Homepage: https://jwim.ut.ac.ir/
University of Tehran Press
An Experimental Investigation of Homogeneous Embankment Dams Overtopping Breach Hydraulic Results by Different Scenarios
Mahdi Ebrahimi1 | Mirali Mohammadi2 | Sayed Mohammad Hadi Meshkati3 | Farhad Imanshoar4
1. Department of Civil Engineering (Water and Hydraulic Structures), Faculty of Engineering, Urmia University, Urmia, Iran. E-mail: [email protected]
2. Corresponding Author, Department of Civil Engineering (Water and Hydraulic Structures), Faculty of Engineering, Urmia University, Urmia, Iran. E-mail: [email protected]
3. Department of Hydraulics and Hydro-Environmental Engineering, Water Research Institute, Tehran, Iran. E-mail:
4. Iranian Water Resources Management Company, Tehran, Iran. E-mail: [email protected]
Article Info ABSTRACT
Article type:
Research Article
Article history:
Received 4 February 2023 Received in revised form 9 July 2023
Accepted 1 July 2023
Published online 12 October 2023
Keywords:
Breach geometry Embankment dam Flow hydrograph Physical model Sedimentation pattern
Experimental investigation of embankment dams due to overtopping breach is a remarkable subject because it is the most possible failure reason, and it includes a complicated process. The mentioned phenomenon physical modeling has performed at energy ministry water research institute, hydraulics laboratory, and its hydraulic outputs compared with a benchmark model outcome in three scenarios framework. The results reveal that the breach process of physical models comprises three stages: i.e., initiation, development, and the end. Also, the development time is longer than that of the other stages. In first scenario, when shell gradation varied from 0.5mm to 1.7mm, 26 percent of peak discharge increased and 14 percent of breach time decreased. In second scenario in which lake water level maintained at overtopping threshold for two hours (for more saturation), 15 percent of peak discharge and 14 percent of breach time declined. In third scenario where the primary breach groove did not excavate, the highest difference in comparison with benchmark model results occurred, when 34 percent of peak discharge grew and 24 percent of breach time reduced. Moreover, asymmetrical sedimentation pattern happened in the last scenario. The Calculation of eroded material volume and mass was sedimentation pattern determination harvest.
Herein, the simultaneous measurements of breach geometry, flow hydrograph, and final sedimentation pattern are the research unique achievements.
However, further acquired analysis would be influential for the embankment dam's failure phenomenon management.
Cite this article: Ebrahimi, M., Mohammadi, M., Meshkati, S. M. H., & Imanshoar, F. (2023). An Experimental Investigation of Homogeneous Embankment Dams Overtopping Breach Hydraulic Results by Different Scenarios. Journal of Water and Irrigation Management, 13 (3), 651-664. DOI: https://doi.org/ 10.22059/jwim.2023.354765.1047
© The Author(s). Publisher: University of Tehran Press.
DOI: https://doi.org/10.22059/jwim.2023.354765.1047
نا هﺎﮕﺸ اد تارﺎﺸ ا
یرﺎﯿآ و بآ
Homepage: https://jwim.ut.ac.ir/
:ﯽﯿوﺮ !ﻟا #ﺎﺷ ۹۹۳۱ - ۲۳۸۲
!
"#$% & '
|1
2 3 |
4 |
1 . )
( ! "
. # $ $ % ! "
:$ ! # [email protected]
2 ()*+ +#)! . )
. # $ $ % ! " ! " ( :$ ! #
3 .
- . / 01
2 3 . # 4 5 6 6.4 $+
# :$ ! [email protected]
4 . . # 4 # 82 9# # 9: ; :$ ! #
! " #$
% &
: ! () 01 < 6
* + 15: / 11 / 1401
* , - 18 : / 04 / 1402
* ./
0 10 : / 04 / 1402
* 1 20 : / 07 / 1402
2
%3 4 :
) )%
B
: C
#D ( 9+ ; $
# E F
$2 B 9+ ;
G H. ) " # I 1 " $: 9 : C " 2 C 9J K# 4
.9 " # 9 " 01 #" % # 2 K# 2 2 ")2 (
#D B # 1 ):
% # "
/ 3 L ; M N! ! 5 5 6 6.4 $+
"
O P
$ )#
Q ( 2
$: 9 : R S# H! . #" $+# 6
# 9+ ;
( #D $
$T )4 U ; $JR
$ 4 C 9 TQ4 : $:
V# M 4 "
M N!
;
5 $T )4 $JR
!W)X 4
%#" GR
")2 Y Z K %! [P V# D 2 ( )# " .
$H )1 5 / 0 J H $2 7 / 1 J H 26 ] "
^ 2" V# D 14
] "
_ 9+ ; V :
M " )# ." "
" $:
" : !
$` # " "
$2 " 9 " 5 4
B $2 /#"D!
$2)
#" 2 (Y Z ; U Q; D V# D )a : R
D $2 ^ 2" V : 15
] "
V : 5 D $2 9+ ; 14
")2 ] "
9 b . 2 M) )# " . " !
V# D #D ( ^ 4 " 9+ ; $ ( ! : 34
] "
V : ^ 2"
24 ] "
9+ ; ) )%
B 6H ! $: #"
V 2 4 FcHC K#
Q ( S# H! 2 !
" "
M E $H # V# Y Z dNR $Q . . %#"
K T4 $2 e)2 S# H!
) )%
B
")2 V 01 K# "
9 .
!
9+ ; $ D
# E F )%
) # ! B
$2 Z. " H "
"
V 01 9 f R "
U) N S# H!
$2 9 "
"
: C 9+ ; # 1 9# # 3
.")2 )C L
2: 51 g
. J
g 4
" . g
# T !
"
) 1402 .(
V 01
#
% L 9+ ;
B
: C K%
9.4
# ) hJHi 2 9# # $# ! . 13
) 3 ( 651 - 664 .
DOI:https://doi.org/ 10.22059/jwim.2023.354765.1047
$+ 3 : ; ! 4 % ! " 5 H!
. . +#)!©
1 -
* + 5k ! N! # E B ; ! : C 9+ ; # 1 2 9 "
$:
" T4 80000
9QL ; - )4
U.S National Inventory
" T4 81 ] "
d .9 ")2 : C ] " 9+ ; 9J K `
G2 P " R) : C E)4 45
B # 1 ( ] "
) 9 ")2
ICOLD, 2019
)Q B )a .(
O# i4 $! 2 " %H+ 2 V# OQ $: 9 ^ 4 # E
$2 ");
$2 )X
d J#W"
$2 Di Cl 9 m V : c $ Ji4 9 E D# : 9 m M )`
%H; Q! 9J
9+ ! 5 2) _
) "
Association of state dam safety officials, 2023
9+ ; # 1 2 .(
9+# ! E 1 9# # a! B )# 9.4 : C " 2 : 9 " [ .
$2 .9 c G R 5 2)
; !
: C 9+ ;
# K
#
$ G2 P n.2
; 2 M 4 T2 $:
$HC ; M D #
! ` 2
$2 oi
") ! ).!
%H; Q! ) G R J] R 5 2)
.9 $
d ; ! # E F 9+ ; $ ()ZR : C 9+ ; % # $T [ " F K# 4
9+ ; ) )%
B
$: ; 2 2 C JQP 5 6 6.4 "
.9 $H P $E)4" )
! 2
9+ ; 0# Di 5 Zi $2 : C
$Zi 4)pq " c
( r# X ) : 4 ):B s # 1 D ! .9 $H+2 Di $2
$+# 6
$ ! 2 N4 ) #D
!
HEC-RAS
(
! ) #D
Breach
t 9 $: 9 ; M N! ( ( ! $2 M :
# # .")2 )i! % #
( O P " 2 B L " TH G ) : C 9+ ;
" 2 % # u #
V ` 2 S# H! 9.] $: 9
$2 vW) T 9+ ; $ ." : )C $E ) E d 9 $6! l G ;
K# 4
H 1 9+ ; w 9+ ; U x4
G ;) ; 2 1
.(
Figure 1. A sample of breach geometry
y) G ; "
ℎ
9+ ; 8[6 U x4 9+ ; 8[6 W 2 w
9+ ; 8[6 K # 1 w
8[6 - )H w 9+ ;
") O ; V
8[6 9+ ; 9+ ; 8[6 6 O ; H
ℎ
M % U x4
) 9 B
Brunner, 2016
9+ ; ! $2 $H+2 .(
: C GR
) ( +x4 2 xJHi
F H a! "
$
");
! " d F # ) " C ^ 2" K T4
9 )
Morris et al., 2009
.(
)a ) )%
B K # 1 "
X )1)4 5 z4 " 2 9 "
$Q . r#
5 2) 9 if . ; 2
2 - - ./0 1 '
2 3 +
Coleman et al.
) M)J " K% : C (2002
. HC 9C ) # Q+` u Y Z 2 % #
$2 H2 " : C V#
$T )4 Q! E )[2 {| ") G ; . 2 #
Morris et al.
) # " (2009
} D q 1
FLOOD site
( K Q4 $2 . HC " 1 $T )4 : C 9+ ; U ;
Pickert et al.
) V# (2011
$: ; M)JT . !" " M N! K% Q+` u : C B 9+ ; ~)ZC " #
9; " Y Z
$ 1 4 8# 9+ ;
_ ! 4 . ! " ! 92 L v Q# 64 9+ ;
Orendorff et al.
) ( ^ 4 5 xH 9+ ; $ ( ! : $ KH a! " 2 (2013
$N H! K% Q+` u #D
( ! : $: !" : 9# ! " $: H+ 4 xH 9+ ; U ; MD ! " hJHi 9+ ; $
.")2 )C B L 9+ ;
El-Ghorab et al.
) 2 (2013
U x4 2 K% : C $ KHC $
5 xH { E
V# 2 • C . HC " 1
€ D2 9+ ; $ 4W 2 #B1 4): 9+ ; 4
E C # E •: R 4
€ D2 ." " 4
Hakimzadeh et al.
) ( 2014
$ ! 2 / 4 " xH 2
$[2 / H!q D#
^ 2" 2
( . ; 2 # )J[ 4 #" 6 2 ):B / 4 S# H! r2 [4 . !") ! " 1 K% #D
Al-Riffai
) V# M N! 2 (2014
$Q E ")2 $ " $: #
MD ! 4)pq
. ; D: H Q+` u : C 9+ ;
Zumrawi
) 2 $2 (2015
9+ ; % # Z2
Tawila
) $: 9 V 01 " .9C " 1 ") "
9+ ! Di " B n 2 ! )4
. !); B 9+ ;
Alhasan et al.
) ) E " /`): ` 9+ ; ! G J.4 $2 (2015 Czech
( c " $: HC " 1 2002
. ! ; $H+ ;
Msadala
) # E " 2 : ) G R 5W" T $T )4 $2 (2016
O ; 2 ( 9 E 4 H+2
" T4.9C " 1 K% : C 9+ ; 87
$! " D# $ 2 V#
. ! ; M N! 2)
Froehlich
)
# E $2 " H 2 (2016
! E C ;
41 9+ ; $TP
V 1 2 [C u 4 f # ( " : C ." : $p •: R 2" 2
Abdellatif Mohamed and El-Ghorab
) /`): : C " 9+ ; (2016
. !" : 2 % # M)J " B # E 9.4 ‚ 6
$HC $: H $N H!
! € D2 /`): ‚ 6 2 ; V#
! + # v Q# 64 9+ ; _ ! #B1
1 . :
Sadeghi
) ( $2 (2020
^ 2" $: 9 $N H! .9C " 1 : C #D
( 9+ ; V 2 K% u
( 4 d .9 K%
_ ! $! 2 Y Z Q+` V# D 2 K `
V : V#
. 2 #
Kouzehgar et al.
) ( 9C 2 (2021
U x4 $2 K% #D 30
40 50
H!
$! " 2 H 2 d E C F " F ; - )H w d V6! $2 hJHi
d V6! K `
$! "
. !" : ; V# _ ! " Y Z d: 4 • C 2
f R V 01 "
$ 4 9 ; }c4 ( " " 2 : )#
z4) K% : C % #
$! "
d ."); 8P $E)4" ) (^ 4 " 9+ ; $ ( ! : 6 $! 2 U Q; D V# D $H )1 2 K `
!
) )% # E F 9+ ; $ ) d E C $ D
( B ; M N!
) Q V# S# H! 2
bench mark
$+# 6 ( . !"
3 - 5 /0&
3 - 1 - 6 7 0 80 7& 8
1$ 0 1
V#
$2 G ! 2 .9 ; M N! ! 5 5 6 6.4 $+ 3 / % # " a!" )
! : 9C $2 M P V 01 F O ; H /# w $2 ! (
002 / 0 ( U x4 . #"
#D
27 H!
K # 1 9 "W 2 6 O ; H
$2 9 "
$ O 4 4 7
/ 2 K # 1 P " $N 1 4 $ ; 1 $J]
159
H!
H! S 1 ^ 4 w H
# E 5 ; 9+ ; $ D ! V# 1 2 . ; $H a! " H
K # 1 G. " ( H N#" K 2 " $ 6H 9 "
$` # " W 2 dNR $2 $E)4 2 . ; " xH O
# 1 9 "W 2 $E G2 6 K 2 " D ! 2 9 ")Q! dNR G: $ Ji4 $2 ! 9+ ; # M 4 2
! 2 . ; 9QL 9+ ;
! # E F •J• D# 9+ ; ;
90 $J] " $E "
5 / 5
K # 1 H G ;) ; " xH 9 "
2 ) $[2 .(
1 F ; ($ ! L " OT H ) )Q 2" $Q . () (
$2 •J• D# /#
9 "
) "
Mohammadi, 2022
.(
$[2 1 (
= ∗ 2 ∗ ∗ tan ∗ .
y) $[2 "
O# f " B 2"
# E F ; $# T2 4 $: 9
; 2 F ; $# 2
) (θ
90
" R $E "
58 / 0 ; 2 H O+R 2) H
V# $2 $E)4 2 .9 F ; 4 ( M N! 4 6
;
) ()X JQP K # 1 " B
" 5 2) 9 if K T4 . ; b . H ` 9 "
140 $2 6H 2 $[6!
) T2 GQP ( ! : h: x4 : Gf x4) 9 5 )] D H ( ! : 1 {| .( B
) c B
M ! - )4 D
Surfer
9 "W 2 $` # " " : 1 2 " 2" . ; d 4 5
/ 2 M % $` # " dNR $ ! L " H
9+ ; U ; 3
/ 4 -Qf dJ V# M 4 {1 .")2 OT H $2 e)2 5 cX ; Cl $! # " ;
M ! 2 F 9+ ; $ D
Plot Digitizer
) G ; " . #" ^ iH 2
( DE c1 Q! E ! (
$6! l : C 9+ ; % #
$2 V# ! / 4 ; 5 )]
.9 ; " "
V# M N! GQP J " ! ) $ Y Z ! $2 M P
( 9C 4 ; ( H $ 2 #D
" 4D#
J
$! " z4 $2 e)2 )# 2 $HQ ) "); M N! H
$H )1 2 /`): $
S 1 4
J
$ .( ; " xH H
$!) ! ; !
$! " . BC M W % # - )4 d: 4 2
$6QX ‚ 2 . ; K T4 ; 5 • C / !
.H 2 )
$! " (USCS
$H )1 2 $ ) SM
W $ 2 92)X ( "
2 / 9 ) ; K T4 ] "
ASTM D422-63, 2002; ASTM D1557, 2007
d .(
K `
d 6H+ } 2 V# ‚ 2 2 2 JC " • [] $# H 1
35
; K T4 Q+` P $E "
)
ASTM
D3080, 2003
R X 2 .(
) ; $H 2 QHT 82 : C
Rahimi, 2019;
Engomoen, 2014; USACE, 2004; USBR, 1987
( M : .(
! ; $HC $#W V; " #D
H! S 1 9 if $2 $#W S 1) H! " 9 if $2 $#W /# H
2 $H )1 Y Z d: 4 5 J .( H
V ` X " Y[+
V 2 dNR z4 $: R $2 4 9 5 )] $ 2 92) ")E 4
$X)2 d: 4 ] " .9 # $ " ; 2 $H; ! 69
Z $ Y Z D ] "
296 .9 ")2 M )J :
()X $2 J [H+ $ ( ! : xR $2 M P V# M N! GQP 10
H!
r H 5
/ 2 H!
^ 4 - " H
9+ ; $ ( ! : P $ ; )# " #D ( ^ 4 $HQ $: #" B 9+ ; 9# 9 E .9
(a)
(b)
Figure 2. Experimental setup rig: (a) side view and (b) plan view
3 - 2 - * 81.
9 # 5
"
V 01 S# H! f R
`
$!) !
$2 ( V# .9 ; $p V#
9 ; $H a! " Q V# )
e)2 S# H! X 9 E V# S# H! .9 ; 4 Q V#
z4 ( )# ) " ;
$! "
)1 Y Z U Q; D V# D M " )# ) $ ; ($H )1 2 " $` # " " : ! r# X $H
4 5 / 23 H!
$2 H S# H! 2 (^ 4 " 9+ ; $ ( ! : xR M M) )# ) ` ; (9 " 5
; $+# 6 Q V#
K # 1 ! ; $2 " „. $2 . ! u B 9+ ; 9 "
$` # " 4 .");
U ; "
V#
M " )# ( )# Q 5
/ 24 H!
M) )# " H 27
H!
2 .")2 H
( 9+ ; ; ! 5 2) / C ~)Zi K T4 K%
` V# " $!) ! " xH hJHi
$!) ! {1 . ;
$H; Q! 5 2) " Z4 " 2
! : h: " ; P (
"
):
$2 5 24 9 M E
/ C ~)Zi dNR $2 / C $!) ! M E d +64 2 . ; 9; "" # $X)2 " $2 $E)4 2 . ; G] R
$2 9 "
"
1450
$2 OT H 2 M )J : . ; iH! ( ! : h: 5 2) K %! / C ~)Zi )
4 -
; . < $8
4 - 1 - '= 6 < $8
"
G#l ") ! (K # 1 w W 2 w U x4 ) 9+ ; $
9+ ; ; ! # E F ( 2
Q 9 ; d 4 G ;)
3 4 (.
Figure 3. Benchmark breach geometry variations
Figure 4. Benchmark breach hydrograph
d 4 ") ! % # 5 $2 $E)4 2 K 2 " D ! ‚ 2 ;
( 9+ ; # #D
$2 $: " : 2 (9+ ; # 1 $T )4 U ;) $JR $ " )4 Y# 4 Q #D ( 2 ~ C )X
""
G ;) ) 5 ( ! #D ( 9+ ; hJHi GR )# " )% K# $: 9 :l # ; .( "
4 D ! %#"
.9 ;
0 10 20 30 40 50 60 70
0 50 100 150 200 250
H & B (cm)
T (s)
H Btop Bbot
Initiation Development End
0 5 10 15 20 25 30
0 50 100 150 200 250 300
Q (l/s)
T (s)
Initiation Development End
(a) (b)
(c) (d)
Figure 5. Breach phases: (a) initiation, (b) development, (c) end and (d) final status
4 - 2 -
*#>1 :6 0 @ 1
$2 " $JR K#
! ; K # 1 u 9 "
.""
# K # 1 $E " 9+ ; d 6H+ + " 9 "
; xR $ ( ! : " H "
$ " ^ 4 "
)+. V# D ^ 4 " ; xR $ ( ! : " T2 $JR K# " . 2 #
$2 $E)4 2 ." ! K#
$:
! $J] " •J• D# - )4 # E 2"
5 / 5 M N! #D ( $N 1 H
! ");
" 2"
Ck4 Q ( " ) " $: ; 2 55
$JR ()X " ):B D# K# 2 2 .9 $ ! L
! 9QL # E 2" U ; U ; $JR ()X # :
50 K 2 " ] r# X U ; $JR ()X K T4 .9 $ ! L
K # 1 $E G2 6 $J] " $:) 9 "
5 / 1 H
$N 1 5 $2 $E)4 2 .9 ; $Q . (9 ; OZ!
M N!
; .9 $H P #D ( $N 1 #"D! " ( ! : h: 5 2) 9 +P
4 - 3 -
*#>1 :A / *B &
$T )4 $JR " 9+ ; # U ; $JR T2 G 4 9+ ; ( ! : Q! E $T )4 ; $JR K# " .");
" ;
K # 1 $E ‚)+. V# D ^ 4 J [H+ ( ! : " T2 .d H+ 9 "
# ! 6 $2 #D ( 9+ ; 8[6 2 #
$2 9+ ; 8[6 U x4 ) 25
H!
H $2 9+ ; W 2 w 65
H!
$2 9+ ; K # 1 w H 60
H!
H
$2 $T )4 $JR " 9+ ; 8[6 K # 1 w $2 e)2 " .(
")Q! 9QL G2 P # E y zH 9 Tf 9J
V 2 K# 2 2 .9 ! d 4 $X)2 ") ! " K# 2 2 9
" ) " 5 z4 K# 4 $JR $2 rJTH 9+ ; $
K # 1 2 i2 ! W 2 2 F ") ! " .9 $T )4 D $2 ^ 2" ! 2 ") !
7 / 27 " H
" $ ! L 125
$T )4 $JR $2 e)2 (9+ ; U ; {1 $ ! L $T )4 $JR 5 . ; 2
110 $ ! L QX . ; 2 r
) 9 +P 5
G ; $JR K " B ."
4 - 4 -
*#>1 :A&
C
. z4 9+ ; 8[6 " T2 $JR K# "
+
" ! ) " " $ " #D ( 9 "W 2 $E # E V : !
! 4 z4 $:
$2 9 "W 2 $E G ; D
# !
")C 2 $2 #D ( $ ; 1 ! P 2 9 if) V;
H!
H ) $` # " W 2 dNR $2 $E)4 2 .(
3 / 4 (OT H G : $ Ji4 ")2 2
9+ ; M 4
$J] " ; OZ! K 2 " r# X 5
/ 1 ! # 1 $JR 5 . ; $Q . $ ; 1 H 50
V : .9 $ ! L
# E 5 ; ‚)+.
) )% • ! 5 z4 9+ ; ; ! B
# 1 $JR S# H!
9 . d K ` O ;
9+ ; 8[6 - )H 84
! $E "
. ;
4 - 5 - * ' * +
"
") ! G#l
$ $+# 6 " 9+ ;
Q ( 2 9 ; M N! )# # G ;)
6 4 8 (.
Figure 6. A comparison of breach heights
Figure 7. A comparison of breach top widths 0
5 10 15 20 25 30
0 50 100 150 200 250
H (cm)
T (s)
Benchmark Scenario1 Scenario2 Scenario3
0 10 20 30 40 50 60 70
0 50 100 150 200 250
Btop (cm)
T (s)
Benchmark Scenario1 Scenario2 Scenario3
Figure 8. A comparison of breach bottom widths
d 4 ") ! $2 $E)4 2 ;
~)ZC "
( 9+ ; $ $+# 6 9+ ; 8[6 # ! U x4 #D
V# "
hJHi 25 H!
H 9+ ; 8[6 " ! P 2 5 2) 9 if 9 ")2
"
H!
H
; 2 .
V# " 9+ ; # ! $ 5 x4 K# 2 2 Vi2 " .")2 )C 9+ ; 8[6 w 5 x4 $2 e)2 hJHi
" R) 9+ ; U x4 # H!
S 1 H!
H w V# D (( ! : h:
9+ ; Vi2 " 9 " " _
! P)
$6! l 9+ ; )%
G2 P
… 9 9#
G ;) 9 ( . d K ` V# " 9+ ; 8[6 K %! O ; K 2 hJHi
84 4 $E "
85 9 ")2 $E "
5 x4
! `
%# # 2 !
! . d:
4
9 M) )# 2 9+ ; K#
) 24
] "
d:
4
# 9 +P B # E )Q G " $: ( Q V 8# +4 n 2 9 ")2 ^ 4 hJHi
#
9+ ; V# " $T )4 $JR 5 .""
M N!
V 2 ; # 1 U ; GR 4 ) ( E " . ; 2
1 (
$ # ! " K 2 $+# 6 .9 ; " 9+ ;
Figure 9. Scenarios for breach geometry
4 - 6 -
0 8 C 1F G01 * +
9 $H M N! )# # Q ( F K 2 $+# 6 G#l ") ! "
G ;) 10 (.
0 10 20 30 40 50 60 70
0 50 100 150 200 250
Bbot (cm)
T (s)
Benchmark Scenario1 Scenario2 Scenario3
Figure 10. A comparison of breach hydrographs
$2 S# H! G J.4 2 9 "
( )# "
14 9+ ; " V : ] "
26 ^ 2" " V# D ] "
G " $: ; Lk4
$! "
9; " 2 V : M " )# " .9 #D ( 9+ ; 9 V# D 2 4
14 D $2 ^ 2" V : 9+ ; ] "
15 ] "
; 9QL 9+ ; V : 9J . M " )# "
U Q; $2 )4 V 2
xR V# D ) #D ( $! 2 4 9+! " e)2 9+ ; # 8# +4 (
)+. % # d " H " ^ 2" V : d: .");
D $2 9+ ; K# 4 24
] "
V 2 D $2 ^ 2" V# D K# 4 34
) ( E " .9 M) )# $2 rJTH ] "
1 # ! " K 2 $+# 6 (
F .9 ; " 9+ ;
Table 1. Models breach geometry and flow hydrograph results
Average side slope (degree) Bottom width
(cm) Top width
(cm) Height
(cm) Breach time
Subject (s)
84 60
65 25
210 Benchmark
85 51
46 25
180 Scenario1
85 55
50 25
180 Scenario2
84 65
60 25
160 Scenario3
End duration (s) Development
duration (s) Initiation
duration (s) Peak time
(s) Peak discharge
( !"
#) Subject
50 110
50 125
27.7 Benchmark
50 80
50 100
34.8 Scenario1
60 80
40 95
23.6 Scenario2
40 90
30 70
37 Scenario3
4 - 7 - I& & !0 * + 0
"
G ; ) 11 ( $+# 6 ) )%
B 9 ; M N! )# # Q ( O+R 2 % # ( ! : " T2 )
H!
J O+R 2 ‚ 6 " H .(9 ; d 4 H
) ( E "
2 5 2) K %! 9 if $2 e)2 " ( K %! 2
140 9; " 2 $[6!
$2 ; 2 9 "
G] R ) " . T2 H ` 9R + " f K # 1 B
R 9 "
V# Y Z dN
d . ; G] R $H # K `
G] R
V# Y Z dNR f
$2 5 2) K %! M E 5 2) %` " $H # 9 if Q ( 2 . 9 "
5 2) K %!
2 / 18 J V# Y Z dNR K# 2 2 . ; $Q . H $H #
073 / 0 $X)2 M E OT H 6
/ 105
0 5 10 15 20 25 30 35 40
0 50 100 150 200 250 300
T (s)
Benchmark Scenario1 Scenario2 Scenario3
Q (I/s)
M )J : V# Y Z dNR $Q . B%2) )% K T4 " 2 : S# H! # K# 2 2 .")2 )C M E $H #
) G ; $2 $E)4 2 . ; 2 11
$2 9: R 2 ( K # 1 9
$H : 5 2) 9 if 9 "
$2 .");
$ ( ! : xR G "
( ^ 4 - " 9+ ;
$2) #D
# DE (M) ) ) )% 9+ ; $
$2 B 9 "
G ; "
6H v HQ+!
d . ; 2 ) )% K ` .9 ; 6H ! M) )# " B
(a) (b) (c) (d)
Figure 11. A comparison of sedimentation patterns after dam failure in different scenarios: (a) benchmark, (b) scenario 1, (c) scenario 2 and (d) scenario 3
Table 2. Sedimentation patterns results
Sediment mass (kg) Eroded material volume
($%) Average sedimentation
thickness (mm) Subject
105.6 0.073
18.2 Benchmark
107.9 0.074
18.6 Scenario1
98 0.068
16.9 Scenario2
72.5 0.05
12.5 Scenario3
5 -
*J $8 1
d S# H! K# 4 V 01
$2 $: f R
! 2 % # 5 )]
)4
F 9+ ; $
# E
)%
) B :9 G#l † ; $2 9 M N!
1 -
# 9+ ; "
(
$2 #D # 1 $T )4 U ; $JR $ G ; J: )X
5 $: ; 2
%#" $JR " $T )4 $JR V 2
4 " ; G 4 9+ ; ( ! : Q! E $T )4 ! 2 " $T )4 $JR .9 $E
1 K #
# ! 4 9 "
9+ ; $ ;
(9+ ; w U x4 )
; 2 .
2 - V# $ "
9+ ; 8[6 # ! U x4 25
H!
! H 9+ ; $ 5 x4 K# 2 2 ;
w FcHC $2 e)2 d .")2 9+ ; K # 1 W 2
Vi2 K `
" 9+ ; # ! $ G ;
$6! l Q# 64 .")2
3 - V# D $H )1 Y Z K %! [P V# D 2 ( )# "
26 V : ^ 2" ] "
14 ] "
G 4 Y Z ! d Lk4 $: ; 9+ ; .9; " 9# R 9+ ; ! 2 "
4 - V : 15
" H " M " )# " ^ 2" ] "
V 01 9 f R % #
Lk4 ! $:
V 2 U Q;
V 2 .9; " 9+ ; ! 2 #D ( $! 2 4 4
^ 2" K#
d:
4 2 9+ ; K#
M) )#
9QL
$2 $: ; O 4 4
34 V# D ] "
24 2 $+# 6 " V : ] "
Q ( .9; "
5 -
$2 b . M G "
" : " 9+ ; $ ( ! : M) )#
) )%
B 6H ! 9 G ;
~)ZC "
( # ) )%
B v Q# 64 V# Y Z dNR K T4 . #" 6H M E $H #
$X)2 5 2) K %! 9 if $Q . r# X . ; d
6 - 1 80/ K
6 H:" # P E 9 1 " 92 2 5 6 6.4 $+ 3 " # Q: ‚ )x] ‚ "
! " P 4 % # V 01 .""
7 - LM ' N B
t ." ! ")E +#)! - )4 T w T4 $!)
8 - L. '
Abdellatif Mohamed, M.M., & El- Ghorab, E.A.S. (2016). Investigating scale effects on breach evolution of overtopped sand embankments. Journal of Water Science, 30, 84-95.
Alhasan, Z., Jandora, J., & Riha, J. (2015). Study of dam-break due to overtopping of four small dams in the Czech Republic. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 63(3), 717-729.
Al-Riffai, M. (2014). Experimental study of breach mechanics in overtopped non-cohesive earthen embankments. PhD thesis,University of Ottawa, Canada.
Association of state dam safety officials. (2023). Kentucky, USA.
ASTMD422-63. (2002). Standard test method for particle size analysis of soils.
ASTM D1557. (2007). Standard test methods for laboratory compaction characteristics of soil using standard effort. West Conshohocken, PA, USA.
ASTM D3080. (2003). Standard test method for direct shear test of soils under consolidated drained conditions.Annual Book of ASTM Standards, Philadelphia 408, 1-7.
Brunner, G.W. (2016). HEC-RAS Reference Manual, version 5.0. Hydrologic Engineering Center, Institute for Water Resources, US Army Corps of Engineers, Davis, Calif.
Coleman, S.E., Andrews, D.P & Webby, M.G. (2002). Overtopping breaching of non-cohesive homogeneous embankments. Journal of Hydraulic Engineering, 128 (9), 829-838.
El-Ghorab, E.A.S., Fahmy, A., & Fodda, M. (2013). Large scale physical model to investigate the mechanics of embankment erosion during overtopping flow. Engineering Research Journal, 36 (3), 287-302.
Engomoen, B., Witter, D.T., Knight, K., & Luebke, T.A. (2014). Design Standards No 13:
Embankment Dams. United States Bureau of Reclamation.
Froehlich, D.C. (2016). Predicting peak discharge from gradually breached embankment dam.
Journal of Hydrologic Engineering, 04016041, 1-15.
Hakimzadeh, H., Nourani, V., & Amini, A.B. (2014). Genetic programming simulation of dam breach hydrograph and peak outflow discharge. Journal of Hydrologic Engineering, 19 (4), 757-768.
ICOLD. (2019). ICOLD incident database bulletin 99 update: statistical analysis of dam failures, technical report, international commission on large dams: Paris, France.
Kouzehgar, K., Hassanzadeh, Y., Eslamian, S., Yousefzadeh, F.M., & Babaeian, A.A. (2021).
Physical modelling into outflow hydrograghs and breach characteristics of homogeneous earthfill dams failure due to overtopping. Journal of Mountain Science, 18 (2), 462-481.
Mohammadi, M. (2022). Applied hydraulics. Urmia: Urmia university press. (In Persian).
Morris, M., Kortenhaus, A., &Visser, P. (2009). Modelling breach initiation and growth.
FLOODsite report: T06-08-02, FLOODsite Consortium, Wallingford, UK.
Msadala, V. (2016). Sediment transport dynamics in dam break modelling. PhD thesis, Stellenbosch university, South Africa.
Orendorff, B., Al-Riffai, M., Nistor, I., & Rennie, C.D. ( 2013). Breach outflow characteristics of non-cohesive embankment dams. Subject to blast. Canadian Journal of Civil Engineering, 40, 243-253.
Pektas, A.O., & Erdik, T. (2014). Peak discharge prediction due to embankment dam break by using sensitivity analysis based ANN. KSCE Journal of Civil Engineering, 18(6), 1868-1876.
Pickert, G., Weitbrecht, V., & Bieberstein, A. (2011). Breaching of overtopped river embankments controlled by apparent cohesion. Journal of Hydraulic Research, 49(2), 143-156.
Rahimi, H. (2019). Embankment dams. Tehran university press. (In Persian).
Saberi, O. (2016). Embankment dam failure outflow hydrograph development. PhD thesis, Graz university of technology, Austria.
Sadeghi, S. (2020). Experimental investigation into breach in small Earth dams with clay core due to overtopping. PhD thesis, Sahand University of Technology, Iran. (In Persian).
USACE. (2004). General design and construction considerations for Earth and rockfill dams.
US Army Corps of Engineers, Washington DC, USA.
USBR. (1987). Design of small dams. Bureau of Reclamation, water resources technical Publication.
Zumrawi, M. (2015). Failure investigation of Tawila dam in north Darfur, Sudan. International Journal of Science and Research, 4 (5), 963-967.