• Tidak ada hasil yang ditemukan

複素関数練習問題 No. 3 - 明治大学

N/A
N/A
Protected

Academic year: 2024

Membagikan "複素関数練習問題 No. 3 - 明治大学"

Copied!
8
0
0

Teks penuh

Something wrong

Referensi

Dokumen terkait

[r]

これから ux = sinhxcosy, uy =−coshxsiny, vx = coshxsiny, vy = sinhxcosy であるから、確かに Cauchy-Riemann 方程式 ux =vy, uy =−vx

注意 24.9 つづき 3 続き cの⇒の証明には準備例えば Riemannの除去可能特異点定理 が必要であるそれはこの科目の最後の頃の講義で説明する。それが出来 れば、a, b, cの⇐は一斉に証明できる。 4 真性特異点という言葉は、孤立特異点でない場合にも使われる。ここの条 件が成り立つ場合は「孤立真性特異点とは」と呼ぶ方が紛れがないかもし れない。

参考文献 [1] 桂田祐史:複素関数論ノート , 現象数理学科での講義科目「複素関数」の講

この式に慣れるべき!加法定理よりは指数法則の方が楽だし 図形的に把握することを勧める 次のスライド。 注意 3.2 教育的指導 eiθ を見ると、ほとんど反射的に5を使って、cos, sinで表現して計算する人が毎年 かなりの数いるが、複素指数関数で表現できているものは、たいていの場合は、複素指数 関数のままで計算する方が便利である。いつもcos,

参考文献 [1] 桂田祐史:複素関数論ノート,現象数理学科での講義科目「複素関数」

2019年度 複素関数, 複素関数演習 期末試験問題 2020年1月27日月曜 13:30〜15:30施行 担当 桂田 祐史 ノート等持ち込み禁止,解答用紙2枚のみ提出 問7は必ず解答せよ。それ以外の問から5つを選択して全部で6つの問に解答せよ。各問の解答の順番は 自由であるただし1つの問の解答は一箇所にまとめて書くこと。 問1... これは等比級数であるから