• Tidak ada hasil yang ditemukan

1.幾何学と電子構造

N/A
N/A
Protected

Academic year: 2024

Membagikan "1.幾何学と電子構造"

Copied!
21
0
0

Teks penuh

(1)

単層カーボンナノチューブ Single-Walled Carbon Nanotubes

1.幾何学と電子構造

Geometry and Electronic Structure 単層カーボンナノチューブ

Single-Walled Carbon Nanotubes 1.幾何学と電子構造

Geometry and Electronic Structure

Molecular Thermo-Fluid Engineering 2010

Geometry and Electronic Structure Geometry and Electronic Structure

丸山 茂夫 Shigeo Maruyama

東京大学大学院工学系研究科 機械工学専攻

http://www.photon.t.u-tokyo.ac.jp

Contents

1.幾何学と電子構造

Geometry & Electronic Structure 2.電子顕微鏡観察と分光

Electron Microscopy and Spectroscopy 3.合成と応用

Growth and Applications 4.ナノチューブの伝熱 Heat Transfer

5 生成メカニズムとカイラリテ 制御

5.生成メカニズムとカイラリティ制御

Growth Mechanism and Chirality Control

(2)

Nanometer Scale

from NNI Home Page: http://www.nano.gov

1-D: Carbon Nanotube 0-D: Fullerene

2-D: Graphene

Allotropes of Carbon

3-D: Diamond 2-D (3-D) Graphite

Graphite Diamond (from CHAUMET Paris HP)

(3)

(a) C (b) C70 PVWin

(a) C60 (b) C70 (c) La@C82

(d) Sc2@C84

Fullerene Structures

(e) C240

C

60

のアイデア: 大澤(1975)

フラーレンの発見: Smalley, Kroto & Curl (1985) ノーベル

化学賞

(1996)

フラーレンの量的生成: Krätschmer & Huffman(1990) フラーレンの超伝導の発見: Hebard(1991)

ナノチューブの生成: 飯島(1991)

金属内包フラーレンの量的生成: Smalley (1991) y ( ) 単層ナノチューブの量的生成: Smalley (1996) 電子ドープ超伝導: Batlog (2000)

フラーレンの発見

??

(4)

BuckminsterFullerene

BuckminsterFullerene

(5)

Euler’s Theorem: f  v  e  2

f: faces, v: vertices, e: edges

Euler’s Theorem

Usual Explanation of Even Numbered Positive Spectra

 

6 5

6 5

6 5

6 5 3

6 5 2

f f v

f f e

f f f

 

6 5

2 20

12 f v

f

f

5

f

6

PVWin

Growth Process of Fullerene

C10

C8 C49 C60

C28 C26

C12 C15 C33

0

20

40 C70

C53

C8

Cluster Size

2500

1000 1500 2000

500

Time (ps) C8

60

500 carbon atoms 342 Å cubic box Tc= 3000 K Y.Yamaguchi & S.Maruyama,

Chem. Phys. Lett., 286, 336 (1998).

(6)

7 4

7 7 7

48 7 7 7

7 7

7

7 7

215.81 ns 215.82 ns 216.35 ns 216.40 ns A

215 ns PVWin

initial

216.45 ns 217.18 ns 218.39 ns 220.56 ns 221.70 ns (IhC60) B

–6.64 –6.6

0 4

bonds NDB

rgyE(eV) p N

IhC60

–6.72 –6.68

# of damgling b

Ep

NDB

potential ener

time (ns)

190 200 210 220 230

Annealing Process to perfect C60 S.Maruyama & Y.Yamaguchi,

Chem. Phys. Lett., 286, 343 (1998).

Chai n

Ring Flat

C10 C20 C30

Graphitic sheet Too low temperature

Fullerene Formation Model

Tangled poly-cyclic

C5

0

Open cage Random

cage

Higher fullerene Closed cage Stone-Wales

transformations

C70 C60

Fullerene (stable) Chaotic 3-dimensional

structure

S. Maruyama & Y. Yamaguchi, Chem. Phys. Lett. 286 (1998) 343.

(7)

Single-Walled Carbon Nanotube, SWNT

Multi-Walled Carbon Nanotubes MWNT

Carbon Nanotubes

Peapod

Double-Walled Carbon Nanotubes DWNT

TEM Pictures of SWNT Ropes

5 nm

By ACCVD

Individual tube diameter: 1.3 nm Spacing: 0.34 nm

Misalignments and Terminations

TEM from Smalley et al. at Rice University About 100 SWNTs

(8)

Peapods

Suenaga et al., PRL 2003

Peapod with Sc2@C84

STM Image of Individual Atoms

http://vortex.tn.tudelft.nl/~dekker/nanotubes.html

(9)

(0,0)

Wrapping (10,0) SWNT (zigzag)

( , )

Ch= (10,0)

a

1

a

2

x y

(0,0)

Wrapping (10,0) SWNT (zigzag)

( , )

Ch= (10,0)

a

1

a

2

x y

(10)

(0,0)

Wrapping (10,10) SWNT (armchair)

( , )

Ch= (10,10)

a

1

a

2

x y

(0,0)

Wrapping (10,10) SWNT (armchair)

( , )

Ch= (10,10)

a

1

a

2

x y

(11)

(0,0)

Wrapping (10,5) SWNT (chiral)

( , )

Ch= (10,5)

a

1

a

2

x y

(0,0)

Wrapping (10,5) SWNT (chiral)

( , )

Ch= (10,5)

a

1

a

2

x y

(12)

Chirality and Radius of SWNT

a1

a2 (10,10)

(8,8)

(10,0) Zigzag

(8,8) (5,5)

(10,10) Armchair

(10,5) Chiral

Hexagonal Lattice (Definition of Vectors)

Chiral vector

2

1 a

a Chnm

a

1

a

(4 -5)

y

a

2

O

(4,-5)

Ch T

x

2 ) , 3 2 (3

2 ) , 3 2 (3

2 1

cc cc

cc cc

a a

a a

a a

a acc

2 3

1 a

a

1 3

h

(6,3)

a a 2) , 1 2 ( 3

2) ,1 2 ( 3

2 1

a a

(13)

Hexagonal Lattice (n,m) nanotubes

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) Zigzag

(6,0) (7,0) (8,0) (9,0) (10,0) (11,0)

a

1 y

(1,1) (2,1) (2,2)

(3,1) (4,1) (5,1) (3,2) (4,2) (5,2)

( ) ( , ) ( , ) (6,1) (7,1) (8,1)

(6,2) (7,2) (8,2) (9,1) (10,1)

(9,2) (10,2) (3,3) (4,3) (5,3) (6,3) (7,3) (8,3) (9,3)

(4,4) (5,4) (6,4) (7,4) (8,4) (9,4) (5,5) (6,5) (7,5) (8,5)

(6,6) (7,6) (8,6)

a

2

x

Armchair

(7,7)

n - m = 3q (q: integer): metallic n - m 3q (q: integer): semiconductor

(n,m) Symmetry

Diameter of Tube dtCh3acc n2nmm2 Chiral vector Chna1ma2

t  

Chiral angle tan1

3m/(m2n)

Lattice Vector T

(2mn)a1(2nm)a2

/dR R

h d

C T 3 /



 

dif i l i l f d

d of multiple a

not is m n if dR d

3 3

3

c c

t na

d

3 Armchair

 dif nmisamultipleof d

R 3 3

d: highest common divisor of (n,m)

dR

nm n N2(m22 ) Number of hexagons per unit cell:

(14)

Electric DOS of Graphite

幾何学構造と同様に,SWNTの電子構造はグラフェン

(グラファイト1層)の電子構造を基礎として理解できる.

そこで,最初にグラフェンの電子構造について復習する.

炭素のπ電子の挙動が問題となる.

電子の波動関数を波数(kx ky)の平面波で展開し 電子の波動関数を波数(kx, ky)の平面波で展開し,

6角形のブリリアンゾーンにおける分散関係を求める.

グラフェンは,ゼロバンドギャップ半導体であり,K点とM点で のみ,π電子とπ*電子の分散関係が接する.

Reference

P. R. Wallace, Phys. Rev,71622 (1947).

Reciprocal Lattice Vector

逆格子ベクトル y

a

1 22.554 b1

Reciprocal Lattice Vector

a a Per

a a Per

cc y

cc x

3

3 3

)a 2 ,1 2 ( 3

1

a a1a2  3acca

a

2 x

k k

y

 M

K

b2

475 . 1

3 2 2 3 1

acc

a

703 . 1

3 3

4 3 4 2 3 2

acc

a a

554

. a 2

1 2

2 1bb

2 , 2

/ 2 , / 2

2 2 1 1

2 2 1 1

b a b a

a b a b

a a a a

3 ) 4 2 , 3 2 (1 )2 1 3, ( 1

3 ) 4 2 , 3 2 (1 )2 1 3, (1

2 1

b b

)a 2 , 1 2 ( 3

2  

a

Brillouin Zone

a a

a 3

) 2 0 , 1 3 ( 2 3

2

2 2 1

1

k

b k b b

k b

k

x

(15)

ブリリアンゾーン

逆格子ベクトル y

a

1 22.554 b1

Reciprocal Lattice Vector

Brillouin Zone

a

2 x

k k

y

 M

K

b2

475 . 1

3 2 2 3 1

acc

a

703 . 1

3 3

4 3 4 2 3 2

acc

a a

554

. a 2

1 2

2 1bb

k

x

波長kx, kyで表現した位相空間を逆格子空間という.

電子の平面波の高波数の上限は(π/格子定数)で表せる.

このような上限波数範囲を逆格子空間で表したものをブリリアンゾーンとよぶ.

6角格子の場合には,ブリリアンゾーンも6角形となる.方向が90度 ずれていることに注意!

2-D Electronic Energy Dispersions of Graphite



 

 

) (

* ) (

) (

2 0

0 2

k f k f

k H f

p p

 H: (2x2) Hamiltonian

S: (2x2) Overlap integral matrix

2: Site Energy of 2p atomic orbital



 



1

* ) (

) ( 1

k sf

k S sf

2p: Site Energy of 2p atomic orbital

cos 2 2

)

( / 3 /2 3 k a

e e

k

fkxakxa y

0 ) det(HES  Secular equation (永年方程式)

where a 3aCC

) ( 1

) ) (

( 2 0

2 k

k k

sw Eg D p w

 

cos 2 2 4

2 cos cos 3 4 1 ) ( )

( 2 k a k a 2 k a

f

wkk   x yy

where

(16)

2-D Energy dispersion relation for graphite

) ( 1

) ) (

( 2 0

2 k

k k

sw Eg D p w

 

 

cos 2 2 4

2 cos cos 3 4 1 )

( k a k a 2k a

wk   x yy

Overlap integral: s=0.129 C-C interaction energy: 0=2.9eV

2p= 0

 

From: R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Trigonal warping effect of carbon nanotubes, Physical Review B, vol. 61, no. 4, 2981 (2000).

[Color picture was from Professor R. Saito]

Energy dispersion relation for  and  * bands

) ( 1

) ) (

( 2 0

2 k

k k

sw Eg D p w

 

0 129

C

a

C

a  3

1 2 3

0.000 15.000

K M M

K’

K

cos 2 2 4 2 cos cos 3 4 1 )

( k a k a 2 k a

wk   x yy

s=0.129

Gamma=2.9eV

1 2 3

-10.000 0.000

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1

kx

ky M

K

K’

M K M K’

M K

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1

kx

ky

(17)

Electric DOS of Nanotube

グラフェンを巻いたSWNTの場合には,円周方向に周

K M K’

グラフ ンを巻 たSW の場合には,円周方向に周 期境界条件を満たす電子の波動関数しか許されなく なる.このため,グラフェンの場合の6角形のブリリア ンゾーン(平面)は,有限数の線となってしまう.この線 が,K点かM点を通過すると金属,そうでないと半導 体となる.

M K’

 M

K’

Reference

最初の理論予測:R. Saito et al., Phys. Rev. B46, 1804 (1992).

詳細かつわかりやすい論文:R. Saito, G. Dresselhaus, and M. S.

Dresselhaus, Trigonal warping effect of carbon nanotubes, Physical Review B, vol. 61, no. 4, 2981 (2000).

 M

K

K’

M

Electric DOS of Carbon Nanotube

 M

K M K’

0 2 4

energy(eV)

0 2 4

energy(eV)

0 2 4

energy(eV)

0 2 4

energy(eV)

 M

K’

–4 0 –2

wave vector –40 1 2

–2

–4 0 –2

wave vector –40 1 2

–2

(18)

1D Dispersion

Lattice Vector T

(2mn)a1(2nm)a2

/dR R

h d

C

T 3 / Cha n2nmm2

(2m n) 1 (2n m) 2

/NdR

1 b b

K    

N n

m )/

( 1 2

2 b b

K  

Discrete unit vector along the circumferential direction

Reciprocal lattice vector along the nanotube axis

h

R

C

m mn a n

m mn n m mn a n

Nd m mn a n

2 1 2

) (

2 / 2 2

/ 2 2

2 2

2 2 2 2

2 2 1

K

nm n

m )

( 2 2 2





 

1

2 2 2

)

( K

K K

k E k

E g D

k T T

N

1,2,..., R

d nm n N2(m )

d T C

m mn n

d a

m mn n m mn n a d

N m mn a n

R h

R R

2 3 1 2

3 1 2

) (

2 3 /

2 2

3 / 2 2

2 2

2 2 2 2

2 2 2

K

Summary

2

K

K  

k

1

2

K   K k

k T T

N

1,2,..., where

 

 

 

1

2 2

)

2

( K

K

K 

k E k

E

g D
(19)

Slice

1 2

0.000 3.000

1 2

0.000 3.000

(10 0)

-2 -1 0 1 2

-2 -1 0

kx

ky

-2 -1 0 1 2

-2 -1 0

kx

ky (10,0)

K1=(0.221239,0.127732) K2=(-0.737463,1.277323)

1 2

0 000 3.000

2 3.000

-2 -1 0 1 2

-2 -1 0 1

kx

ky

0.000

(10,10)

K1=(0.147493,0.000000) K2=(0.000000,2.554647)

-2 -1 0 1 2

-2 -1 0 1

kx

ky

0.000

(10,5)

K1=(0.189633,0.036495) K2=(-0.105352,0.547424)

van Hove Singularity

ブリリアントゾーンを積分するとい わゆる状態密度(Density of States, DOS)が求まることになる.

金属か半導体かという点以外にも

,周期境界条件によって,ブリリア ンゾーンが線となるために,一次 元物質に特有の an Ho e特異点と

点線はグラフェンのDOS

元物質に特有のvan Hove特異点と 呼ばれる発散するDOSとなる.

Reference

Dresselhaus, M. S. & Dresselhaus, G., Science of Fullerenes and Carbon Nanotubes, Academic Press (1996).

Saito, R., ほか2名, Physical Properties of Carbon Nanotubes, Imperial College Press (1998).

(20)

Comparison of DOS for Armchairs

4

(5,5)

m/eV)

2

(10,10)

(15,15)

States (states/1C–ato

–2 0 2

0

(20,20)

Energy (eV)

Density of

Comparison of DOS for Zig-zag

4

(10,0)

m/eV)

2

(20,0)

(30,0)

States (states/1C–atom

–2 0 2

0

(40,0)

Energy (eV)

Density of S

(21)

2-D Energy dispersion relation for graphite

y

a

1

5 10 15

E (eV)

*

s = 0.129

0 ( t i )

a

2 x

M

K b1

K K’ M

* (conduction)

–10 –5 0

E

K M K

s = 0 (symmetric)

kx ky

M

b2

Reciprocal Lattice Vector

From: R. Saito et al., Physical Review B (2000).

 M

K’

Brillouin Zone

(valence)

Referensi

Dokumen terkait