真貝寿明 (大阪工業大)
2017/6/23 大阪市立大学セミナー
1
中間質量ブラックホールからの重力波
GW from merging Intermediate-Mass BHs
http://www.oit.ac.jp/is/~shinkai/
Supermassive BHs
Intermediate-Mass BHs
(Stellar-Mass) BHs
10M ⇠ 100M 10 5 M ⇠ 10 10 M
10 2 M ⇠ 10 5 M
真貝・神田・戎崎, ApJ, 835 (2017) 276 [arXiv:1610.09505]
contents
1. Gravitational Waves
Detectors, GW events 2. Models of SMBH
hierarchical growth model, or others 3. Counting BHs
How many BHs in a galaxy?
How many galaxies in the Universe?
4. Event Rates at aLIGO/KAGRA/DECIGO/LISA
How many BH mergers in the Universe?
contents
1. Gravitational Waves
Detectors, GW events 2. Models of SMBH
hierarchical growth model, or others 3. Counting BHs
How many BHs in a galaxy?
How many galaxies in the Universe?
4. Event Rates at aLIGO/KAGRA/DECIGO/LISA
How many BH mergers in the Universe?
2016年2月,LIGOが重力波を初めて検出した,と発表した
四国新聞だけ
ちがった...残念(笑)
2016年2月,LIGOが重力波を初めて検出した,と発表した
2015年9月14日
2016年2月,LIGOが重力波を初めて検出した,と発表した
毎日新聞 2016/2/13 東京新聞 2016/2/12
「窮理」 2016/8
2017年1月センター試験 国語 小林博司「科学コミュニケーション」
8
2017年1月センター試験 国語 小林博司「科学コミュニケーション」
9
http://www.chugakujuken.net/mailmag̲advice/backnumber/20160229.html
10
http://www.chugakujuken.net/mailmag̲advice/backnumber/20160229.html
https://mediaassets.caltech.edu/gwave
Laser Interferemeter Gravitational-Wave Observatory ( 1992
年予算承認)
LIGO (ライゴ:レーザー干渉計重力波天文台)
12
地面振動
(seismic noise) 熱雑音
(thermal noise)
Science 256 (1992) 325
量子雑音 (shot noise)
KAGRA (かぐら:大型低温重力波望遠鏡)
http://gwcenter.icrr.u-tokyo.ac.jp/plan/history
Kamioka Gravitational wave detector, (Large-scale Cryogenic Gravitational wave Telescope)
望遠鏡の大きさ:基線長 3km
望遠鏡を神岡鉱山内に建設
地面振動が小さい岐阜県飛騨市に ある神岡鉱山
鏡をマイナス250度(20K)まで 冷却
熱雑音を小さくするため 鏡の材質としてサファイア
光学特性に優れ、低温に冷却する と熱伝導や機械的損失が少なくな る
15
Science 256 (1992) 325
spectral density [sec]
strain noise signal = gw + noise
16
Science 256 (1992) 325 PRL 116 (2016) 061102
2015/9/16--2016/1/15 Observational run 1 2016/11/30—
Observational run 2
17
1. Gravitational Wave >> Expected Waveform
!25 !20 !15 !10 !5 0 5
!1.0
!0.5 0.0 0.5 1.0
時間
[
ミリ秒]
合体の時刻 重力波の振幅連星のインスパイラル運動からの 重力波波形
ブラックホール形成の 重力波波形
× 10 − 22
NS-NS NS-BH BH-BH
h
time
Inspiral Merger Ringdown
17
Animation of the inspiral and collision of two black holes consistent with the masses and spins of GW170104. The top part of the movie shows the black hole horizons (surfaces of "no return"). The initial two black holes orbit each other, until they merge and form one larger remnant black hole. The shown black holes are spinning, and angular momentum is exchanged among the two black holes and with the orbit. This results in a quite dramatic change in the orientation of the orbital plane, clearly visible in the movie. Furthermore, the spin-axes of the black holes change, as visible through the colored patch on each black hole horizon, which indicates the north pole.
The lower part of the movie shows the two distinct gravitational waves (called 'polarizations') that the merger is emitting into the direction of the camera. The modulations of the polarizations depend sensitively on the orientation of the orbital plane, and thus encode information about the orientation of the orbital plane and its change during the inspiral. Presently, LIGO can only measure one of the polarizations and therefore obtains only limited information about the orientation of the binary. This disadvantage will be remedied with the advent of additional gravitational wave detectors in Italy, Japan and India.
Finally, the slowed-down replay of the merger at the end of the movie makes it possible to observe the distortion of the newly formed remnant black hole, which decays quickly. Furthermore, the remnant black hole is
"kicked" by the emitted gravitational waves, and moves upward. (Credit: A. Babul/H. Pfeiffer/CITA/SXS.) - See more at: http://ligo.org/detections/GW170104.php#sthash.NZPaW2LT.dpuf
http://ligo.org/detections/GW170104.php
http://www.ligo.org/magazine/LIGO-magazine-issue-8.pdf 19
!25 !20 !15 !10 !5 0 5
!1.0
!0.5 0.0 0.5 1.0
時間
[
ミリ秒]
合体の時刻 重力波の振幅連星のインスパイラル運動からの 重力波波形
ブラックホール形成の 重力波波形
× 10 − 22
20
1. Gravitational Wave >> Expected Amplitude
KAGRA
. 21
1. Gravitational Wave >> Expected Events
1 0 0 1 -‐‑‒ 0 0
●
●
●
● ●
● ●
■
■
■
■ ■
◆
◆
◆
◆ ◆
▲
▲
▲ ▲
▼ ▼
0.001 0.100 10 1000
10
-2510
-2310
-2110
-1910
-17f QNM f QNM
f QNM f QNM
2R g 5R g
10R g 50R g
10M + 10M 10 2 M + 10 2 M
10 3 M + 10 3 M
frequency [Hz]
S tr ai n S en si ti v it y p S n ( f )[ Hz 1 / 2 ]
22
1. Gravitational Wave >> Expected Events
KAGRA
.
1 0 0 1 -‐‑‒ 0 0
●
●
●
●
●
●
■
■
■
■
■
◆
◆
◆
◆ ◆
▲
▲
▲
▲
▲
▼
▼
▼
▼
0.001 0.100 10 1000
10
-2510
-2310
-2110
-1910
-17frequency [Hz]
S tr ai n S en si ti v it y p S n ( f )[ Hz 1 / 2 ]
f QNM f QNM
f QNM f QNM
2R g 5R g
10R g 50R g
10M + 10M 10 2 M + 10 2 M
10 3 M + 10 3 M
23
1. Gravitational Wave >> Expected Events
KAGRA
.
1 0 0 1 -‐‑‒ 0 0
●
●
●
●
●
●
■
■
■
■
■
◆
◆
◆
◆ ◆
▲
▲
▲
▲
▲
▼
▼
▼
▼
0.001 0.100 10 1000
10
-2510
-2310
-2110
-1910
-17frequency [Hz]
S tr ai n S en si ti v it y p S n ( f )[ Hz 1 / 2 ]
f QNM f QNM
f QNM f QNM
2R g 5R g
10R g 50R g
10M + 10M 10 2 M + 10 2 M
10 3 M + 10 3 M
10 -4 0.01 1 100 10 -23
10 -21 10 -19 10 -17
S tr ai n S en si ti v it y p S n ( f )[ Hz 1 / 2 ]
frequency [Hz]
0 0 1 -‐‑‒ 0 0
10 3 M + 10 3 M
10M + 10M
24
1. Gravitational Wave >> Expected Events
.
GW150914
observed by LIGO L1, H1 source type black hole (BH) binary
date 14 Sept 2015
time 09:50:45 UTC
likely distance 0.75 to 1.9 Gly 230 to 570 Mpc redshift 0.054 to 0.136 signal-to-noise ratio 24
false alarm prob. < 1 in 5 million false alarm rate < 1 in 200,000 yr
Source Masses M⊙
total mass 60 to 70
primary BH 32 to 41
secondary BH 25 to 33
remnant BH 58 to 67
mass ratio 0.6 to 1
primary BH spin < 0.7 secondary BH spin < 0.9
remnant BH spin 0.57 to 0.72 signal arrival time
delay
arrived in L1 7 ms before H1 likely sky position Southern Hemisphere
likely orientation face-on/off resolved to ~600 sq. deg.
duration from 30 Hz ~ 200 ms # cycles from 30 Hz ~10
peak GW strain 1 x 10-21 peak displacement of
interferometers arms ±0.002 fm frequency/wavelength
at peak GW strain 150 Hz, 2000 km peak speed of BHs ~ 0.6 c peak GW luminosity 3.6 x 1056 erg s-1 radiated GW energy 2.5-3.5 M⊙
remnant ringdown freq. ~ 250 Hz . remnant damping time ~ 4 ms .
remnant size, area 180 km, 3.5 x 105 km2 consistent with
general relativity?
passes all tests performed graviton mass bound < 1.2 x 10-22 eV
coalescence rate of
binary black holes 2 to 400 Gpc-3 yr-1 online trigger latency ~ 3 min # offline analysis pipelines 5
CPU hours consumed ~ 50 million (=20,000 PCs run for 100 days) papers on Feb 11, 2016 13
# researchers ~1000, 80 institutions in 15 countries B A C K G R O U N D I M A G E S : T I M E - F R E Q U E N C Y T R A C E ( T O P ) A N D T I M E - S E R I E S
( B O T T O M ) I N T H E T W O L I G O D E T E C T O R S ; S I M U L A T I O N O F B L A C K H O L E H O R I Z O N S ( M I D D L E - T O P ) , B E S T F I T W A V E F O R M ( M I D D L E - B O T T O M )
G W 1 5 0 9 1 4 : F A C T S H E E T
first direct detection of gravitational waves (GW) and first direct observation of a black hole binary
Detector noise introduces errors in measurement. Parameter ranges correspond to 90% credible bounds.
Acronyms: L1=LIGO Livingston, H1=LIGO Hanford; Gly=giga lightyear=9.46 x 1012 km; Mpc=mega parsec=3.2 million lightyear, Gpc=103 Mpc, fm=femtometer=10-15 m, M⊙=1 solar mass=2 x 1030 kg
13億光年先
(400 170 Mpc)
(z=0.054̶0.136)
36Msun + 29 Msun
のBHが合体して 62 Msun
(3 Msun分の質量が消失)
重力波が検出された!
重力波が検出できた!
BHが存在した!
BH連星が存在した!
相対論が第0近似で正しい!
observed by LIGO L1, H1 source type black hole (BH) binary
date 14 Sept 2015
time 09:50:45 UTC
likely distance 0.75 to 1.9 Gly 230 to 570 Mpc redshift 0.054 to 0.136 signal-to-noise ratio 24
false alarm prob. < 1 in 5 million false alarm rate < 1 in 200,000 yr
Source Masses M⊙
total mass 60 to 70
primary BH 32 to 41
secondary BH 25 to 33
remnant BH 58 to 67
mass ratio 0.6 to 1
primary BH spin < 0.7 secondary BH spin < 0.9
remnant BH spin 0.57 to 0.72 signal arrival time
delay
arrived in L1 7 ms before H1 likely sky position Southern Hemisphere
likely orientation face-on/off resolved to ~600 sq. deg.
duration from 30 Hz ~ 200 ms # cycles from 30 Hz ~10
peak GW strain 1 x 10-21 peak displacement of
interferometers arms ±0.002 fm frequency/wavelength
at peak GW strain 150 Hz, 2000 km peak speed of BHs ~ 0.6 c peak GW luminosity 3.6 x 1056 erg s-1 radiated GW energy 2.5-3.5 M⊙
remnant ringdown freq. ~ 250 Hz . remnant damping time ~ 4 ms .
remnant size, area 180 km, 3.5 x 105 km2 consistent with
general relativity?
passes all tests performed graviton mass bound < 1.2 x 10-22 eV
coalescence rate of
binary black holes 2 to 400 Gpc-3 yr-1 online trigger latency ~ 3 min # offline analysis pipelines 5
CPU hours consumed ~ 50 million (=20,000 PCs run for 100 days) papers on Feb 11, 2016 13
# researchers ~1000, 80 institutions in 15 countries B A C K G R O U N D I M A G E S : T I M E - F R E Q U E N C Y T R A C E ( T O P ) A N D T I M E - S E R I E S
( B O T T O M ) I N T H E T W O L I G O D E T E C T O R S ; S I M U L A T I O N O F B L A C K H O L E H O R I Z O N S ( M I D D L E - T O P ) , B E S T F I T W A V E F O R M ( M I D D L E - B O T T O M )
G W 1 5 0 9 1 4 : F A C T S H E E T
first direct detection of gravitational waves (GW) and first direct observation of a black hole binary
Detector noise introduces errors in measurement. Parameter ranges correspond to 90% credible bounds.
Acronyms: L1=LIGO Livingston, H1=LIGO Hanford; Gly=giga lightyear=9.46 x 1012 km; Mpc=mega parsec=3.2 million lightyear, Gpc=103 Mpc, fm=femtometer=10-15 m, M⊙=1 solar mass=2 x 1030 kg
Draft:
DCC
P151226-v10
- do
not circulate
duration from 35 Hz ~1 s # cycles from 35 Hz ~55
signal arrival time
delay arrived in H1 1 ms after L1
peak GW strain ~ 3.4 x 10-22 peak displacement of
interferometers arms ~ ±0.7 am frequency/wavelength
at peak GW strain 420 Hz, 710 km peak speed of BHs ~ 0.6 c
peak GW luminosity 2 to 4 x 1056 erg s-1 radiated GW energy 0.8-1.1 M⊙
remnant ringdown freq. ~ 750 Hz . remnant damping time ~ 1.3 ms .
remnant size, area 60 km, 3.5 x 104 km2 online trigger latency ~ 67 s
# offline analysis pipelines 2
Draft:
DCC
P151226-v10
- do
not circulate
Draft:
DCC
P151226-v10
- do
not circulate
observed by LIGO L1, H1 source type black hole (BH) binary
date 26 Dec 2015
time 03:38:53 UTC
distance 250 to 620 Mpc
redshift 0.05 to 0.13
signal-to-noise ratio 13
false alarm prob. ~ 1 in 10 million Source Masses M⊙
total mass 20 to 28
primary BH 11 to 23
secondary BH 5 to 10
remnant BH 19 to 27
mass ratio > 0.28
spin of one of the
black holes > 0.2
remnant BH spin 0.7 to 0.8 resolved to ~850 sq. deg.
Parameter ranges correspond to 90% credible bounds. Acronyms: L1/H1=LIGO Livingston/Hanford; Mpc=mega parsec=3.2 million lightyear, am=attometer=10-18 m,
M⊙=1 solar mass=2 x 1030 kg
B A C K G R O U N D I M A G E S : T I M E - F R E Q U E N C Y T R A C E ( T O P ) A N D S I G N A L - T O - N O I S E R A T I O T I M E - S E R I E S ( B O T T O M ) I N T H E T W O
L I G O D E T E C T O R S ; E X A M P L E W A V E F O R M ( M I D D L E )
G W 1 5 1 2 2 6 : F A C T S H E E T
GW151226
15億光年先
(440 190 Mpc)
(z=0.05̶0.13)
14Msun + 7.5 Msun
のBHが合体して 21 Msun
(1 Msun分の質量が消失)
GW170104
http://ligo.org/detections/GW170104.php
Comparison of gravitational-wave signal templates from recent LIGO observations. This figure shows reconstructions of the three confident and one candidate (LVT151012) gravitational wave signals detected by LIGO to date, including the most recent detection GW170104. Each row shows the signal arriving at the Hanford detector as a function of time. The thickness of the curves indicates the 90%
confidence interval on the model parameters. Only the portion of each signal that LIGO was sensitive to is shown here (the final seconds leading up to the black hole merger). [Credit: LIGO/B. Farr (U.
Chicago)] - See more at: http://ligo.org/detections/GW170104.php#sthash.QTJIckcl.dpuf
http://ligo.org/detections/GW170104.php
32
1. Gravitational Wave >> Expected Events
LIGO/KAGRA
.
-‐‑‒ 0 0 -‐‑‒ 0 0
●
●
●
● ●
■
■
■
■ ■
◆
◆
◆
◆ ◆
1 10 100 1000 10
410
-2310
-2110
-1910
-17frequency [Hz]
S tr ai n S en si ti v it y p S n ( f )[ Hz 1 / 2 ]
Sky Map of LIGO's Black-Hole Mergers. This three- dimensional projection of the Milky Way galaxy onto a transparent globe shows the probable locations of the three confirmed LIGO black-hole merger events—
GW150914 (blue), GW151226 (orange), and the most recent detection GW170104 (magenta)—and a fourth possible detection, at lower significance (LVT151012, green). The outer contour for each represents the 90 percent confidence region; the innermost contour signifies the 10 percent confidence region. [Image credit:
LIGO/Caltech/MIT/Leo Singer (Milky Way image: Axel Mellinger)] - See more at: http://ligo.org/detections/
GW170104.php#sthash.pwWdVLL4.dpuf
Forecasting LIGO Detections in the Three-Detector Era. This map illustrates how the addition of the Virgo detector, scheduled to come online this summer, could improve the localization of sources of gravitational waves. The map shows the estimated locations of the four black-hole merger events detected by LIGO to date (including one event seen at lower significance), after including hypothetical Virgo data. Outer contours represent the 90 percent confidence region; innermost contours signify the 10 percent confidence region. [Image credit: LIGO/Caltech/
MIT/Leo Singer (Milky Way image: Axel Mellinger)] - See more at: http://ligo.org/
detections/GW170104.php#sthash.NZPaW2LT.dpuf
http://ligo.org/detections/GW170104.php
M1+M2=Mf, Mdiff/Mtotal
a̲final
Mpc
z SNR deg^2
GW150914
PRL116, 061102 (2016/2/11)
36.2+29.1=62.3+3.0 4.59%
0.68
410Mpc
0.09 24 600
LVT151012 (2016/2/11)
23+13=35+1.5 2.78%
0.66 GW151226
PRL116, 241103 (2016/6/15)
14.2+7.5=20.8+0.9 4.15%
0.74
440Mpc
0.09 13 850
GW170104
PRL118, 221101 (2017/6/1)
31.2+19.4=48.7+1.9 3.75%
0.64
880Mpc
0.18 13 1300
https://losc.ligo.org/events/GW150914/
https://losc.ligo.org/events/GW151226/
https://losc.ligo.org/events/LVT151012/
https://losc.ligo.org/events/GW170104/
arXiv:1606.01262
http://ligo.org/detections/GW170104.php
why not more?
38
1. Gravitational Wave >> Expected Waveform
!25 !20 !15 !10 !5 0 5
!1.0
!0.5 0.0 0.5 1.0
時間
[
ミリ秒]
合体の時刻 重力波の振幅連星のインスパイラル運動からの 重力波波形
ブラックホール形成の 重力波波形
× 10 − 22
NS-NS NS-BH BH-BH
Inspiral Merger Ringdown
h
time
38
39 S tr ai n n oi se am p li tu d e[ 1 / p Hz ]
frequency[Hz]
1 10 100 1000 104
10-25 10-22 10-19 10-16
Kagra
TOBA
aLIGO aVIRGO
ET
10 100 1000 10
410 100 1000 10
4a = 0.0
a = 0.5 a = 0.9
M BH /M
fr eq u en cy [Hz ]
地上での重力波干渉計感度
BH quasi-normal freq.
(ringdown freq.)
BH < 2000Msun can be a target
IMBH ringdown freq. is detectable at LIGO/KAGRA
10Hz 1000Hz
1000M 100M
10
100 f
qnm = c 3
2⇡ GM T 1 0.63(1 a) 0.3
contents
1. Gravitational Waves
Detectors, GW events 2. Models of SMBH
hierarchical growth model, or others 3. Counting BHs
How many BHs in a galaxy?
How many galaxies in the Universe?
4. Event Rates at aLIGO/KAGRA/DECIGO/LISA
How many BH mergers in the Universe?
Rees, M.J. 1978. Observatory 98: 210 41
2. Models of SMBH
Volonteri, Science 337 (2012) 544
42
2. Models of SMBH
Greene, Nature Comm 3 (2012) [arXiv:1211.7082]
43
2. Models of SMBH
Rees, M.J. 1978. Observatory 98: 210 44
Gas Cloud
BHs
IMBHs
SMBHs
Halo
Galaxy Globular
Cluster Massive
Stars
Ebisuzaki +, ApJ, 562, L19 (2001)
2. Models of SMBH
45
Yagi, CQG 29 075005 (2012) [arXiv:1202.3512]
HLX-1 has 20,000M BH!
http://hubblesite.org/newscenter/archive/releases/2012/2012/11/full/
Starburst galaxy M82 has 1000M BH
BHs
IMBHs
SMBHs
Matsushita+, ApJ, 545, L107 (2000) Matsumoto+, ApJ, 547, L25 (2001)
Ebisuzaki +, ApJ, 562, L19 (2001)
0.15pc from SgrA*
1-2 x 10 4 Msun 1602.05325
46
PortegiesZwart+, ApJ 641(2006)319
47
48
BHs
IMBHs
SMBHs
'Missing link' founded
Ebisuzaki +, ApJ, 562, L19 (2001) (1)formation of IMBHs by runaway mergers of
massive stars in dense star clusters,
(2) accumulations of IMBHs at the center region of a galaxy due to sinkages of clusters by dynamical friction
(3) mergings of IMBHs by multi-body interactions and gravitational radiation.
Marchant & Shapiro 1980; Portegies Zwart et al. 1999;
Portegies Zwart & McMillan 2002;
Portegies Zwart et al. 2004;
Holger & Makino 2003
Matsubayashi et al. 2007
Iwasawa et. al. 2010
雰囲気(巡り逢い)+仲良し成長 モデル
Matsubayashi, HS, Ebisuzaki, ApJ 614 (2004) 864
IMBH-IMBH mergers produce low freq. GW
51
52
Matsubayashi, HS, Ebisuzaki, ApJ 614 (2004) 864 53
How many BH mergers in the Universe?
How many BH mergers we observe in a year?
How many BHs in a galaxy?
How many galaxies in the Universe?
Detectable Distance ? KAGRA/aLIGO/aVIRGO Cosmological model?
BH spin? Signal-to-Noise?
54
contents
1. Gravitational Waves
Detectors, GW events 2. Models of SMBH
hierarchical growth model, or others 3. Counting BHs
How many BHs in a galaxy?
How many galaxies in the Universe?
4. Event Rates at aLIGO/KAGRA/DECIGO/LISA
How many BH mergers in the Universe?
56
Mass Function of Giant Molecular Clouds
1 100 10
410
610
-41 10
410
810
12M 10 12 M
10 9 M
galaxy mass
GMC mass
A&A 580, A49 (2015) [arXiv:1505.04696]
How many BHs in a Galaxy?
57
10 100 1000 10
410
-70.001 10.000 10
51309.1223v3
10 12 M
10 9 M
Galaxy Mass n(M)
BH mass
Molecular Clouds
Maximum Core
Building Block BH
How many BHs in a Galaxy?
58
Count BHs to form a SMBH
10 1000 105 107 109 1011
10-7 10-4 0.1 100 105
10 100 1000 10
410
-70.001 10.000 10
510 12 M
10 9 M
Galaxy Mass n(M)
BH mass
Building Block BH
BH mass n(M)
How many BHs in a Galaxy?
59
Count BHs to form a SMBH
10 1000 105 107 109 1011
10-7 10-4 0.1 100 105
dynamical friction
BH mass n(M)
How many BHs in a Galaxy?
60
(sub-)Galaxy
from Halo model
Star Formation Rate
peak z=3.16
Count BHs to form a SMBH
How many Galaxies in the Universe?
61
1011 1012 1013 1014 1015
10-23 10-21 10-19 10-17 10-15 10-13
z = 0 z = 5
1012 1013 1014 1015
5 10 50 100 500 1000
(1) Halo number density
(2) N of seeds of Galaxy (subHalo)
(3) N of Galaxy
within z=1 within z=5
M 1
1×1011 5×1011 1×1012 5×1012
0.01 1 100
M 1.95
How many Galaxies in the Universe?
z<3
10 12
62 https://www.ras.org.uk/news-and-press/2910-a-universe-of-two-trillion-galaxies
http://iopscience.iop.org/article/10.3847/0004-637X/830/2/83
x10 more than before
# of galaxy (z<8) : 2x10 12
# of galaxy 10 6 >Msun
reduces in evolution
63
(sub-)Galaxy
from Halo model
Star Formation Rate
peak z=3.16
Count BHs to form a SMBH
How many Galaxies in the Universe?
McConnell-Ma
ApJ 764(2013)184
64
contents
1. Gravitational Waves
Detectors, GW events 2. Models of SMBH
hierarchical growth model, or others 3. Counting BHs
How many BHs in a galaxy?
How many galaxies in the Universe?
4. Event Rates at aLIGO/KAGRA/DECIGO/LISA
How many BH mergers in the Universe?
66
図F
BH mass
z z
BH mass
in Standard Cosmology
How many BH mergers in the Universe?
Event Rate R[/yr] = N merger (z) V (D/2.26)
Standard Cosmology
averaging distances
for all directions
Signal-to-Noise Ratio (SNR)
Strainnoiseamplitude[1/√ Hz]
frequency[Hz]
Kagra
TOBA
aLIGO aVIRGO
ET
67
68
Detectable Distances at bKAGRA
Hierarchical Growth
⇢ 2 = 8 5
✏ r (a) f R 2
(1 + z)M S h (f R /(1 + z))
✓ (1 + z)M d L (z )
◆ 2 ✓ 4µ M
◆ 2
SNR
Energy emission=4% of total M,1% at ringdown Flanagan&Hughes, PRD57(1998)4535
Standard Cosmology
a = 0.9
KAGRA KAGRA
Slide copy from Hiroyuki Nakano
69
GW150914 4.7% of mass
emitted in total 2.8% of mass
emitted by ISCO
1% of mass
emitted
in ringdown?
70
図F
BH mass
z z
BH mass
in Standard Cosmology
How many BH mergers in the Universe?
Event Rate R[/yr] = N merger (z) V (D/2.26)
Standard Cosmology
averaging distances
for all directions
Event Rates at bKAGRA
BH spin=0.9,0.5,0.0
peak at 60M
range 40M-150M
7 events/yr
210 events/yr
71
Event Rates at bKAGRA/aLIGO
7 events/yr
peak at 60M
BH mass (final BH) [M ] BH mass (final BH) [M ]
E ve n t R at e [1 / yr]
(a1) SNR=10, KAGRA (a2) SNR=10, KAGRA
10 50 100 500 1000 5000 104
0.5 1 5 10 50 100
N merger
10 50 100 500 1000 5000 104
107 108 109 1010 1011 1012
range 40M-150M
210 events/yr
LIGO group [1602.03842]
Inoue+ MNRAS461(16)4329
6-400 /Gpc^3/yr
Kinugawa+ MNRAS456(15)1093
70-140 /yr
72
Event Rates at bKAGRA/aLIGO
7 events/yr
peak at 60M
BH mass (final BH) [M ] BH mass (final BH) [M ]
E ve n t R at e [1 / yr]
(a1) SNR=10, KAGRA (a2) SNR=10, KAGRA
10 50 100 500 1000 5000 104
0.5 1 5 10 50 100
N merger
10 50 100 500 1000 5000 104
107 108 109 1010 1011 1012
range 40M-150M
210 events/yr
LIGO group PRX6(2016)041015
Inoue+ MNRAS461(16)4329
6-400 /Gpc^3/yr
Kinugawa+ MNRAS456(15)1093
70-140 /yr
73
10 -4 0.01 1 100 10 -23
10 -21 10 -19 10 -17
S tr ai n S en si ti v it y p S n ( f )[ Hz 1 / 2 ]
frequency [Hz]
0 1 0 0 10 0 0
10 3 M + 10
3 M
10 2 M + 10
2 M 10 4 M + 10
4 M
74
http://rhcole.com/apps/GWplotter/
これは遊べる GWplotter
75
105 106 107 108 107
108 109 1010 1011 1012
観測できるBH数分布 1年間で観測できるBH数分布
(S/N=10)
spin 0.9
spin 0
BH質量[Msun]
BH質量[Msun]
年55個
104 105 106 107 108
0.10 1 10 100
104 105 106 107 108 109
10 100 1000 104
観測できるBH合体距離 (S/N=10)
BH質量[Msun]
[Mpc]
10-4 0.01 1 100
10-23 10-21 10-19 10-17
eLISA N2A5
76
Event Rates at eLISA
観測できるBH数分布 1年間で観測できるBH数分布
(S/N=10)
spin 0.9
spin 0
BH質量[Msun]
BH質量[Msun]
観測できるBH合体距離 (S/N=10)
BH質量[Msun]
[Mpc]
10-4 0.01 1 100
10-23 10-21 10-19 10-17
PreDECIGO
100 1000 104 105 106 107
0.10 1 10 100 1000
100 1000 104 105 106 107
107 109 1011 1013
1 10 100 1000 104 105 106
1 10 100 1000 104 105
77
Event Rates at PreDECIGO
100 1000 104 105 106 107 107
109 1011 1013
観測できるBH数分布 1年間で観測できるBH数分布
(S/N=30)
spin 0.9
spin 0
BH質量[Msun]
BH質量[Msun]
観測できるBH合体距離 (S/N=30)
BH質量[Msun]
[Mpc]
10-4 0.01 1 100
10-23 10-21 10-19 10-17
PreDECIGO
1 10 100 1000 104 105 106
10 100 1000 104
100 1000 104 105 106 107
0.10 1 10 100
1000 年4850個
78
Event Rates at PreDECIGO
BH spin=0.9,0.5,0.0
まとめ
重力波検出のデータを蓄積することによって,銀河分布やSMBH形成シナリオを特定 したり,宇宙膨張モデルの検証や,重力理論の検証が可能になる.