• Tidak ada hasil yang ditemukan

Nonlinear dynamics in the Einstein-Gauss-Bonnet gravity

N/A
N/A
Protected

Academic year: 2023

Membagikan "Nonlinear dynamics in the Einstein-Gauss-Bonnet gravity"

Copied!
21
0
0

Teks penuh

(1)

Hisaaki Shinkai 真貝寿明  (Osaka Inst. Tech., Japan)

1

2017/7/6  The 13th International Conference on Gravitation, Astrophysics, & Cosmology (ICGAC-XIII) 

@ Seoul, Korea

Nonlinear dynamics  

in the Einstein-Gauss-Bonnet gravity

http://www.oit.ac.jp/is/~shinkai/

4-dim, 5-dim, 6-dim,  


… how dimensionality affects to dynamics? 

Gauss-Bonnet terms 


… how higher-order curvature terms affects to dynamics? 

2 models 


Colliding scalar pulses / Fate of wormholes 

Ref:  HS & Torii , arXiv:1706.02070 


(2)

Dynamics in Gauss-Bonnet gravity?

•  has  the  simplest  leading  terms  from  String  Theory      

•  has  two  solution  branches  (GR/non-‐‑‒GR).    

•  has  minimum  mass  for  static  spherical  BH  solution

•  is  expected  to  have  singularity  avoidance  feature.  

(but  has  never  been  demonstrated  in  full  gravity.)      

•new  topic  in  numerical  relativity.

S  Golod  &  T  Piran,  PRD  85  (2012)  104015 N  Deppe+,  PRD  86  (2012)  104011

F  Izaurieta  &  E  Rodriguez,  1207.1496  

•much  attentions  in  WH  community

H  Maeda  &  M  Nozawa,  PRD  78  (2008)  024005  

P  Kanti,  B  Kleihaus  &  J  Kunz,  PRL  107  (2011)  271101 P  Kanti,  B  Kleihaus  &  J  Kunz,  PRD  85  (2012)  044007  

  Introduction

T  Torii  &  H  Maeda,  PRD  71  (2005)  124002  

W-‐‑‒K  Ahn,  B  Gwak,  B-‐‑‒H  Lee,  W  Lee,  Eur.  Phys.  J.  C75  (2015)  372

(3)

Formulation for evolution [dual null]

  Field Equations (1)

x + x

0

Evolution

(4)

Formulation for evolution [dual null]

  Field Equations (1)

(5)

matter variables

  Field Equations (2)

(6)

evolution equations (1)

  Field Equations (3)

(7)

evolution equations (2)

  Field Equations (4)

(8)

@+

@

I(5) = RijklRijkl

GR 5d: small amplitude waves

  Colliding Scalar Waves

flat background, normal scalar field

(9)

@+

@

I(5) = RijklRijkl

GR 5d: large amplitude waves

  Colliding Scalar Waves

(10)

��

����

��

����

��

����

��

�� �� �� �� �� �� ��

��������������������

��������������������

��������������������

GR 5d GaussBonnet 5d

I(5) = RijklRijkl

I(5) at origin

x I(5) = RijklRijkl

GaussBonnet 5d (negative α)

GB = +1

GB = 1

GB = 0

GB = 1

GB = +1

GB = 0

(11)

  Colliding Scalar Waves

max (RijklRijkl)

*4dim, 5dim, 6dim,…  higher dim 

*Gauss-Bonnet coupling (α>0)     ̶> less growth of curvature 

GB = 1

GB = +1

GB = 0

��

����

��

����

��

����

��

�� �� �� �� �� �� ��

��������������������

��������������������

��������������������

I(5) at origin

GB = 1

GB = +1

GB = 0

maximum of Kretschmann invariant

(12)

BH & WH are interconvertible?

They  are  very  similar    -‐‑‒-‐‑‒  both  contain  (marginally)  trapped   surfaces  and  can  be  defined  by  trapping  horizons  (TH)  

Only  the  causal  nature  of  the  THs  differs,  whether  THs   evolve  in  plus  /  minus  density  which  is  given  locally.  

S.A.  Hayward,  Int.  J.  Mod.  Phys.  D  8  (1999)  373

Black Hole Wormhole

Locally  defined 

by 

Achronal (spatial/null)  outer TH 

⇨ 1-way traversable

Temporal (timelike)  outer THs

⇨ 2-way traversable

Einstein  eqs.

Positive energy density  normal matter (or 

vacuum)

Negative energy density 

“exotic” matter

Appear-

ance occur naturally

Unlikely to occur  naturally.

but constructible??

  Wormhole Evolution

(13)

BH & WH are interconvertible?

They  are  very  similar    -‐‑‒-‐‑‒  both  contain  (marginally)  trapped   surfaces  and  can  be  defined  by  trapping  horizons  (TH)  

Only  the  causal  nature  of  the  THs  differs,  whether  THs   evolve  in  plus  /  minus  density  which  is  given  locally.  

S.A.  Hayward,  Int.  J.  Mod.  Phys.  D  8  (1999)  373

Black Hole Wormhole

Locally  defined 

by 

Achronal (spatial/null)  outer TH 

⇨ 1-way traversable

Temporal (timelike)  outer THs

⇨ 2-way traversable

Einstein  eqs.

Positive energy density  normal matter (or 

vacuum)

Negative energy density 

“exotic” matter

Appear-

ance occur naturally

Unlikely to occur  naturally.

but constructible??

  Wormhole Evolution

(14)

Wormhole evolution

#+ = 0 # = 0

#+ = 0

# = 0

x+

x x x+

Positive Energy Input

= add normal scalar field

= subtract ghost field

Negative Energy Input

= add ghost scalar field

Black Hole Inflationary

Expansion

4d GR GB = 0 HS-Hayward PRD 66(2002) 044005

⌃(t)

#+ = 0 # = 0

⌃(t)

#+ = 0

# = 0

 (known  fact)

(15)

E > 0 E < 0 4d GR GB = 0 HS-Hayward PRD 66(2002) 044005

#+ = 0 # = 0

#+ = 0

# = 0

x+

x x x+

Positive Energy Input

= add normal scalar field

= subtract ghost field

Negative Energy Input

= add ghost scalar field

Black Hole Inflationary

Expansion

⌃(t)

#+ = 0 # = 0

⌃(t)

#+ = 0

# = 0

Wormhole evolution  (known  fact)

真貝著 

タイムマシンと時空の科学 

(16)

4-dim.

5-dim.

6-dim.

x

+

x

S

n 2

#

+

= 0

# = 0

Positive Energy Black Hole

In higher dim, large instability. 

(linear perturbation analysis)

Wormhole evolution in n-dim

n-dim GR ↵ GB = 0 Torii-HS PRD 88 (2013) 064027

 (known  fact)

(17)

4-dim.

5-dim.

6-dim.

x

+

x

S

n 2

#

+

= 0

# = 0

Positive Energy Black Hole

In higher dim, large instability. 

(linear perturbation analysis)

Wormhole evolution in n-dim

n-dim GR ↵ GB = 0 Torii-HS PRD 88 (2013) 064027

 (known  fact)

Confirmed 

Numerically

(18)

GB = +0.001

Wormhole evolution in Gauss-Bonnet のおさらい 5d Gauss-Bonnet WH : positive energy injection

MSmass, H.Maeda-Nozawa, PRD77 (2008) 063031

(a)

0.0 0.5 1.0 1.5 2.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Circumference radius of throat [5dim GB alpha=+0.001]

(with perturabation of positive-energy pulse)

alpha=0.001, c1=0.1, E=+0.11 alpha=0.001, c1=0.2, E=+0.46 alpha=0.001, c1=0.3, E=+1.04 alpha=0.001, c1=0.5, E=+2.85 alpha=0.001, c1=0.7, E=+5.49

circumference radius of the throat

proper time at the throat (a)

ΔE > ΔE

5  

> 0 --> BH collapse 

ΔE < ΔE

5

       --> Inflationary expansion

E < +0.5

E > +0.5

(19)

GB = +0.001

Wormhole evolution in Gauss-Bonnet のおさらい 6d Gauss-Bonnet WH : positive energy injection

MSmass, H.Maeda-Nozawa, PRD77 (2008) 063031

ΔE > ΔE

6  

> ΔE

5  

> 0 --> BH collapse 

ΔE < ΔE

5

 < ΔE

6

       --> Inflationary expansion

0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Circumference radius of throat [6dim GB alpha=+0.001]

(with perturabation of positive-energy pulse)

alpha=0.001, c1=0.50, E=+1.5276 alpha=0.001, c1=0.60, E=+2.1954 alpha=0.001, c1=0.65, E=+2.5790 alpha=0.001, c1=0.70, E=+2.9896

circumference radius of the throat

proper time at the throat

(b) (b)

E > +2.2 E < +2.2

(20)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0 0.5

1.0 1.5

2.0 2.5

3.0 3.5

4.0

horizon

locations

(alpha=+0.01, with

perturbation

of positive energy)

theta_+=0 : alpha=0.01,

a=0.0

theta_-=0

: alpha=0.01, a=0.0

theta_+=0 : alpha=0.01,

a=0.5

theta_-=0 : alpha=0.01,

a=0.5

theta_+=0 : alpha=0.01,

a=0.6

theta_-=0

: alpha=0.01, a=0.6

theta_+=0 : alpha=0.01,

a=0.7

theta_-=0 : alpha=0.01,

a=0.7

theta_+=0 : alpha=0.01,

a=0.8

theta_-=0

: alpha=0.01, a=0.8

xminus xplus

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0 0.5

1.0 1.5

2.0 2.5

3.0 3.5

4.0

horizon

locations

(alpha=+0.01, with

perturbation

of positive energy)

theta_+=0 : alpha=0.01, a=0.77 theta_-=0 : alpha=0.01, a=0.77

theta_+=0 : alpha=0.01, a=0.78 theta_-=0 : alpha=0.01, a=0.78

theta_+=0 : alpha=0.01, a=0.79 theta_-=0 : alpha=0.01, a=0.79

theta_+=0 : alpha=0.01, a=0.80 theta_-=0 : alpha=0.01, a=0.80

xminus xplus

critical behavior

existence of trapped surface 

̶> not necessary to form a BH

GB = 0.01

5d Gauss-Bonnet WH : trapped surface

(21)

  Colliding Scalar Waves

Summary

  Wormhole Evolution

max (RijklRijkl)

For  both  models,  the  normal  corrections  (α

GB

 >  0)  work  for  

avoiding  the  appearance  of  singularity,  although  it  is  inevitable.  

We  found  that  in  the  critical  situation  for   forming  a  BH,  the  existence  of  the  trapped   region  in  the  Einstein-‐‑‒GB  gravity  does  not   directly  indicate  a  formation  of  a  BH.  

ΔE > ΔE

6  

> ΔE

5  

> 0 --> BH collapse 

ΔE < ΔE

5

 < ΔE

6

       --> Inflationary expansion

Referensi

Dokumen terkait

1.1.2 Relationship between Time and Quality Culture Model of a University In the figure 1.1.1, Teamwork Raouf, unpublished, Sustainability Raouf, unpublished and excellence

21 professional itu, maksud saya dari segi kerja, dari segi hubungan dengan klien, komunikasi dan sebagainya, kalau boleh diterapkan dengan sikap seperti itu, maknanya sikap,