 9: ; :$ ! #

[email protected]

! " #$

% &

: ! () 01 < 6

* + 15: / 11 / 1401

* , - 18 : / 04 / 1402

* ./

0 10 : / 04 / 1402

* 1 20 : / 07 / 1402

2

%3 4 :

) )%

B

: C

#D ( 9+ ; $

# E F

$2 B 9+ ;

G H. ) " # I 1 " $: 9 : C " 2 C 9J K# 4

.9 " # 9 " 01 #" % # 2 K# 2 2 ")2 (

#D B # 1 ):

% # "

/ 3 L ; M N! ! 5 5 6 6.4 $+

"

O P

$ )#

Q ( 2

$: 9 : R S# H! . #" $+# 6

# 9+ ;

( #D $

$T )4 U ; $JR

$ 4 C 9 TQ4 : $:

V# M 4 "

M N!

;

5 $T )4 $JR

!W)X 4

%#" GR

")2 Y Z K %! [P V# D 2 ( )# " .

$H )1 5 / 0 J H $2 7 / 1 J H 26 ] "

^ 2" V# D 14

] "

_ 9+ ; V :

M " )# ." "

" $:

" : !

$` # " "

$2 " 9 " 5 4

B $2 /#"D!

$2)

#" 2 (Y Z ; U Q; D V# D )a : R

D $2 ^ 2" V : 15

] "

V : 5 D $2 9+ ; 14

")2 ] "

9 b . 2 M) )# " . " !

V# D #D ( ^ 4 " 9+ ; $ ( ! : 34

] "

V : ^ 2"

24 ] "

9+ ; ) )%

B 6H ! $: #"

V 2 4 FcHC K#

Q ( S# H! 2 !

" "

M E $H # V# Y Z dNR $Q . . %#"

K T4 $2 e)2 S# H!

) )%

B

")2 V 01 K# "

9 .

!

9+ ; $ D

# E F )%

) # ! B

$2 Z. " H "

"

V 01 9 f R "

U) N S# H!

$2 9 "

"

: C 9+ ; # 1 9# # 3

.")2 )C L

2: 51 g

. J

g 4

" . g

# T !

"

) 1402 .(

V 01

#

% L 9+ ;

B

: C K%

9.4

# ) hJHi 2 9# # $# ! . 13

) 3 ( 651 - 664 .

DOI:https://doi.org/ 10.22059/jwim.2023.354765.1047

$+ 3 : ; ! 4 % ! " 5 H!

. . +#)!©

(3)

1 -

* + 5k ! N! # E B ; ! : C 9+ ; # 1 2 9 "

$:

" T4 80000

9QL ; - )4

U.S National Inventory

" T4 81 ] "

d .9 ")2 : C ] " 9+ ; 9J K `

G2 P " R) : C E)4 45

B # 1 ( ] "

) 9 ")2

ICOLD, 2019

)Q B )a .(

O# i4 $! 2 " %H+ 2 V# OQ $: 9 ^ 4 # E

$2 ");

$2 )X

d J#W"

$2 Di Cl 9 m V : c $ Ji4 9 E D# : 9 m M )`

%H; Q! 9J

9+ ! 5 2) _

) "

Association of state dam safety officials, 2023

9+ ; # 1 2 .(

9+# ! E 1 9# # a! B )# 9.4 : C " 2 : 9 " [ .

$2 .9 c G R 5 2)

; !

: C 9+ ;

# K

#

$ G2 P n.2

; 2 M 4 T2 $:

$HC ; M D #

! ` 2

$2 oi

") ! ).!

%H; Q! ) G R J] R 5 2)

.9 $

d ; ! # E F 9+ ; $ ()ZR : C 9+ ; % # $T [ " F K# 4

9+ ; ) )%

B

$: ; 2 2 C JQP 5 6 6.4 "

.9 $H P $E)4" )

! 2

9+ ; 0# Di 5 Zi $2 : C

$Zi 4)pq " c

( r# X ) : 4 ):B s # 1 D ! .9 $H+2 Di $2

$+# 6

$ ! 2 N4 ) #D

!

HEC-RAS

(

! ) #D

Breach

t 9 $: 9 ; M N! ( ( ! $2 M :

# # .")2 )i! % #

( O P " 2 B L " TH G ) : C 9+ ;

" 2 % # u #

V ` 2 S# H! 9.] $: 9

$2 vW) T 9+ ; $ ." : )C $E ) E d 9 $6! l G ;

K# 4

H 1 9+ ; w 9+ ; U x4

G ;) ; 2 1

.(

Figure 1. A sample of breach geometry

y) G ; "

9+ ; 8[6 U x4 9+ ; 8[6 W 2 w

9+ ; 8[6 K # 1 w

8[6 - )H w 9+ ;

") O ; V

8[6 9+ ; 9+ ; 8[6 6 O ; H

M % U x4

) 9 B

Brunner, 2016

9+ ; ! $2 $H+2 .(

: C GR

) ( +x4 2 xJHi

F H a! "

$

");

! " d F # ) " C ^ 2" K T4

(4)

9 )

Morris et al., 2009

.(

)a ) )%

B K # 1 "

X )1)4 5 z4 " 2 9 "

$Q . r#

5 2) 9 if . ; 2

2 - - ./0 1 '

2 3 +

Coleman et al.

) M)J " K% : C (2002

. HC 9C ) # Q+` u Y Z 2 % #

$2 H2 " : C V#

$T )4 Q! E )[2 {| ") G ; . 2 #

Morris et al.

) # " (2009

} D q 1

FLOOD site

( K Q4 $2 . HC " 1 $T )4 : C 9+ ; U ;

Pickert et al.

) V# (2011

$: ; M)JT . !" " M N! K% Q+` u : C B 9+ ; ~)ZC " #

9; " Y Z

$ 1 4 8# 9+ ;

_ ! 4 . ! " ! 92 L v Q# 64 9+ ;

Orendorff et al.

) ( ^ 4 5 xH 9+ ; $ ( ! : $ KH a! " 2 (2013

$N H! K% Q+` u #D

( ! : $: !" : 9# ! " $: H+ 4 xH 9+ ; U ; MD ! " hJHi 9+ ; $

.")2 )C B L 9+ ;

El-Ghorab et al.

) 2 (2013

U x4 2 K% : C $ KHC $

5 xH { E

V# 2 • C . HC " 1

€ D2 9+ ; $ 4W 2 #B1 4): 9+ ; 4

E C # E •: R 4

€ D2 ." " 4

Hakimzadeh et al.

) ( 2014

$ ! 2 / 4 " xH 2

$[2 / H!q D#

^ 2" 2

( . ; 2 # )J[ 4 #" 6 2 ):B / 4 S# H! r2 [4 . !") ! " 1 K% #D

Al-Riffai

) V# M N! 2 (2014

$Q E ")2 $ " $: #

MD ! 4)pq

. ; D: H Q+` u : C 9+ ;

Zumrawi

) 2 $2 (2015

9+ ; % # Z2

Tawila

) $: 9 V 01 " .9C " 1 ") "

9+ ! Di " B n 2 ! )4

. !); B 9+ ;

Alhasan et al.

) ) E " /`): ` 9+ ; ! G J.4 $2 (2015 Czech

( c " $: HC " 1 2002

. ! ; $H+ ;

Msadala

) # E " 2 : ) G R 5W" T $T )4 $2 (2016

O ; 2 ( 9 E 4 H+2

" T4.9C " 1 K% : C 9+ ; 87

$! " D# $ 2 V#

. ! ; M N! 2)

Froehlich

)

# E $2 " H 2 (2016

! E C ;

41 9+ ; $TP

V 1 2 [C u 4 f # ( " : C ." : $p •: R 2" 2

Abdellatif Mohamed and El-Ghorab

) /`): : C " 9+ ; (2016

. !" : 2 % # M)J " B # E 9.4 ‚ 6

$HC $: H $N H!

! € D2 /`): ‚ 6 2 ; V#

! + # v Q# 64 9+ ; _ ! #B1

1 . :

Sadeghi

) ( $2 (2020

^ 2" $: 9 $N H! .9C " 1 : C #D

( 9+ ; V 2 K% u

( 4 d .9 K%

_ ! $! 2 Y Z Q+` V# D 2 K `

V : V#

. 2 #

Kouzehgar et al.

) ( 9C 2 (2021

U x4 $2 K% #D 30

40 50

H!

$! " 2 H 2 d E C F " F ; - )H w d V6! $2 hJHi

d V6! K `

$! "

. !" : ; V# _ ! " Y Z d: 4 • C 2

f R V 01 "

$ 4 9 ; }c4 ( " " 2 : )#

z4) K% : C % #

$! "

d ."); 8P $E)4" ) (^ 4 " 9+ ; $ ( ! : 6 $! 2 U Q; D V# D $H )1 2 K `

!

) )% # E F 9+ ; $ ) d E C $ D

( B ; M N!

) Q V# S# H! 2

bench mark

$+# 6 ( . !"

(5)

3 - 5 /0&

3 - 1 - 6 7 0 80 7& 8

1$ 0 1

V#

$2 G ! 2 .9 ; M N! ! 5 5 6 6.4 $+ 3 / % # " a!" )

! : 9C $2 M P V 01 F O ; H /# w $2 ! (

002 / 0 ( U x4 . #"

#D

27 H!

K # 1 9 "W 2 6 O ; H

$2 9 "

$ O 4 4 7

/ 2 K # 1 P " $N 1 4 $ ; 1 $J]

159

H!

H! S 1 ^ 4 w H

# E 5 ; 9+ ; $ D ! V# 1 2 . ; $H a! " H

K # 1 G. " ( H N#" K 2 " $ 6H 9 "

$` # " W 2 dNR $2 $E)4 2 . ; " xH O

# 1 9 "W 2 $E G2 6 K 2 " D ! 2 9 ")Q! dNR G: $ Ji4 $2 ! 9+ ; # M 4 2

! 2 . ; 9QL 9+ ;

! # E F •J• D# 9+ ; ;

90 $J] " $E "

5 / 5

K # 1 H G ;) ; " xH 9 "

2 ) $[2 .(

1 F ; ($ ! L " OT H ) )Q 2" $Q . () (

$2 •J• D# /#

9 "

) "

Mohammadi, 2022

.(

$[2 1 (

= ∗ 2 ∗ ∗ tan .

y) $[2 "

O# f " B 2"

# E F ; $# T2 4 $: 9

; 2 F ; $# 2

) (θ

90

" R $E "

58 / 0 ; 2 H O+R 2) H

V# $2 $E)4 2 .9 F ; 4 ( M N! 4 6

;

) ()X JQP K # 1 " B

" 5 2) 9 if K T4 . ; b . H ` 9 "

140 $2 6H 2 $[6!

) T2 GQP ( ! : h: x4 : Gf x4) 9 5 )] D H ( ! : 1 {| .( B

) c B

M ! - )4 D

Surfer

9 "W 2 $` # " " : 1 2 " 2" . ; d 4 5

/ 2 M % $` # " dNR $ ! L " H

9+ ; U ; 3

/ 4 -Qf dJ V# M 4 {1 .")2 OT H $2 e)2 5 cX ; Cl $! # " ;

M ! 2 F 9+ ; $ D

Plot Digitizer

) G ; " . #" ^ iH 2

( DE c1 Q! E ! (

$6! l : C 9+ ; % #

$2 V# ! / 4 ; 5 )]

.9 ; " "

V# M N! GQP J " ! ) $ Y Z ! $2 M P

( 9C 4 ; ( H $ 2 #D

" 4D#

J

$! " z4 $2 e)2 )# 2 $HQ ) "); M N! H

$H )1 2 /`): $

S 1 4

J

$ .( ; " xH H

$!) ! ; !

$! " . BC M W % # - )4 d: 4 2

$6QX ‚ 2 . ; K T4 ; 5 • C / !

.H 2 )

$! " (USCS

$H )1 2 $ ) SM

W $ 2 92)X ( "

2 / 9 ) ; K T4 ] "

ASTM D422-63, 2002; ASTM D1557, 2007

d .(

K `

d 6H+ } 2 V# ‚ 2 2 2 JC " • [] $# H 1

35

; K T4 Q+` P $E "

)

ASTM

D3080, 2003

R X 2 .(

) ; $H 2 QHT 82 : C

Rahimi, 2019;

Engomoen, 2014; USACE, 2004; USBR, 1987

( M : .(

! ; $HC $#W V; " #D

H! S 1 9 if $2 $#W S 1) H! " 9 if $2 $#W /# H

2 $H )1 Y Z d: 4 5 J .( H

V ` X " Y[+

V 2 dNR z4 $: R $2 4 9 5 )] $ 2 92) ")E 4

$X)2 d: 4 ] " .9 # $ " ; 2 $H; ! 69

Z $ Y Z D ] "

296 .9 ")2 M )J :

()X $2 J [H+ $ ( ! : xR $2 M P V# M N! GQP 10

H!

r H 5

/ 2 H!

^ 4 - " H

9+ ; $ ( ! : P $ ; )# " #D ( ^ 4 $HQ $: #" B 9+ ; 9# 9 E .9

(6)

(a)

(b)

Figure 2. Experimental setup rig: (a) side view and (b) plan view

3 - 2 - * 81.

9 # 5

"

V 01 S# H! f R

`

$!) !

$2 ( V# .9 ; $p V#

9 ; $H a! " Q V# )

e)2 S# H! X 9 E V# S# H! .9 ; 4 Q V#

z4 ( )# ) " ;

$! "

)1 Y Z U Q; D V# D M " )# ) $ ; ($H )1 2 " $` # " " : ! r# X $H

4 5 / 23 H!

$2 H S# H! 2 (^ 4 " 9+ ; $ ( ! : xR M M) )# ) ` ; (9 " 5

; $+# 6 Q V#

K # 1 ! ; $2 " „. $2 . ! u B 9+ ; 9 "

$` # " 4 .");

U ; "

V#

M " )# ( )# Q 5

/ 24 H!

M) )# " H 27

H!

2 .")2 H

( 9+ ; ; ! 5 2) / C ~)Zi K T4 K%

` V# " $!) ! " xH hJHi

$!) ! {1 . ;

$H; Q! 5 2) " Z4 " 2

! : h: " ; P (

"

):

$2 5 24 9 M E

/ C ~)Zi dNR $2 / C $!) ! M E d +64 2 . ; 9; "" # $X)2 " $2 $E)4 2 . ; G] R

$2 9 "

"

1450

$2 OT H 2 M )J : . ; iH! ( ! : h: 5 2) K %! / C ~)Zi )

(7)

4 -

; . < $8

4 - 1 - '= 6 < $8

"

G#l ") ! (K # 1 w W 2 w U x4 ) 9+ ; $

9+ ; ; ! # E F ( 2

Q 9 ; d 4 G ;)

3 4 (.

Figure 3. Benchmark breach geometry variations

Figure 4. Benchmark breach hydrograph

d 4 ") ! % # 5 $2 $E)4 2 K 2 " D ! ‚ 2 ;

( 9+ ; # #D

$2 $: " : 2 (9+ ; # 1 $T )4 U ;) $JR $ " )4 Y# 4 Q #D ( 2 ~ C )X

""

G ;) ) 5 ( ! #D ( 9+ ; hJHi GR )# " )% K# $: 9 :l # ; .( "

4 D ! %#"

.9 ;

0 10 20 30 40 50 60 70

0 50 100 150 200 250

H & B (cm)

T (s)

H Btop Bbot

Initiation Development End

0 5 10 15 20 25 30

0 50 100 150 200 250 300

Q (l/s)

T (s)

Initiation Development End

(8)

(a) (b)

(c) (d)

Figure 5. Breach phases: (a) initiation, (b) development, (c) end and (d) final status

4 - 2 -

*#>1 :6 0 @ 1

$2 " $JR K#

! ; K # 1 u 9 "

.""

# K # 1 $E " 9+ ; d 6H+ + " 9 "

; xR $ ( ! : " H "

$ " ^ 4 "

)+. V# D ^ 4 " ; xR $ ( ! : " T2 $JR K# " . 2 #

$2 $E)4 2 ." ! K#

$:

! $J] " •J• D# - )4 # E 2"

5 / 5 M N! #D ( $N 1 H

! ");

" 2"

Ck4 Q ( " ) " $: ; 2 55

$JR ()X " ):B D# K# 2 2 .9 $ ! L

! 9QL # E 2" U ; U ; $JR ()X # :

50 K 2 " ] r# X U ; $JR ()X K T4 .9 $ ! L

K # 1 $E G2 6 $J] " $:) 9 "

5 / 1 H

$N 1 5 $2 $E)4 2 .9 ; $Q . (9 ; OZ!

M N!

; .9 $H P #D ( $N 1 #"D! " ( ! : h: 5 2) 9 +P

4 - 3 -

*#>1 :A / *B &

$T )4 $JR " 9+ ; # U ; $JR T2 G 4 9+ ; ( ! : Q! E $T )4 ; $JR K# " .");

" ;

K # 1 $E ‚)+. V# D ^ 4 J [H+ ( ! : " T2 .d H+ 9 "

# ! 6 $2 #D ( 9+ ; 8[6 2 #

$2 9+ ; 8[6 U x4 ) 25

H!

H $2 9+ ; W 2 w 65

H!

$2 9+ ; K # 1 w H 60

H!

H

$2 $T )4 $JR " 9+ ; 8[6 K # 1 w $2 e)2 " .(

")Q! 9QL G2 P # E y zH 9 Tf 9J

V 2 K# 2 2 .9 ! d 4 $X)2 ") ! " K# 2 2 9

" ) " 5 z4 K# 4 $JR $2 rJTH 9+ ; $

K # 1 2 i2 ! W 2 2 F ") ! " .9 $T )4 D $2 ^ 2" ! 2 ") !

7 / 27 " H

" $ ! L 125

$T )4 $JR $2 e)2 (9+ ; U ; {1 $ ! L $T )4 $JR 5 . ; 2

110 $ ! L QX . ; 2 r

) 9 +P 5

G ; $JR K " B ."

(9)

4 - 4 -

*#>1 :A&

C

. z4 9+ ; 8[6 " T2 $JR K# "

+

" ! ) " " $ " #D ( 9 "W 2 $E # E V : !

! 4 z4 $:

$2 9 "W 2 $E G ; D

# !

")C 2 $2 #D ( $ ; 1 ! P 2 9 if) V;

H!

H ) $` # " W 2 dNR $2 $E)4 2 .(

3 / 4 (OT H G : $ Ji4 ")2 2

9+ ; M 4

$J] " ; OZ! K 2 " r# X 5

/ 1 ! # 1 $JR 5 . ; $Q . $ ; 1 H 50

V : .9 $ ! L

# E 5 ; ‚)+.

) )% • ! 5 z4 9+ ; ; ! B

# 1 $JR S# H!

9 . d K ` O ;

9+ ; 8[6 - )H 84

! $E "

. ;

4 - 5 - * ' * +

"

") ! G#l

$ $+# 6 " 9+ ;

Q ( 2 9 ; M N! )# # G ;)

6 4 8 (.

Figure 6. A comparison of breach heights

Figure 7. A comparison of breach top widths 0

5 10 15 20 25 30

0 50 100 150 200 250

H (cm)

T (s)

Benchmark Scenario1 Scenario2 Scenario3

0 10 20 30 40 50 60 70

0 50 100 150 200 250

Btop (cm)

T (s)

Benchmark Scenario1 Scenario2 Scenario3

(10)

Figure 8. A comparison of breach bottom widths

d 4 ") ! $2 $E)4 2 ;

~)ZC "

( 9+ ; $ $+# 6 9+ ; 8[6 # ! U x4 #D

V# "

hJHi 25 H!

H 9+ ; 8[6 " ! P 2 5 2) 9 if 9 ")2

"

H!

H

; 2 .

V# " 9+ ; # ! $ 5 x4 K# 2 2 Vi2 " .")2 )C 9+ ; 8[6 w 5 x4 $2 e)2 hJHi

" R) 9+ ; U x4 # H!

S 1 H!

H w V# D (( ! : h:

9+ ; Vi2 " 9 " " _

! P)

$6! l 9+ ; )%

G2 P

… 9 9#

G ;) 9 ( . d K ` V# " 9+ ; 8[6 K %! O ; K 2 hJHi

84 4 $E "

85 9 ")2 $E "

5 x4

! `

%# # 2 !

! . d:

4

9 M) )# 2 9+ ; K#

) 24

] "

d:

4

# 9 +P B # E )Q G " $: ( Q V 8# +4 n 2 9 ")2 ^ 4 hJHi

#

9+ ; V# " $T )4 $JR 5 .""

M N!

V 2 ; # 1 U ; GR 4 ) ( E " . ; 2

1 (

$ # ! " K 2 $+# 6 .9 ; " 9+ ;

Figure 9. Scenarios for breach geometry

4 - 6 -

0 8 C 1F G01 * +

9 $H M N! )# # Q ( F K 2 $+# 6 G#l ") ! "

G ;) 10 (.

0 10 20 30 40 50 60 70

0 50 100 150 200 250

Bbot (cm)

T (s)

Benchmark Scenario1 Scenario2 Scenario3

(11)

Figure 10. A comparison of breach hydrographs

$2 S# H! G J.4 2 9 "

( )# "

14 9+ ; " V : ] "

26 ^ 2" " V# D ] "

G " $: ; Lk4

$! "

9; " 2 V : M " )# " .9 #D ( 9+ ; 9 V# D 2 4

14 D $2 ^ 2" V : 9+ ; ] "

15 ] "

; 9QL 9+ ; V : 9J . M " )# "

U Q; $2 )4 V 2

xR V# D ) #D ( $! 2 4 9+! " e)2 9+ ; # 8# +4 (

)+. % # d " H " ^ 2" V : d: .");

D $2 9+ ; K# 4 24

] "

V 2 D $2 ^ 2" V# D K# 4 34

) ( E " .9 M) )# $2 rJTH ] "

1 # ! " K 2 $+# 6 (

F .9 ; " 9+ ;

Table 1. Models breach geometry and flow hydrograph results

Average side slope (degree) Bottom width

(cm) Top width

(cm) Height

(cm) Breach time

Subject (s)

84 60

65 25

210 Benchmark

85 51

46 25

180 Scenario1

85 55

50 25

180 Scenario2

84 65

60 25

160 Scenario3

End duration (s) Development

duration (s) Initiation

duration (s) Peak time

(s) Peak discharge

( !"

#) Subject

50 110

50 125

27.7 Benchmark

50 80

50 100

34.8 Scenario1

60 80

40 95

23.6 Scenario2

40 90

30 70

37 Scenario3

4 - 7 - I& & !0 * + 0

"

G ; ) 11 ( $+# 6 ) )%

B 9 ; M N! )# # Q ( O+R 2 % # ( ! : " T2 )

H!

J O+R 2 ‚ 6 " H .(9 ; d 4 H

) ( E "

2 5 2) K %! 9 if $2 e)2 " ( K %! 2

140 9; " 2 $[6!

$2 ; 2 9 "

G] R ) " . T2 H ` 9R + " f K # 1 B

R 9 "

V# Y Z dN

d . ; G] R $H # K `

G] R

V# Y Z dNR f

$2 5 2) K %! M E 5 2) %` " $H # 9 if Q ( 2 . 9 "

5 2) K %!

2 / 18 J V# Y Z dNR K# 2 2 . ; $Q . H $H #

073 / 0 $X)2 M E OT H 6

/ 105

0 5 10 15 20 25 30 35 40

0 50 100 150 200 250 300

T (s)

Benchmark Scenario1 Scenario2 Scenario3

Q (I/s)

(12)

M )J : V# Y Z dNR $Q . B%2) )% K T4 " 2 : S# H! # K# 2 2 .")2 )C M E $H #

) G ; $2 $E)4 2 . ; 2 11

$2 9: R 2 ( K # 1 9

$H : 5 2) 9 if 9 "

$2 .");

$ ( ! : xR G "

( ^ 4 - " 9+ ;

$2) #D

# DE (M) ) ) )% 9+ ; $

$2 B 9 "

G ; "

6H v HQ+!

d . ; 2 ) )% K ` .9 ; 6H ! M) )# " B

(a) (b) (c) (d)

Figure 11. A comparison of sedimentation patterns after dam failure in different scenarios: (a) benchmark, (b) scenario 1, (c) scenario 2 and (d) scenario 3

Table 2. Sedimentation patterns results

Sediment mass (kg) Eroded material volume

($%) Average sedimentation

thickness (mm) Subject

105.6 0.073

18.2 Benchmark

107.9 0.074

18.6 Scenario1

98 0.068

16.9 Scenario2

72.5 0.05

12.5 Scenario3

5 -

*J $8 1

d S# H! K# 4 V 01

$2 $: f R

! 2 % # 5 )]

)4

F 9+ ; $

# E

)%

) B :9 G#l † ; $2 9 M N!

1 -

# 9+ ; "

(

$2 #D # 1 $T )4 U ; $JR $ G ; J: )X

5 $: ; 2

%#" $JR " $T )4 $JR V 2

4 " ; G 4 9+ ; ( ! : Q! E $T )4 ! 2 " $T )4 $JR .9 $E

1 K #

# ! 4 9 "

9+ ; $ ;

(9+ ; w U x4 )

; 2 .

2 - V# $ "

9+ ; 8[6 # ! U x4 25

H!

! H 9+ ; $ 5 x4 K# 2 2 ;

w FcHC $2 e)2 d .")2 9+ ; K # 1 W 2

Vi2 K `

" 9+ ; # ! $ G ;

$6! l Q# 64 .")2

(13)

3 - V# D $H )1 Y Z K %! [P V# D 2 ( )# "

26 V : ^ 2" ] "

14 ] "

G 4 Y Z ! d Lk4 $: ; 9+ ; .9; " 9# R 9+ ; ! 2 "

4 - V : 15

" H " M " )# " ^ 2" ] "

V 01 9 f R % #

Lk4 ! $:

V 2 U Q;

V 2 .9; " 9+ ; ! 2 #D ( $! 2 4 4

^ 2" K#

d:

4 2 9+ ; K#

M) )#

9QL

$2 $: ; O 4 4

34 V# D ] "

24 2 $+# 6 " V : ] "

Q ( .9; "

5 -

$2 b . M G "

" : " 9+ ; $ ( ! : M) )#

) )%

B 6H ! 9 G ;

~)ZC "

( # ) )%

B v Q# 64 V# Y Z dNR K T4 . #" 6H M E $H #

$X)2 5 2) K %! 9 if $Q . r# X . ; d

6 - 1 80/ K

6 H:" # P E 9 1 " 92 2 5 6 6.4 $+ 3 " # Q: ‚ )x] ‚ "

! " P 4 % # V 01 .""

7 - LM ' N B

t ." ! ")E +#)! - )4 T w T4 $!)

8 - L. '

Abdellatif Mohamed, M.M., & El- Ghorab, E.A.S. (2016). Investigating scale effects on breach evolution of overtopped sand embankments. Journal of Water Science, 30, 84-95.

Alhasan, Z., Jandora, J., & Riha, J. (2015). Study of dam-break due to overtopping of four small dams in the Czech Republic. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 63(3), 717-729.

Al-Riffai, M. (2014). Experimental study of breach mechanics in overtopped non-cohesive earthen embankments. PhD thesis,University of Ottawa, Canada.

Association of state dam safety officials. (2023). Kentucky, USA.

ASTMD422-63. (2002). Standard test method for particle size analysis of soils.

ASTM D1557. (2007). Standard test methods for laboratory compaction characteristics of soil using standard effort. West Conshohocken, PA, USA.

ASTM D3080. (2003). Standard test method for direct shear test of soils under consolidated drained conditions.Annual Book of ASTM Standards, Philadelphia 408, 1-7.

Brunner, G.W. (2016). HEC-RAS Reference Manual, version 5.0. Hydrologic Engineering Center, Institute for Water Resources, US Army Corps of Engineers, Davis, Calif.

Coleman, S.E., Andrews, D.P & Webby, M.G. (2002). Overtopping breaching of non-cohesive homogeneous embankments. Journal of Hydraulic Engineering, 128 (9), 829-838.

El-Ghorab, E.A.S., Fahmy, A., & Fodda, M. (2013). Large scale physical model to investigate the mechanics of embankment erosion during overtopping flow. Engineering Research Journal, 36 (3), 287-302.

Engomoen, B., Witter, D.T., Knight, K., & Luebke, T.A. (2014). Design Standards No 13:

Embankment Dams. United States Bureau of Reclamation.

Froehlich, D.C. (2016). Predicting peak discharge from gradually breached embankment dam.

Journal of Hydrologic Engineering, 04016041, 1-15.

(14)

Hakimzadeh, H., Nourani, V., & Amini, A.B. (2014). Genetic programming simulation of dam breach hydrograph and peak outflow discharge. Journal of Hydrologic Engineering, 19 (4), 757-768.

ICOLD. (2019). ICOLD incident database bulletin 99 update: statistical analysis of dam failures, technical report, international commission on large dams: Paris, France.

Kouzehgar, K., Hassanzadeh, Y., Eslamian, S., Yousefzadeh, F.M., & Babaeian, A.A. (2021).

Physical modelling into outflow hydrograghs and breach characteristics of homogeneous earthfill dams failure due to overtopping. Journal of Mountain Science, 18 (2), 462-481.

Mohammadi, M. (2022). Applied hydraulics. Urmia: Urmia university press. (In Persian).

Morris, M., Kortenhaus, A., &Visser, P. (2009). Modelling breach initiation and growth.

FLOODsite report: T06-08-02, FLOODsite Consortium, Wallingford, UK.

Msadala, V. (2016). Sediment transport dynamics in dam break modelling. PhD thesis, Stellenbosch university, South Africa.

Orendorff, B., Al-Riffai, M., Nistor, I., & Rennie, C.D. ( 2013). Breach outflow characteristics of non-cohesive embankment dams. Subject to blast. Canadian Journal of Civil Engineering, 40, 243-253.

Pektas, A.O., & Erdik, T. (2014). Peak discharge prediction due to embankment dam break by using sensitivity analysis based ANN. KSCE Journal of Civil Engineering, 18(6), 1868-1876.

Pickert, G., Weitbrecht, V., & Bieberstein, A. (2011). Breaching of overtopped river embankments controlled by apparent cohesion. Journal of Hydraulic Research, 49(2), 143-156.

Rahimi, H. (2019). Embankment dams. Tehran university press. (In Persian).

Saberi, O. (2016). Embankment dam failure outflow hydrograph development. PhD thesis, Graz university of technology, Austria.

Sadeghi, S. (2020). Experimental investigation into breach in small Earth dams with clay core due to overtopping. PhD thesis, Sahand University of Technology, Iran. (In Persian).

USACE. (2004). General design and construction considerations for Earth and rockfill dams.

US Army Corps of Engineers, Washington DC, USA.

USBR. (1987). Design of small dams. Bureau of Reclamation, water resources technical Publication.

Zumrawi, M. (2015). Failure investigation of Tawila dam in north Darfur, Sudan. International Journal of Science and Research, 4 (5), 963-967.

Referensi

Dokumen terkait

SOCIAL SCIENCES & HUMANITIES Journal homepage: http://www.pertanika.upm.edu.my/ Article history: Received: 1 July 2019 Accepted: 20 July 2020 Published: 25 December 2020 ARTICLE INFO

94, Hegarmanah, Bandung, Indonesia ARTICLE INFO ABSTRACT Article history: Received January 20, 2021 Received in revised form March 10, 2021 Accepted July 06, 2021 Available

Telaga Warna, Tlogomas Malang 65144, Indonesia *corresponding author: [email protected] Abstract Article history: Received 20 June 2023 Revised 18 July 2023 Accepted 23

ARTICLE INFO Article history: Received 19 Jan 2018 Received in revised form 28 May 2018 Accepted 16 July 2018 Keywords: Discourse, Discourse Analysis, Reformist,

29, Jakarta Pusat 10340 Indonesia ARTICLE INFORMATION A B S T R A C T Article history: Received: 4 May 2023 Revised: 18 July 2023 Accepted: 25 July 2023 Category:Research paper

HAMKA Article Info ABSTRACT Article history: Received March 16, 2023 Revised May 20, 2023 Accepted May 30, 2023 Continuing Professional Development CPD contributes to developing

Almedia ARTICLE INFO ABSTRACT Received : 11 May 2022 Revised : 31 July 2022 Accepted : 28 August 2022 Available online: 15 January 2023 Key Words: Anthropogenic pressure

Mapping of supply chain and assessment of pre and postharvest losses of Alphonso mango in India ARTICLE INFO ABSTRACT Received : 12 February 2023 Revised : 18 May 2023 Accepted :