• Tidak ada hasil yang ditemukan

A generalization of BoÃcher's theorem for polyharmonic functions

N/A
N/A
Protected

Academic year: 2024

Membagikan "A generalization of BoÃcher's theorem for polyharmonic functions"

Copied!
12
0
0

Teks penuh

(1)

31 (2001), 59±70

A generalization of BoÃcher's theorem for polyharmonic functions

Dedicated to Professor Maretsugu Yamasaki on the occasion of his sixtieth birthday

Toshihide Futamura, Kyoko Kishi and Yoshihiro Mizuta

(Received May 9, 2000)

Abstract. In this paper we generalize BoÃcher's theorem for polyharmonic functions u. In fact, if u is polyharmonic outside the origin and satis®es a certain integral condition, then it is shown that u is written as the sum of partial derivatives of the fundamental solution and a polyharmonic function near the origin.

1. Introduction

Let Rn be the n-dimensional Euclidean space with points xˆ …x1;x2;. . .;xn†. For a multi-index lˆ …l1;l2;. . .;ln†, we set

jlj ˆl1‡l2‡ ‡ln; xlˆx1l1x2l2. . .xnln and

Dlˆ q qx1

l1 q qx2

l2 q

qxn

ln :

We denote by B…x;r† the open ball centered at x with radius r>0, whose boundary is written as S…x;r† ˆqB…x;r†. We also denote by B the unit ball B…0;1† and by B0 the punctured unit ball B f0g.

A real valued function u on an open set GHRn is called polyharmonic of ordermonGifuAC2m…G†andDmuˆ0 onG, wheremis a positive integer,D denotes the Laplacian and DmuˆDm 1…Du†. We denote by Hm…G† the space of polyharmonic functions of ordermon G. In particular,u is harmonic onG if uAH1…G†. The fundamental solution of Dm is written as Km, that is,

2000 Mathematics Subject Classi®cation. Primary 31B30

Key words and phrases. polyharmonic functions, BoÃcher's theorem, the fundamental solution of polyharmonic operator, Green's formula, mean value property

(2)

Km…x† ˆam jxj2m nlog…1=jxj† if 2m nis an even nonnegative integer, jxj2m n otherwise,

(

where the constant am is chosen such that DmKm is the Dirac measure dat the origin.

Our aim of this paper is to prove the following theorem.

Theorem. If uAHm…B0† satis®es …

B0

u…x†‡jxjsdx<y …1†

for some integer sV0, then u is of the form

uˆ X

jmjUs‡2m 1

c…m†DmKm‡h

for some hAHm…B†, where c…m† are constants and u‡…x† ˆmaxfu…x†;0g.

We shall show that u in the theorem satis®es …

B0

ju…x†jjxjsdx<y: …2†

Hence in case sU0, u is integrable on B. In cases>0, we shall show thatu de®nes a distribution Tu such that

hTu;viˆlim

r!0

…

B B…0;r†u…x†v…x†dx for vAC0y…B†:

Armitage [1] treated the case where uAHm…B0† satis®es 1

onrn 1 …

S…0;ju…x†jdS…x† ˆo…r s0† as r!0; …3†

where on denotes the surface area of S…0;1†. If s0<s‡n, then (3) clearly implies (1).

As an easy consequence of the theorem we have the following result due to Ishikawa-Nakai-Tada [5]:

Corollary 1. If u is a harmonic function on B0 such that lim sup

x!0 u…x†jxjn 1U0;

then u is of the form

uˆcK1‡h for some hAH1…B† and a constant c.

As another application of our theorem, we obtain the following result.

(3)

Corollary 2. If uAHm…B0† satis®es (2) for some integer s, then u is of the form

uˆ X

jmjUs‡2m 1

c…m†DmKm‡h for some hAHm…B†, where c…m† are constants.

As to the behavior at in®nity, we refer the reader to the recent papers Kishi-Futamura-Mizuta [4] and Nakai-Tada [7].

2. Lemmas

In this section we prepare some lemmas, which will be used in the proof of the theorem.

Lemma 1. If uAHm…B0†, then 1

onrn 1 …

S…0;r†u…x†dSˆXm

kˆ1

fakr2…1 Km…r† ‡bkr2…m‡1 n‡ckr2…m k†g …4†

for all rA…0;1†, where fakg, fbkg, fckg are constants and ak ˆ0 when k>

m‡1 n 2.

Proof. We prove this lemma by induction onm. In the case that mˆ1, this is known; see e.g. [3, Lemma 3.10]. So we suppose that (4) holds formˆl, and takeuAHl‡1…B0†. ThenDuAHl…B0†becauseDl…Du† ˆDl‡1uˆ0, so that

…

S…0;Du dSˆonXl

kˆ1

fakt2…1 k†‡n 1Kl…t† ‡bkt2…l‡1 1‡ckt2…l k†‡n 1g for 0<t<1, where akˆ0 when k>l‡1 n

2. We integrate this equality with respect to t from r1 to r2, where 0<r1 <r2<1, and obtain

…

fx:r1<jxj<r2gDu dxˆ

…r2

r1

…

S…0;t†Du dS

! dt

ˆon

Xl

kˆ1

…r2

r1

fakt2…1 k†‡n 1Kl…t† ‡bkt2…l‡1 1‡ckt2…l k†‡n 1gdt

ˆXl

kˆ1

fak0r22…1 k†‡nKl…r2† ‡bk0r22…l‡1 ‡ck0r22…l k†‡ng Xl

kˆ1

fak0r12…1 k†‡nKl…r1† ‡bk0r12…l‡1 ‡ck0r12…l k†‡ng …5†

(4)

where ak0 ˆ0 when k>l‡1 n

2. On the other hands, we have by Green's formula

…

fx:r<jxj<r2gDu dxˆc…r2† …

S…0;

x

r`u…x†dS…x†

ˆc…r2† rn 1 …

S…0;1†z`u…rz†dS…z†

ˆc…r2† rn 1 d dr

…

S…0;1†u…rz†dS…z†

!

ˆc…r2† rn 1 d dr

1 rn 1

…

S…0;r†u dS

!

; where 0<r<r2 and c…r2† ˆ„

S…0;r2†

x

r2`u…x†dS…x†. Hence (5) leads to Xl

kˆ1

fak0r2…1 k†‡1Kl…r† ‡bk0r2…l‡1 k†‡1 n‡ck0r2…l k†‡1g ‡d0r1 n

ˆd dr

1 rn 1

…

S…0;r†u dS

!

for 0<r<r2. We integrate both sides with respect to r from r1 to r2 to obtain

1 r1n 1

…

S…0;r1†u dSˆXl

kˆ1

fak00r12…1 k†‡2Kl…r† ‡bk00r12…l‡1 n‡2‡ck00r12…l k†‡2g

‡b00logr1 d00r12 n‡d000logr1‡e

ˆXl‡1

kˆ1

fak00r12…1 Kl‡1…r1† ‡bk00r2…l‡21 n‡ck00r12…l‡1 g;

where 0<r1<r2<1, ak00, bk00, ck00 are determined such that ak00ˆ0 when k>l‡2 n

2, b00ˆbk0 when kˆl‡2 n

2 and d000 ˆd0 when nˆ2. But we see that the constantsak00, bk00, ck00 are determined independently of r2. Now the induction is completed.

With the aid of Lemma 1, we prove

Lemma 2. If uAHm…B0† and l is a multi-index, then

(5)

1 onrn 1

…

S…0;uxldS

ˆm‡jljX

kˆ1

fAkr2…1‡jlj Km…r† ‡Bkr2…m‡1‡jlj n‡Ckr2…m‡jlj g …6†

for 0<r<1, where Ak, Bk, Ck are constants and Ak ˆ0 when k>m‡1 n 2. Proof. We prove this by induction on the lengthjlj. First we note from Lemma 1 that the conclusion is true for jlj ˆ0.

Now let jlj ˆl‡1 and write lˆl0‡ej, where jl0j ˆl and jejj ˆ1. By the Gauss-Green formula we have

…

S…0;r1†uxl0…xj=r1†dSˆ …

fx:r1<jxj<r2g

q

qxju…x†xl0 dx

‡ …

S…0;r2†uxl0…xj=r2†dS: …7†

Using the assumption on induction, we have …

S…0;r†

qu

qxj…x†xl0dS

ˆm‡jlX0j

kˆ1

fAkr2…1‡jl0j k†‡n 1Km…r† ‡Bkr2…m‡1‡jl0j 1‡Ckr2…m‡jl0j k†‡n 1g and

…

S…0;r†u…x† q qxjxl0dS

ˆm‡jlX0j 1

kˆ1

fAk0r2…jl0j k†‡n 1Km…r† ‡Bk0r2…m‡jl0j 1‡Ck0r2…m‡jl0j 1 k†‡n 1g;

where AkˆAk0 ˆ0 when k>m‡1 n

2. As in the proof of Lemma 1, using polar coordinates in (7), we have the required conclusion for l withjlj ˆl‡1.

Lemma 3. If uAHm…B0† satis®es (2), then the limit limr!0

…

fx:r<jxj<1guv dx exists for every vAC0y…B†. Further, the mapping

(6)

Tu:v7!lim

r!0

…

fx:r<jxj<1guv dx

de®nes a distribution on B. In what follows we identify u with Tu. Proof. We write

…

fx:r<jxj<1guv dxˆ …

B B…0;u v X

jmjUL

xm m!Dmv…0†

0

@

1 Adx

‡ X

jmjUL

Dmv…0†

m!

…

B B…0;uxmdxˆI…r† ‡J…r†;

where L is an integer such that LVs 1. Since v P

jmjULxm

m!Dmv…0† ˆ O…jxjL‡1†; we have

jI…r†jU …

B B…0;r†juj v X

jmjUL

xm

m!Dmv…0†

dxUC …

B B…0;r†jujjxjL‡1 dx;

so that limr!0I…r† exists and is ®nite by (2).

In view of Lemma 2, we see that limr!0

…

fx:r<jxj<1gu…x†xmdxˆlim

r!0

…1

r

…

S…0;t†u…x†xmdS…x†

! dt

exists and is ®nite; this limit is denoted by C…m†. Hence J…r† converges to X

jmjUL

Dmv…0†

m! C…m†

as r!0. Therefore hu;vi 1lim

r!0

…

fx:r<jxj<1guv dx

ˆ …

B0

u v X

jmjUL

xm m!Dmv…0†

0

@

1

Adx‡ X

jmjUL

C…m†Dmv…0†

m!

is de®ned to be ®nite. Clearly, u is a distribution on B.

3. The proof of the main theorem

In this section we give a proof of the theorem.

(7)

(I) We ®rst prove the theorem under the strong condition (2). We recall Green's formula for Dm (see e.g. [2], [8]):

…

B B…0;…uDmv vDmu†dx

ˆ Xm

iˆ1

…

S…0;r† …Di 1u†q…Dm i

qn …Dm iv†q…Di 1

qn

dS …8†

foruACy…B0†, vAC0y…B†and 0<r<1, where q=qn denotes the inner normal derivative. If uAHm…B0† and vAC0y…B†, then we obtain

…

B B…0;r†uDmv dxˆXn

jˆ1

X

jlj‡jmjˆ2m 1

C…l;m;j†

…

S…0;r†DluDmvxj

r dS 8<

:

9=

; with constants C…l;m;j†. For simplicity, we put c…x† ˆDmv…x†, and use its Taylor expansion

c…x† ˆ X

jnjUl

xn

n!Dnc…0† ‡Rl‡1…x†;

where lˆs‡ jlj. Then we have …

S…0;r†DluDmvxj r dS

ˆ …

S…0;r†Dlu…x†Rl‡1…x†xj r dS‡1

r X

jnjUl

1

n!Dnc…0†

…

S…0;r†Dlu…x†xnxjdS

ˆI…c† ‡J…c†:

To evaluate I…c†, we need the following lemma, which is an easy con- sequence of [6, Lemma 8.4.5].

Lemma 4. If uAHm…B0† and 0<r<2=3, then …

S…0;r†jDlujdSUCr jlj 1 …

fx:r=2<jxj<3r=2gjujdx with a positive constant C.

From Lemma 4 it follows that

(8)

jI…c†j ˆ …

S…0;r†Dlu…x†Rl‡1…x†xj

r dS UCrl‡1

…

S…0;r†jDlujdS UC0rl‡1 …jlj‡1† s

…

fx:0<jxj<2rgju…x†jjxjsdx;

so that I…c† tends to zero as r!0, since lˆs‡ jlj.

On the other hand, we see from Lemma 2 that J…c† ˆ1

r X

jnjUl

1

n!Dnc…0†

…

S…0;r†Dlu…x†xnxjdS

ˆ1 r

X

jnjUl

1

n!Dnc…0† Xm‡jnj‡1

kˆ1

…Ak…l;n;j†r2…2‡jnj k†‡n 1Km…r†

‡Bk…l;n;j†r2…m‡2‡jnj 1‡Ck…l;n;j†r2…m‡1‡jnj k†‡n 1†

! X

jnjUl

C0…l;n;j†Dnc…0† as r!0;

since Ak…l;n;j† ˆ0 when k>m‡1 n

2. Hence it follows that hu;Dmviˆlim

r!0

…

fx:r<jxj<1guDmv dx

ˆ X

jl‡mjˆ2m 1;jnjUs‡jlj

C00…l;n†Dm‡nv…0†

ˆ X

jljUs‡2m 1

C000…l†Dlv…0†: …9†

Finally let us ®nd constants c…m† for which u P

jmjUs‡2m 1c…m†DmKm is polyharmonic of order m. For this purpose, we have by (9)

Dm u X

jmjUs‡2m 1

c…m†DmKm 0

@

1 A;v

* +

ˆ u X

jmjUs‡2m 1

c…m†DmKm;Dmv

* +

ˆhu;Dmvi X

jmjUs‡2m 1

c…m†hDmKm;Dmvi

(9)

ˆ X

jljUs‡2m 1

C000…l†Dlv…0† X

jmjUs‡2m 1

c…m†hDm…DmKm†;vi

ˆ X

jljUs‡2m 1

C000…l†Dlv…0† X

jmjUs‡2m 1

c…m†hDmd;vi

ˆ X

jljUs‡2m 1

C000…l†Dlv…0† X

jmjUs‡2m 1

c…m†… 1†jmjhd;Dmvi

ˆ X

jmjUs‡2m 1

C000…m†Dmv…0† X

jmjUs‡2m 1

c…m†… 1†jmjDmv…0†:

Hence if we take c…m† ˆ … 1†jmjC000…m†, then

Dm u X

jmjUs‡2m 1

c…m†DmKm

0

@

1 Aˆ0 as required.

(II) Now we assume that (1) holds for uAHm…B0†. Using polar coordinates and Lemma 1, we have

…

B B…0;r†u…x†jxjsdx

ˆ …1

r ts …

S…0;u…x†dS

! dt

ˆ …1

r onts‡n 1Xm

kˆ1

fakt2…1 Km…t† ‡bkt2…m‡1 n‡ckt2…m k†gdt

ˆXm

kˆ1

fak0r2…1 k†‡s‡nKm…r† ‡bk0r2…m‡1 k†‡s‡ck0r2…m k†‡s‡ng ‡d;

where ak0 ˆ0 for k>m‡1 n

2. Hence „

B B…0;r†u…x†jxjsdx is bounded for 0<r<1. Therefore (1) implies (2). In view of the ®rst half of the proof,uis of the form

uˆ X

jmjUs‡2m 1

c…m†DmKm‡h

for some hAHm…B†. The proof of the theorem is now completed.

4. Proofs of Corollaries 1 and 2

In this section we give proofs of Corollaries 1 and 2.

(10)

Proof of Corollary 1. Assume that u is a harmonic function on B0 such that

u…x†Uo…jxj n‡1† as x!0: …10†

Then we have

…

B0

u…x†‡dx<y;

so that (1) holds for sˆ0. Hence our therem shows that u is of the form

uˆ X

jmjU1

c…m†DmK1‡h

for some hAH1…B† and some constants c…m†. In view of (10), we see that c…m† ˆ0 when jmj ˆ1, which proves the corollary.

Proof of Corollary 2. Assume that uAHm…B0† satis®es (2) for an integer s. Then

…

B0

ju…x†jjxjs0dx<y

for a nonnegative integer s0Vs. Hence it follows from our theorem that u is the form

uˆ X

jmjUs0‡2m 1

c…m†DmKm‡h

for some hAHm…B†. According to (2), P

s‡2m 1<jmjUs0‡2m 1c…m†DmKm should disappear, which completes the proof of Corollary 2.

5. Remark

Remark 1. If uAHm…B0†, then u is expressed as Laurent series ex- pansion:

u…x† ˆX

m

c…m†DmKm…x† ‡h…x† …hAHm…B††

(cf. [3, Chapter 10]).

To show this, ®x xAB0 and ®nd from (8) (Green's formula for Dm)

(11)

0ˆ …

B…0;r2† B…0;r1† B…x;…u…y†DmKm…x y† Km…x y†Dmu…y††dy

ˆXm

iˆ1

…

S…0;r2†

…Di 1u…y††q…Dm iKm…x y††

qny

…Dm iKm…x y††q…Di 1u…y††

qny

dS…y†

Xm

iˆ1

…

S…0;r1†

…Di 1u…y††q…Dm iKm…x y††

qny

…Dm iKm…x y††q…Di 1u…y††

qny

dS…y†

Xm

iˆ1

…

S…x;r†

…Di 1u…y††q…Dm iKm…x y††

qny

…Dm iKm…x y††q…Di 1u…y††

qny

dS…y†

ˆa…r2;x† b…r1;x† g…r;x†

for 0<r1<jxj<r2 and r>0 with B…x;r†HB…0;r2† B…0;r1†. Note that limr!0g…r;x† ˆcu…x† for some constant c and limr2!1a…r2;x†AHm…B†. Fur- ther, using the Taylor expansion for Km and Lemma 2, we have

rlim1!0b…r1;x† ˆX

m

c…m†DmKm…x†;

where c…m† are constans. Hence we see that u…x† ˆX

m

c0…m†DmKm…x† ‡h…x† …hAHm…B††:

Our aim in this paper has been to ®nd conditions which assure that the series in the above expression contains only ®nite terms.

Open problem. Under the weaker condition that lim inf

r!0 r s n‡1 …

S…0;u…x†‡dS<y

instead of (1), we do not know whether uAHm…B0† is a polynomial or not.

(12)

References

[ 1 ] D. H. Armitage, On polyharmonic functions in Rn f0g, J. London Math. Soc. (2) 8 (1974), 561±569.

[ 2 ] N. Aronszajn, T. M. Creese and L. J. Lipkin, Polyharmonic functions, Clarendon Press, 1983.

[ 3 ] S. Axler, P. Bourdon and W. Ramey, Harmonic function theory, Springer-Verlag, 1992.

[ 4 ] T. Futamura, K. Kishi and Y. Mizuta, A generalization of the Liouville theorem to polyharmonic functions, to appear in J. Math. Soc. Japan 53 (2001).

[ 5 ] Y. Ishikawa, M. Nakai and T. Tada, A form of classical Picard principle, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), 6±7.

[ 6 ] Y. Mizuta, Potential theory in Euclidean spaces, GakkoÅtosho, Tokyo, 1996.

[ 7 ] M. Nakai and T. Tada, A form of classical Liouville theorem for polyharmonic func- tions, Hiroshima Math. J. 30 (2000), 205±213.

[ 8 ] M. Nicolesco, Recherches sur les fonctions polyharmoniques, Ann. Sci. EÂcole Norm Sup.

52 (1935), 183±220.

Toshihide Futamura and Kyoko Kishi Department of Mathematics Graduate Schoolof Science

Hiroshima University Higashi-Hiroshima 739-8526, Japan T. Futamura: [email protected]

K. Kishi: [email protected] Yoshihiro Mizuta

The Division of Mathematicaland Information Sciences Faculty of Integrated Arts and Sciences

Hiroshima University Higashi-Hiroshima 739-8521, Japan

[email protected]

Referensi

Dokumen terkait

To do this, the students need the knowledge of the linguistic forms, meaning, and functions (Larsen-Freeman, 2001: 128). Therefore, in order to be able to master English well,

According to Marsh (2001), TPR-Storytelling (TPR-S) is developed in 1980’s and 1990’s by Blaine Ray, a Spanish teacher of Bakersfield, California. The storytelling strategies of

Scheme of Immature Proof Subjects with immature proof schemes are subjects with invalid theorem construction results and are not based on an understanding of previous illogical

5 Conclusion The present paper proposed a robust step-by-step non-asymptotic estimator based on modulating functions to estimate the states and disturbance term of nonlinear triangular

Scientific interests: The construction of algorithms for finding a random numbers, numerical integration of the functions from the multi-dimensional classes, discretization of

The transport equations for one and two point joint distribution functions of velocity, temperature, concentration in convective turbulent flow due to first order reaction in presence