• Tidak ada hasil yang ditemukan

協力行動インタラクティブシミュレータ RoCoCoの対話研究への応用

N/A
N/A
Protected

Academic year: 2025

Membagikan "協力行動インタラクティブシミュレータ RoCoCoの対話研究への応用"

Copied!
3
0
0

Teks penuh

(1)

協力行動インタラクティブシミュレータ

RoCoCo

の対話研究への応用

Cooperative Behavior Interactive Simulator RoCoCo for Dialogue Research

岩橋直人1 船越孝太郎2

Naoto Iwahashi

1

Kotaro Funakoshi

2

岡山県立大学1 2 東京工業大学

Okayama Prefectural University

1

Tokyo Institute of Technology

2

Abstract: A software for research on cooperative behaviors, named RoCoCo, is introduced in this report. RoCoCo can perform interactive simulations of cooperative behaviors and provide analytical tools. It has a multiserver and multiclient configuration, and both humans and artificial intelligence can participate as agents. It supports versatile cooperative tasks such assearch,drive, joint transportation, rearranging multiple pieces of furniture, andball play. Here, the capabilities of RoCoCo are demonstrated, the results of the pilot experiments are presented, and the possible applications of RoCoCo in dialogue research are discussed.

1 Introduction

Cooperation is a fundamental human trait. Since the turn of the millennium, greater emphasis has been placed on a multifaceted understanding of coopera- tion that includes perspectives such as biological ori- gins, socio-scientific properties, cognition and brain function, and mathematical or physical principles [1].

In an ongoing project on theories of cooperation [2], the theories and engineering applications of human- human, human-machine, and machine-machine coop- eration have been comprehensively investigated.

In general, dialogue helps improve nonverbal coop- eration, as well as verbal cooperation itself. In other words, dialogue can be explored from the perspec- tive of cooperation (e.g. [3, 4, 5, 6]). Accordingly, a software platform called role coordinative cooper- ation (RoCoCo) was developed to facilitate research on cooperative behaviors. Its application to dialogue research are discussed in this report.

2 RoCoCo

2.1 General description

RoCoCo provides an interactive simulation of coop- erative behaviors and mathematical analytical tools.

Human participants control agents in a virtual space

[email protected], www-ail.c.oka-pu.ac.jp

This study was partially supported by JSPS KAKENHI Grant Numbers JP18K11359, JP20K21812

Figure 1: Participants operating RoCoCo

using a game controller to enable the agents to per- form cooperative tasks. The resultant behavior can be analyzed for specific purposes. Figure 1 shows a participant operating RoCoCo.

With RoCoCo, participants are allowed to speak to each other to improve their behavior while perform- ing cooperative tasks. Based on their interactions, the relationship between the dialogue and nonverbal co- operative tasks can be analyzed.

2.2 Cooperative task setting

The task setting comprises agents and objects. Cer- tain types of agents and objects were prepared before- hand. Agent’s action types include movement, rota- tion, grip, and release. Object types include fixed, mobile, and inertial. Specific tasks can be set by se- lecting appropriate agent’s action and object types.

Examples of the available tasks are shown in Fig. 2.

As specific tasks can be easily understood from the

(2)

(a) Search (b) Joint transportation

(c) Rearranging multiple pieces of furniture

(d) Ball play

(e) Drive

Figure 2: Task examples

figures, detailed explanations have been omitted.

2.3 Server-client configuration

RoCoCo has a client-server configuration, as shown in Fig. 3, and provides online multisession multiplayer connections. The session server provides a scene for a task and executes a physical simulation of the task, which can be located either locally or in the clouds.

The player client serves as the interface between the server and the player, who can play as either human or artificial intelligence. Each figure in Fig. 2 shows the screen as seen by the human player client. Ses- sion managers monitor and control the progress of sessions. The system manager manages the connec- tions between the session servers and player clients through a graphical interface as shown in Fig. 4 and helps conduct the subjective experiments efficiently.

Figure 3: Server-client structure of RoCoCo

Figure 4: System manager’s screen (Network infor- mation is masked.)

2.4 AI agent

An AI agent was developed as a RoCoCo player. In the subjective experiments, the AI agent passed the Turing test on the joint transportation task. Further- more, the objective change in the characteristics of the AI agent’s behaviors, such as action cost func- tion, agent priority, prediction and inference setting, and other mutual belief settings, renders the cogni- tive experiments condition-controllable according to the purposes of the experiments.

3 Dialogue research

RoCoCo has tools for analyzing dialogue during co- operative tasks. The log of cooperative behavior with dialogue is stored in a video file and can be replayed, as shown in Fig. 5. In addition, it includes mathe- matical tools that can be used to analyze the charac- teristics of nonverbal behavior, dialogue, and their re- lationships from the perspectives of synchronization,

(3)

Figure 5: A log video

timing, planning, and repair.

One important feature to explore is the relation- ship between repair behavior and repair speech. For the analysis of this feature, RoCoCo provides a tool to measure nonverbal behavior inconsistency between cooperating agents. Another important feature is the relationship between the complexity of planning of nonverbal cooperation and dialogue. For this feature as well, RoCoCo provides a tool to continuously mea- sure the complexity of dynamically changing coopera- tion situations. With RoCoCo, many other important features could be the subject of research.

4 Discussion

A software platform for research on cooperative be- havior and dialogue, RoCoCo, was introduced in this report. We believe it will result in a new research paradigm and help discover the unexplored features of cooperation and dialogue. On the other hand, sim- ulations in virtual space have the limitation that they cannot cope with the effects of various factors exist- ing in real space. However, the ability to selectively simulate physical and psychological factors present in the real world could be an advantage over experiments conducted in real environments, where uncontrollable and undesirable factors cannot be eliminated.

From an engineering perspective, the dialogue re- search from the cooperation view would contribute the challenge of developing the effective spoken lan- guage interaction with robots [7, 8, 9], which is a social necessity. Furthermore, from a scientific perspective, RoCoCo would contribute the intersubjective research on cooperation and dialogue. Future work will include the comprehensive analysis of dialogue in nonverbal cooperation and the expansion of mathematical and cognitive tools for analyzing the dynamics of mutual beliefs in cooperation.

References

[1] T. Siegfried, “In praise of hard questions,” Science, vol. 309, no. 5731, pp. 76–77, 2005.

[2] N. Iwahashi, H. Okada, and K. Funakoshi, “Theory of cooperation – cognitive and mathematical principles cooperation and their application,” in Proceedings of annual conference of JSAI, 2020.

[3] H. H. Clark, Using language. Cambridge University Press, 1996.

[4] E. A. Schegloff, Sequence organization in interaction:

A primer in conversation analysis I. Cambridge Uni- versity Press, 2007, vol. 1.

[5] R. Clark,Meaningful games: Exploring language with game theory. MIT Press, 2011.

[6] D. Wilson and D. Sperber, Meaning and relevance.

Cambridge University Press, 2012.

[7] N. G. Ward and D. DeVault, “Challenges in build- ing highly-interactive dialog systems,” AI Magazine, vol. 37, no. 4, pp. 7–18, 2016.

[8] T. Taniguchi, D. Mochihashi, T. Nagai, S. Uchida, N. Inoue, I. Kobayashi, T. Nakamura, Y. Hagiwara, N. Iwahashi, and T. Inamura, “Survey on frontiers of language and robotics,” Advanced Robotics, vol. 33, no. 15–16, pp. 700–730, 2019.

[9] M. Marge, C. Espy-Wilson, N. G. Ward, A. Al- wan, Y. Artzi, M. Bansal, G. Blankenship, J. Chai, H. Daum´e III, and D. Dey, “Spoken language inter- action with robots: Recommendations for future re- search,” Computer Speech & Language, vol. 71, p.

101255, 2022.

Referensi

Dokumen terkait

34 《農芸化学奨励賞》 受賞者講演要旨 Malonyl-CoA CUSDCS CUS CURS 4-Coumaroyl-CoA diketide-CoA 4-Coumaroyl-CoA CURSCUS Bisdemethoxycurcumin E-ketoacid ᅗ䠏 Naringenin 4CL 4-Coumaroyl-CoA CHS CHI

50 人文学会新会員紹介 「たそがれの領域へ」─私の研究と教育活動 外国語学部 スペイン語学科 Morales Rama Alejandro モラレス ラマ アレハンドロ

2012年12月 拡大教科書使用児童生徒の保護者の皆様 文部科学省調査研究受託者 慶應義塾大学 中野 泰志 標準規格の拡大教科書等の作成支援のための調査研究へのご協力のお願い 日頃から、拡大教科書等の普及の促進等に格別のご協力をいただき、誠にありがとうござい ます。 文部科学省では拡大教科書の選定方法と評価方法を明確化し、拡大教科書の作成支援をする

1. 調査の目的 地球規模の課題が山積する今日の国際社会において、日本が責任ある一員として国際 協力の分野でふさわしい役割を担い、知的貢献を果たすためには、知的源泉として責務 を有する大学の協力を得るという視点が不可欠である。文部科学大臣の私的懇談会であ る「国際教育交流政策懇談会」平成21年1月設立:その後平成23年1月から「国際交

ようこそ 「役立つ日本の授業研究」 次第 ごあいさつ 文部科学省大臣官房国際課国際協力政策室 佐藤 浩 講義:その1 礒田正美、清水静海 講義:その2 それ以外の方 清水静海 現職派遣者 礒田正美 アンケート 青年海外協力隊特別講義 「役立つ日本の授業研究」 筑波大学教育学系 清水静海 筑波大学 教育開発国際協力研究センター 礒田正美 参考:

「カーボンナノチューブ・グラフェンの応用研究最前線」,NTS 序論 ナノカーボン材料の新たな応用分野とその展望〜CNT・グラフェンを中心に〜 丸山 茂夫(東京大学/産業技術総合研究所) フラーレン発見から 30 周年の記念行事が昨年で,本年はカーボンナノチューブCNTの 発見から 25年,グラフェンが注目されてすでに 10

コスメトロジー研究報告 第 11 号(2003) がん患者への「化粧」支援プログラムの日本への適用可能性に関する研究 高 橋 都 東京大学大学院 医学系研究科健康科学 【目的・背景】 がん治療は患者のボディ・イメージを変容させて生活の質や自尊心の低下にもつながる。しか

平成30年度 特別支援学校(視覚障害等)高等部における 教科書デジタルデータ活用に関する調査研究 2 タが有効活用できるかどうか等を実践的に検討していただきたいと思います。 2.本研究への参加要件 本研究の研究協力校となるための要件としては、以下の事項をご了承いただくこ とが必要になりますので、必ずご確認ください。 ・