• Tidak ada hasil yang ditemukan

第148回 広島数理解析セミナー (2011年度)

N/A
N/A
Protected

Academic year: 2024

Membagikan "第148回 広島数理解析セミナー (2011年度)"

Copied!
2
0
0

Teks penuh

(1)

第148回 広島数理解析セミナー (2011年度)

Hiroshima Mathematical Analysis Seminar No.148

日時 : 6月17日(金)15:00〜16:00 場所 : 広島大学理学部 B707 

講師 : 山澤 浩司 氏 (カリタス女子短期大学)

題目 :

Borel summability for formal solution of initial value problem

of some linear partial differential equations with variable coefficients

要旨 :

We study the following initial value problem:

{

∂tu(t, x) = (∂x )2u(t, x) +At(t∂t)3u(t, x)

u(0, x) = φ(x) (1)

where (t, x)C×Cand A∈C.

 We will consider a formal power series solution ˜u(t, x) = ∑

i=0ui(x)ti of the equation (1).

 The formal solution ˜u(x, t) diverges for general initial value. In the case ofA= 0, the equation (1) is the heat equation, and we have a result of Luts-Miyake-Sch¨afke [2] for Borel summability of the formal solution ˜u(t, x). For a general equation, we have a result of Balser [1] by using an idea of a normalized formal solution.

 Here we consider Borel summability of the formal solution ˜u(t, x) in the case of A 6= 0. We get a result of Borel summability under the condition that the initial valueφ(x) is an entire function of exponential order at most 2, that is, the following inequality holds for some positive constants C and c,

(x)| ≤Cexpc|x|2, x∈C.

 In the case without a term (∂x )2u(t, x), we have a result of ¯Ouchi [3] and [4]

for some inhomogeneous linear and nonlinear partial differential equations. ¯Ouchi showed (Multi) summability of the formal solution ˜u(t, x) by using the Borel trans- form and the Laplace transform.

 Our proof method adopts some idea in [1] and [3].

参考文献

[1] W. Balser, summability of formal power-series solutions of partial differential equations with constant coefficients, Journal of Math. Sci., Vol. 124, No. 4, (2004), 5085–5097.

[2] D. A. Luts, M. Miyake and R. Sch¨afke, On the Borel sommability of divergent solutions of the heat equation, Nagoya Math. J.Vol., 154, (1999), 1–29.

[3] S. ¯Ouchi, Multisummability of Formal Solutions of Some Linear Partial Dif- ferential Equations,J. Diff. Eq. 185 (2002), 513–549.

[4] S. ¯Ouchi, Multisummability of formal power series solutions of nonlinear partial differential equations in complex domains,Asymptotic Analysis47(2006), 187–

225.

(2)

広島数理解析セミナー幹事

池畠  良(広大教育) [email protected] 市原 直幸(広大工・総科)[email protected]

大西  勇(広大理) isamu [email protected] 川下 美潮(広大理) [email protected] 倉   猛(広大理) [email protected] 佐々木良勝(広大理) [email protected]

F滝本 和広(広大理) [email protected] 松本 敏隆(広大理) [email protected]

F印は本セミナーの責任者です

Referensi

Dokumen terkait

Nakagawa, “Remarks on the Phragmén-Lindelöf theorem for $L^p$-viscosity solutions of fully nonlinear PDEs with unbounded ingredients,” Electronic Journal of Differential Equations 146