単層カーボンナノチューブ Single-Walled Carbon Nanotubes
1.幾何学と電子構造
Geometry and Electronic Structure 単層カーボンナノチューブ
Single-Walled Carbon Nanotubes 1.幾何学と電子構造
Geometry and Electronic Structure
Molecular Thermo-Fluid Engineering 2010
Geometry and Electronic Structure Geometry and Electronic Structure
丸山 茂夫 Shigeo Maruyama
東京大学大学院工学系研究科 機械工学専攻
http://www.photon.t.u-tokyo.ac.jp
Contents
1.幾何学と電子構造
Geometry & Electronic Structure 2.電子顕微鏡観察と分光
Electron Microscopy and Spectroscopy 3.合成と応用
Growth and Applications 4.ナノチューブの伝熱 Heat Transfer
5 生成メカニズムとカイラリテ 制御
5.生成メカニズムとカイラリティ制御
Growth Mechanism and Chirality Control
Nanometer Scale
from NNI Home Page: http://www.nano.gov
1-D: Carbon Nanotube 0-D: Fullerene
2-D: Graphene
Allotropes of Carbon
3-D: Diamond 2-D (3-D) Graphite
Graphite Diamond (from CHAUMET Paris HP)
(a) C (b) C70 PVWin
(a) C60 (b) C70 (c) La@C82
(d) Sc2@C84
Fullerene Structures
(e) C240
C
60のアイデア: 大澤(1975)
フラーレンの発見: Smalley, Kroto & Curl (1985) ノーベル
化学賞
(1996)
フラーレンの量的生成: Krätschmer & Huffman(1990) フラーレンの超伝導の発見: Hebard(1991)
ナノチューブの生成: 飯島(1991)
金属内包フラーレンの量的生成: Smalley (1991) y ( ) 単層ナノチューブの量的生成: Smalley (1996) 電子ドープ超伝導: Batlog (2000)
フラーレンの発見
??
BuckminsterFullerene
BuckminsterFullerene
Euler’s Theorem: f v e 2
f: faces, v: vertices, e: edges
Euler’s Theorem
Usual Explanation of Even Numbered Positive Spectra
6 5
6 5
6 5
6 5 3
6 5 2
f f v
f f e
f f f
6 5
2 20
12 f v
f
f
5f
6PVWin
Growth Process of Fullerene
C10
C8 C49 C60
C28 C26
C12 C15 C33
0
20
40 C70
C53
C8
Cluster Size
2500
1000 1500 2000
500
Time (ps) C8
60
500 carbon atoms 342 Å cubic box Tc= 3000 K Y.Yamaguchi & S.Maruyama,
Chem. Phys. Lett., 286, 336 (1998).
7 4
7 7 7
48 7 7 7
7 7
7
7 7
215.81 ns 215.82 ns 216.35 ns 216.40 ns A
215 ns PVWin
initial
216.45 ns 217.18 ns 218.39 ns 220.56 ns 221.70 ns (IhC60) B
–6.64 –6.6
0 4
bonds NDB
rgyE(eV) p N
IhC60
–6.72 –6.68
# of damgling b
Ep
NDB
potential ener
time (ns)
190 200 210 220 230
Annealing Process to perfect C60 S.Maruyama & Y.Yamaguchi,
Chem. Phys. Lett., 286, 343 (1998).
Chai n
Ring Flat
C10 C20 C30
Graphitic sheet Too low temperature
Fullerene Formation Model
Tangled poly-cyclic
C5
0
Open cage Random
cage
Higher fullerene Closed cage Stone-Wales
transformations
C70 C60
Fullerene (stable) Chaotic 3-dimensional
structure
S. Maruyama & Y. Yamaguchi, Chem. Phys. Lett. 286 (1998) 343.
Single-Walled Carbon Nanotube, SWNT
Multi-Walled Carbon Nanotubes MWNT
Carbon Nanotubes
Peapod
Double-Walled Carbon Nanotubes DWNT
TEM Pictures of SWNT Ropes
5 nm
By ACCVD
Individual tube diameter: 1.3 nm Spacing: 0.34 nm
Misalignments and Terminations
TEM from Smalley et al. at Rice University About 100 SWNTs
Peapods
Suenaga et al., PRL 2003
Peapod with Sc2@C84
STM Image of Individual Atoms
http://vortex.tn.tudelft.nl/~dekker/nanotubes.html
(0,0)
Wrapping (10,0) SWNT (zigzag)
( , )
Ch= (10,0)
a
1a
2x y
(0,0)
Wrapping (10,0) SWNT (zigzag)
( , )
Ch= (10,0)
a
1a
2x y
(0,0)
Wrapping (10,10) SWNT (armchair)
( , )
Ch= (10,10)
a
1a
2x y
(0,0)
Wrapping (10,10) SWNT (armchair)
( , )
Ch= (10,10)
a
1a
2x y
(0,0)
Wrapping (10,5) SWNT (chiral)
( , )
Ch= (10,5)
a
1a
2x y
(0,0)
Wrapping (10,5) SWNT (chiral)
( , )
Ch= (10,5)
a
1a
2x y
Chirality and Radius of SWNT
a1a2 (10,10)
(8,8)
(10,0) Zigzag
(8,8) (5,5)
(10,10) Armchair
(10,5) Chiral
Hexagonal Lattice (Definition of Vectors)
Chiral vector
2
1 a
a Chn m
a
1a
(4 -5)
y
a
2O
(4,-5)
Ch T
x
2 ) , 3 2 (3
2 ) , 3 2 (3
2 1
cc cc
cc cc
a a
a a
a a
a acc
2 3
1 a
a
1 3
h
(6,3)
a a 2) , 1 2 ( 3
2) ,1 2 ( 3
2 1
a a
Hexagonal Lattice (n,m) nanotubes
(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) Zigzag
(6,0) (7,0) (8,0) (9,0) (10,0) (11,0)
a
1 y(1,1) (2,1) (2,2)
(3,1) (4,1) (5,1) (3,2) (4,2) (5,2)
( ) ( , ) ( , ) (6,1) (7,1) (8,1)
(6,2) (7,2) (8,2) (9,1) (10,1)
(9,2) (10,2) (3,3) (4,3) (5,3) (6,3) (7,3) (8,3) (9,3)
(4,4) (5,4) (6,4) (7,4) (8,4) (9,4) (5,5) (6,5) (7,5) (8,5)
(6,6) (7,6) (8,6)
a
2x
Armchair
(7,7)
n - m = 3q (q: integer): metallic n - m 3q (q: integer): semiconductor
(n,m) Symmetry
Diameter of Tube dt Ch 3acc n2nmm2 Chiral vector Ch na1ma2
t
Chiral angle tan1
3m/(m2n)
Lattice Vector T
(2mn)a1(2nm)a2
/dR Rh d
C T 3 /
dif i l i l f d
d of multiple a
not is m n if dR d
3 3
3
c c
t na
d
3 Armchair
dif nmisamultipleof d
R 3 3
d: highest common divisor of (n,m)
dR
nm n N2(m2 2 ) Number of hexagons per unit cell:
Electric DOS of Graphite
幾何学構造と同様に,SWNTの電子構造はグラフェン
(グラファイト1層)の電子構造を基礎として理解できる.
そこで,最初にグラフェンの電子構造について復習する.
炭素のπ電子の挙動が問題となる.
電子の波動関数を波数(kx ky)の平面波で展開し 電子の波動関数を波数(kx, ky)の平面波で展開し,
6角形のブリリアンゾーンにおける分散関係を求める.
グラフェンは,ゼロバンドギャップ半導体であり,K点とM点で のみ,π電子とπ*電子の分散関係が接する.
Reference
P. R. Wallace, Phys. Rev,71622 (1947).
Reciprocal Lattice Vector
逆格子ベクトル y
a
1 22.554 b1Reciprocal Lattice Vector
a a Per
a a Per
cc y
cc x
3
3 3
)a 2 ,1 2 ( 3
1
a a1 a2 3acca
a
2 xk k
y
M
K
b2
475 . 1
3 2 2 3 1
acc
a
703 . 1
3 3
4 3 4 2 3 2
acc
a a
554
. a 2
1 2
2 1bb
2 , 2
/ 2 , / 2
2 2 1 1
2 2 1 1
b a b a
a b a b
a a a a
3 ) 4 2 , 3 2 (1 )2 1 3, ( 1
3 ) 4 2 , 3 2 (1 )2 1 3, (1
2 1
b b
)a 2 , 1 2 ( 3
2
a
Brillouin Zone
a a
a 3
) 2 0 , 1 3 ( 2 3
2
2 2 1
1
k
b k b b
k b
k
x
ブリリアンゾーン
逆格子ベクトル y
a
1 22.554 b1Reciprocal Lattice Vector
Brillouin Zone
a
2 xk k
y
M
K
b2
475 . 1
3 2 2 3 1
acc
a
703 . 1
3 3
4 3 4 2 3 2
acc
a a
554
. a 2
1 2
2 1bb
k
x
波長kx, kyで表現した位相空間を逆格子空間という.
電子の平面波の高波数の上限は(π/格子定数)で表せる.
このような上限波数範囲を逆格子空間で表したものをブリリアンゾーンとよぶ.
6角格子の場合には,ブリリアンゾーンも6角形となる.方向が90度 ずれていることに注意!
2-D Electronic Energy Dispersions of Graphite
) (
* ) (
) (
2 0
0 2
k f k f
k H f
p p
H: (2x2) Hamiltonian
S: (2x2) Overlap integral matrix
2: Site Energy of 2p atomic orbital
1
* ) (
) ( 1
k sf
k S sf
2p: Site Energy of 2p atomic orbital
cos 2 2
)
( / 3 /2 3 k a
e e
k
f kxa kxa y
0 ) det(HES Secular equation (永年方程式)
where a 3aCC
) ( 1
) ) (
( 2 0
2 k
k k
sw Eg D p w
cos 2 2 4
2 cos cos 3 4 1 ) ( )
( 2 k a k a 2 k a
f
wk k x y y
where
2-D Energy dispersion relation for graphite
) ( 1
) ) (
( 2 0
2 k
k k
sw Eg D p w
cos 2 2 4
2 cos cos 3 4 1 )
( k a k a 2k a
wk x y y
Overlap integral: s=0.129 C-C interaction energy: 0=2.9eV
2p= 0
From: R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Trigonal warping effect of carbon nanotubes, Physical Review B, vol. 61, no. 4, 2981 (2000).
[Color picture was from Professor R. Saito]
Energy dispersion relation for and * bands
) ( 1
) ) (
( 2 0
2 k
k k
sw Eg D p w
0 129
C
a
Ca 3
1 2 3
0.000 15.000
K M M
K’
K
cos 2 2 4 2 cos cos 3 4 1 )
( k a k a 2 k a
wk x y y
s=0.129
Gamma=2.9eV
1 2 3
-10.000 0.000
-3 -2 -1 0 1 2 3
-3 -2 -1 0 1
kx
ky M
K
K’
M K M K’
M K
-3 -2 -1 0 1 2 3
-3 -2 -1 0 1
kx
ky
Electric DOS of Nanotube
グラフェンを巻いたSWNTの場合には,円周方向に周
K M K’
グラフ ンを巻 たSW の場合には,円周方向に周 期境界条件を満たす電子の波動関数しか許されなく なる.このため,グラフェンの場合の6角形のブリリア ンゾーン(平面)は,有限数の線となってしまう.この線 が,K点かM点を通過すると金属,そうでないと半導 体となる.
M K’
M
K’
Reference
最初の理論予測:R. Saito et al., Phys. Rev. B46, 1804 (1992).
詳細かつわかりやすい論文:R. Saito, G. Dresselhaus, and M. S.
Dresselhaus, Trigonal warping effect of carbon nanotubes, Physical Review B, vol. 61, no. 4, 2981 (2000).
M
K
K’
M
Electric DOS of Carbon Nanotube
M
K M K’
0 2 4
energy(eV)
0 2 4
energy(eV)
0 2 4
energy(eV)
0 2 4
energy(eV)
M
K’
–4 0 –2
wave vector –40 1 2
–2
–4 0 –2
wave vector –40 1 2
–2
1D Dispersion
Lattice Vector T
(2mn)a1(2nm)a2
/dR Rh d
C
T 3 / Cha n2nmm2
(2m n) 1 (2n m) 2
/NdR1 b b
K
N n
m )/
( 1 2
2 b b
K
Discrete unit vector along the circumferential direction
Reciprocal lattice vector along the nanotube axis
h
R
C
m mn a n
m mn n m mn a n
Nd m mn a n
2 1 2
) (
2 / 2 2
/ 2 2
2 2
2 2 2 2
2 2 1
K
nm n
m )
( 2 2 2
1
2 2 2
)
( K
K K
k E k
E g D
k T T
N
1,2,..., R
d nm n N2(m )
d T C
m mn n
d a
m mn n m mn n a d
N m mn a n
R h
R R
2 3 1 2
3 1 2
) (
2 3 /
2 2
3 / 2 2
2 2
2 2 2 2
2 2 2
K
Summary
2
K
K
k
12
K K k
k T T
N
1,2,..., where
12 2
)
2( K
K
K
k E k
E
g DSlice
1 2
0.000 3.000
1 2
0.000 3.000
(10 0)
-2 -1 0 1 2
-2 -1 0
kx
ky
-2 -1 0 1 2
-2 -1 0
kx
ky (10,0)
K1=(0.221239,0.127732) K2=(-0.737463,1.277323)
1 2
0 000 3.000
2 3.000
-2 -1 0 1 2
-2 -1 0 1
kx
ky
0.000
(10,10)
K1=(0.147493,0.000000) K2=(0.000000,2.554647)
-2 -1 0 1 2
-2 -1 0 1
kx
ky
0.000
(10,5)
K1=(0.189633,0.036495) K2=(-0.105352,0.547424)
van Hove Singularity
ブリリアントゾーンを積分するとい わゆる状態密度(Density of States, DOS)が求まることになる.
金属か半導体かという点以外にも
,周期境界条件によって,ブリリア ンゾーンが線となるために,一次 元物質に特有の an Ho e特異点と
点線はグラフェンのDOS
元物質に特有のvan Hove特異点と 呼ばれる発散するDOSとなる.
Reference
Dresselhaus, M. S. & Dresselhaus, G., Science of Fullerenes and Carbon Nanotubes, Academic Press (1996).
Saito, R., ほか2名, Physical Properties of Carbon Nanotubes, Imperial College Press (1998).
Comparison of DOS for Armchairs
4
(5,5)
m/eV)
2
(10,10)
(15,15)
States (states/1C–ato
–2 0 2
0
(20,20)
Energy (eV)
Density of
Comparison of DOS for Zig-zag
4
(10,0)
m/eV)
2
(20,0)
(30,0)
States (states/1C–atom
–2 0 2
0
(40,0)
Energy (eV)
Density of S
2-D Energy dispersion relation for graphite
y
a
15 10 15
E (eV)
*
s = 0.129
0 ( t i )
a
2 x M
K b1
K K’ M
* (conduction)
–10 –5 0
E
K M K
s = 0 (symmetric)
kx ky
M
b2
Reciprocal Lattice Vector
From: R. Saito et al., Physical Review B (2000).
M
K’
Brillouin Zone
(valence)