• Tidak ada hasil yang ditemukan

On the rate of convergence for some linear operators

N/A
N/A
Protected

Academic year: 2024

Membagikan "On the rate of convergence for some linear operators"

Copied!
10
0
0

Teks penuh

(1)

35 (2005), 115–124

On the rate of convergence for some linear operators

Zbigniew Walczak

(Received February 4, 2004) (Revised September 21, 2004)

Abstract. We consider certain linear operators Ln in polynomial weighted spaces of functions of one variable and study approximation properties of these operators, including theorems on the degree of approximation.

1. Introduction

Approximation properties of Sza´sz-Mirakyan operators ð1Þ

Snðf;xÞ:¼enxXy

k¼0

ðnxÞk k! f k

n ; xAR0¼ ½0;þyÞ;nAN:¼ f1;2. . .g;

in polynomial weighted spaces Cp were examined in [1]. The space Cp, pA N0:¼ f0;1;2;. . .g, is associated with the weighted function

w0ðxÞ:¼1; wpðxÞ:¼ ð1þxpÞ1 if pb1;

ð2Þ

and consists of all real-valued continuous functions f on R0 for which wpf is uniformly continuous and bounded on R0. The norm on Cp is defined by

kfkp1kfðÞkp:¼ sup

xAR0

wpðxÞjfðxÞj:

ð3Þ

In [1] there were theorems on the degree of approximation of f ACp by operators Sn defined by (1). From these theorems it was deduced that

n!ylim Snðf;xÞ ¼ fðxÞ

for every f ACp, pAN0, and xAR0. Moreover, the above convergence is uniform on every interval ½x1;x2, x2>x1b0.

In this paper by Mkða;bÞ, we shall denote suitable positive constants depending only on indicated parameters a and b.

2000 Mathematics Subject Classification. 41A36

Key words and phrases. Linear operator, degree of approximation.

(2)

The Sza´sz-Mirakyan operators are important in approximation theory.

They have been studied intensively, in connection with di¤erent branches of analysis, such as numerical analysis. Recently in many papers various modifications of operators Sn were introduced. Approximation properties of modified Sza´sz-Mirakyan operators

Bnðf;r;xÞ:¼ 1 gððnxþ1Þ2;rÞ

Xy

k¼0

ðnxþ1Þ2k

ðkþrÞ! f kþr nðnxþ1Þ

; xAR0;n;rAN;

where

gðt;rÞ ¼Xy

k¼0

tk

ðkþrÞ!; tAR0; in polynomial weighted spaces were examined in [10].

In [10] it was proved that if f ACp, pAN0, then kBnðf;r;Þ fðÞkpaM0o1 f;Cp;1

n

; n;rAN;

where M0¼const: >0 and o1ðf;Cp;Þ is the modulus of continuity of f defined by

o1ðf;Cp;tÞ:¼ sup

0ahat

kDhfðÞkp; tAR0;

where DhfðxÞ ¼ fðxþhÞ fðxÞ for h;xAR0. In particular, if f ACp1, pAN0, then

kBnðf;r;Þ fðÞkpaM1

n ; n;rAN;

where M1¼const: >0. The above inequalities estimate the rate of uniform convergence offBnðf;r;Þg. Similar results in exponential weighted spaces can be found in [9, 11].

The Sza´sz-Mirakyan operators Sn are defined in terms of a sample of the given function f on the points k=n, called knots, for kAN0, nAN. For the operators introduced in [9–11] the knots are the numbers ðkþrÞ=ðnðnxþ1ÞÞ for kAN0, nAN and xAR0 (r being fixed).

Thus the question arises, whether the knots ðkþrÞ=ðnðnxþ1ÞÞ cannot be replaced by a given subset of points, which are independent of x, provided this will not change essentially the degree of convergence. In connection with this question we introduce the operators (4).

(3)

Let Bp, pAN, be the set of all real-valued continuous functions fðxÞ on R0 for whichwpðxÞxkfðkÞðxÞ, k¼0;1;2. . .;p, are continuous and bounded on R0 and fððxÞ is uniformly continuous on R0. The norm on Bp is given by (3).

We introduce the following class of operators in Bp, pAN.

Definition. Let rAN, pAN, s>0 be fixed numbers. For functions f ABp we define the operators

Lnðf;p;r;s;xÞ ð4Þ

:¼ 1

gðnsx;rÞ Xy

k¼0

ðnsk ðkþrÞ!

Xp

j¼0

fð kþr ns

xkþr ns j

j! ; xAR0;nAN;

where

gðt;rÞ ¼Xy

k¼0

tk

ðkþrÞ!; tAR0: ð5Þ

Observe that

gð0;rÞ ¼1

r!; gðt;rÞ ¼ 1

tr etXr1

j¼0

tj j!

!

if t>0:

In this paper we shall state some estimates of the rate of uniform con- vergence of the operators Ln, nAN.

Theorems given in [1, 4–7] are concerned with pointwise approximation.

We give theorems on the degree of approximation of functions in Bp by Ln with respect to norm estimates.

Let us introduce the notation

Anðf;r;s;xÞ:¼ 1 gðnsx;rÞ

Xy

k¼0

ðnsk

ðkþrÞ!f kþr ns ð6Þ

for f ABp, pAN0, xAR0, n;rAN and s>0.

We shall apply the method used in [1, 3–11].

2. Auxiliary results

In this section we shall give some properties of the above operators, which we shall apply to the proofs of the main theorems.

(4)

From (5) and (6) we easily derive the following formulas Anð1;r;s;xÞ ¼1;

ð7Þ

Anðt;r;s;xÞ ¼xþ 1

nsðr1Þ!gðnsx;rÞ; Anðt2;r;s;xÞ ¼x2þx

ns 1þ 1

ðr1Þ!gðnsx;rÞ

þ r

n2sðr1Þ!gðnsx;rÞ for every fixed rAN and for all nAN and xAR0.

Using (5), (6) and mathematical induction on qAN we can prove the following lemma (see [10]).

Lemma 1. Fix qAN0, rAN and s>0. Then there exist positive numbers aq;j depending only on j, q, and bq;jðrÞ depending only on r, j and q, 0ajaq such that

Anðtq;r;s;xÞ ¼Xq

j¼0

xj

nsðqjÞ aq;jþ bq;jðrÞ gðnsx;rÞ

ð8Þ

for all nAN and xAR0. Moreovera0;0¼1,b0;0ðrÞ ¼0 and aq;0¼bq;qðrÞ ¼0, aq;q¼1, bq;0ðrÞ ¼ rq1

ðr1Þ! for qAN.

Next we shall prove

Lemma 2. Let pAN0, rAN and s>0 be fixed numbers. Then there exists a positive constant M21M2ðp;rÞ such that

kAnð1=wpðtÞ;r;s;ÞkpaM2; nAN.

ð9Þ

Proof. The inequality (9) is obvious for p¼0 by (2), (3) and (7).

Let pAN. From (5) we get 1

gðt;rÞar! for tAR0: ð10Þ

From (10) and by (2) and (6)–(8) we have

wpðxÞAnð1=wpðtÞ;r;s;xÞ ¼wpðxÞf1þAnðtp;r;s;xÞg

¼ 1

1þxpþXp

j¼0

xj

nsðpjÞð1þxpÞ ap;jþ bp;jðrÞ gðnsx;rÞ

a1þXp

j¼0

xj

1þxpðap;jþr!bp;jðrÞÞaM2ðp;rÞ

(5)

for xAR0, nAN, s>0 and rAN, where M2ðp;rÞ is a positive constant depending only p and r. This completes the proof of Lemma 2. 9

Similarly we can prove the following lemma.

Lemma 3. Let pAN0, rAN and s>0 be fixed numbers. Then there exists a positive constant M31M3ðp;rÞ such that

sup

xAR0

wpðxÞxkAnð1=wpkðtÞ;r;s;xÞaM3; nAN;k¼0;1;2;. . .;p:

Lemma 4. Fix pAN, rAN and s>0. Then for all xAR0 and nAN we have

AnððxtÞp;r;s;xÞ ¼Xp

j¼1

xj1

npjþ1Þ ap;jþ bp;j gðnsx;rÞ

ð11Þ ;

where ap;j, bp;j are numbers depending only on the paremeters r, j and p.

Proof. Let pb1. Applying Lemma 1, we get AnððxtÞp;r;s;xÞ ¼ 1

gðnsx;rÞ Xy

k¼0

ðnsk

ðkþrÞ! xkþr ns p

¼ 1

gðnsx;rÞ Xy

k¼0

ðnsk ðkþrÞ!

Xp

i¼0

p

i ð1Þixpi kþr ns i

¼Xp

i¼0

p

i ð1ÞixpiAnðti;r;s;xÞ

¼Xp

i¼0

p

i ð1ÞixpiXi

j¼0

xj

nsðijÞ ai;jþ bi;jðrÞ gðnsx;rÞ

¼xpþXp

i¼1

p

i ð1Þixpi Xi1

j¼0

xj

nsðijÞ ai;jþ bi;jðrÞ gðnsx;rÞ

þxi

" #

¼xpXp

i¼0

p

i ð1ÞiþXp

i¼1

p i ð1Þi Xi1

j¼0

xjþpi

nsðijÞ ai;jþ bi;jðrÞ gðnsx;rÞ

:

Using the elementary identity

(6)

Xp

i¼0

p

i ð1Þi¼ ð11Þp¼0; pAN;

we receive the representation AnððxtÞp;r;s;xÞ ¼Xp

i¼1

p

i ð1ÞiXi

k¼1

xkþpi1

nsðikþ1Þ ai;k1þbi;k1ðrÞ gðnsx;rÞ

¼Xp

j¼1

xj1 nsðpjþ1Þ

Xp

i¼pjþ1

p

i ð1Þi ai;iþjp1þbi;iþjp1ðrÞ gðnsx;rÞ

¼Xp

j¼1

xj1

nsðpjþ1Þ ap;jþ bp;j gðnsx;rÞ

: 9

Lemma 5. Fix p;rAN and s>0. Then there exists a positive constant M41M4ðf;p;rÞ such that

kLnðf;p;r;s;ÞkpaM4 ð12Þ

for all f ABp.

The formulas (4), (5) and (12) show that Lnðf;p;r;sÞ is well-defined on the space Bp, pAN.

Proof. First we suppose that f ABp, pAN. From this, using the ele- mentary inequality ðaþbÞka2k1ðakþbkÞ, a;b>0, kAN0, we get

jxtjkjfðkÞðtÞja2k1jfðkÞðtÞjfxkþtkg aM5ðf;p;kÞ 1

wpðtÞþ xk wpkðtÞ

; k¼0;1;2;. . .;p; x;tAR0: This implies that

wpðxÞjLnðf;p;r;s;xÞj aM6ðf;pÞ wpðxÞ

gðnsx;rÞ Xy

k¼0

ðnsk ðkþrÞ!

1

wpððkþrÞ=nsÞþXp

j¼0

xj wpjððkþrÞ=nsÞ

( )

¼M6ðf;pÞwpðxÞ Anð1=wpðtÞ;r;s;xÞ þXp

j¼0

xjAnð1=wpjðtÞ;r;s;xÞ

( )

:

From this and in view of Lemmas 2 and 3 we get wpðxÞjLnðf;p;r;s;xÞjaM4ðf;p;rÞ:

This ends the proof of (12). 9

(7)

3. Rate of convergence

In this section we shall study properties of Lnðf;p;r;sÞ. We shall give theorems on the degree of approximation of f ABp, pAN, by these operators.

We can state now the main results of this paper.

Theorem 1. Fix pAN0, rAN and s>0. Then there exists a positive constant M71M7ðp;r;sÞ such that for every f AB2pþ1 we have

kLnðf;2pþ1;r;s;Þ fðÞk2pþ1aM7o1 fð2pþ1Þ;C0;1 ns

; nAN:

ð13Þ

Proof. First we suppose that f AB2pþ1. This implies that fð2pþ1ÞAC0. Let pAN0. Using the modified Taylor formula

fðxÞ ¼2pþ1X

j¼0

fð kþr ns

xkþr ns j

j! þ

xkþr ns 2pþ1

ð2pÞ!

ð1

0

ð1tÞ

2p

fð2pþ1Þ kþr

ns þt xkþr ns

fð2pþ1Þ kþr ns

dt and the definition of modulus of continuity and (4), (5), we obtain

w2pþ1ðxÞjLnðf;2pþ1;r;s;xÞ fðxÞj

aw2pþ1ðxÞ gðnsx;rÞ

Xy

k¼0

ðnsk ðkþrÞ!

2pþ1X

j¼0

fð kþr ns

xkþr ns j

j! fðxÞ

aw2pþ1ðxÞ gðnsx;rÞ

Xy

k¼0

ðnsk ðkþrÞ!

xkþr ns

2pþ1

ð2pÞ!

ð1

0

ð1tÞ

2p

fð2pþ1Þ kþr

ns þt xkþr ns

fð2pþ1Þ kþr ns

dt

aw2pþ1ðxÞ gðnsx;rÞ

Xy

k¼0

ðnsk ðkþrÞ!

xkþr ns

2pþ1

ð2pÞ!

ð1

0

ð1tÞ2po1ðfð2pþ1Þ;C0;tjx ðkþrÞ=nsjÞdt:

(8)

Observe that

o1ðfð2pþ1Þ;C0;tjx ðkþrÞ=nsjÞað1þtjx ðkþrÞ=nsjnsÞo1ðfð2pþ1Þ;C0;1=nsÞ:

From this, using the elementary inequality ðaþbÞka2k1ðakþbkÞ, a;b>0, kAN0, and (6) and (7), we get

w2pþ1ðxÞjLnðf;2pþ1;r;s;xÞ fðxÞj aw2pþ1ðxÞ

gðnsx;rÞ Xy

k¼0

ðnsk

ðkþrÞ! xkþr ns 2pþ2

nsþ xkþr ns

" 2pþ1#

o1ðfð2pþ1Þ;C0;1=nsÞ

aw2pþ1ðxÞfnsAnððxtÞ2pþ2;r;s;xÞ þAnððtþxÞ2pþ1;r;s;xÞg o1ðfð2pþ1Þ;C0;1=nsÞ

aw2pþ1ðxÞfnsAnððtxÞ2pþ2;r;s;xÞ þ22pAnðt2pþ1;r;s;xÞ þ22px2pþ1g o1ðfð2pþ1Þ;C0;1=nsÞ:

Applying Lemmas 1 and 4, (10) and (2), we immediately obtain w2pþ1ðxÞjLnðf;2pþ1;r;s;xÞ fðxÞj

aw2pþ1ðxÞ (2pþ2X

j¼1

xj1

nsð2pjþ2Þ a2pþ2;jþ b2pþ2;j

gðnsx;rÞ

þ22p2pþ1X

j¼0

xj

nsð2pþ1jÞ a2pþ1;jþb2pþ1;jðrÞ gðnsx;rÞ

þ22px2pþ1 )

o1ðfð2pþ1Þ;C0;1=nsÞ

aM8ðp;sÞ 2pþ2X

j¼1

ðja2pþ2;jj þr!jb2pþ2;jjÞ þ22p2pþ1X

j¼1

ða2pþ1þr!b2pþ1ðrÞÞ þ22p

( )

o1ðfð2pþ1Þ;C0;1=nsÞaM7ðp;r;sÞo1ðfð2pþ1Þ;C0;1=nsÞ

for xAR0, n;rAN, s>0. This completes the proof of Theorem 1. 9 Theorem 2. Fix pAN0, rAN and s>0. Then there exists a positive constant M91M9ðp;r;sÞ such that for every f AB2pþ2 we have

kLnðf;2pþ2;r;s;Þ fðÞk2pþ2aM9ðp;r;sÞ

ns kfð2pþ2Þk0; nAN:

ð14Þ

(9)

Proof. First we suppose that f AB2pþ2. This implies that fð2pþ2ÞAC0. Arguing as in the first part of the proof of Theorem 1 we obtain w2pþ2ðxÞjLnðf;2pþ2;r;s;xÞ fðxÞj

aw2pþ2ðxÞ gðnsx;rÞ

Xy

k¼0

ðnsk ðkþrÞ!

xkþr ns 2pþ2

ð2pþ1Þ!

ð1

0

ð1tÞ

2pþ1

fð2pþ2Þ kþr

ns þt xkþr ns

þ fð2pþ2Þ kþr ns

dt:

From this and by our assumption we get w2pþ2ðxÞjLnðf;2pþ2;r;s;xÞ fðxÞj

a2kfð2pþ2Þk0w2pþ2ðxÞ gðnsx;rÞ

Xy

k¼0

ðnsk

ðkþrÞ! xkþr ns 2pþ2

¼2kfð2pþ2Þk0w2pþ2ðxÞAnððxtÞ2pþ2;r;s;xÞ:

From this, applying Lemma 4, (10) and (2), we immediately obtain w2pþ2ðxÞjLnðf;2pþ2;r;s;xÞ fðxÞj

a 2

nskfð2pþ2Þk0w2pþ2ðxÞ2pþ2X

j¼1

xj1

nsð2pjþ2Þ japþ2;jj þ jbpþ2;jj gðnsx;rÞ

aM9ðp;r;sÞ

ns kfð2pþ2Þk0

for xAR0, n;rAN, s>0. This ends the proof of Theorem 2. 9 From above Theorems we obtain

Corollary. For every fixed rAN, pAN, s>0 and f ABp we have

n!ylim kLnðf;p;r;s;Þ fðÞkp¼0:

Remark. In [1] it was proved that if f ACp, pAN0, then wpðxÞjSnðf;xÞ fðxÞjaM9o2 f;Cp;

ffiffiffix n r

; xAR0;nAN;

where M10 ¼const: >0 and o2ðf;Þ is the modulus of smoothness defined by o2ðf;Cp;tÞ:¼ sup

0ahat

kD2hfðÞkp; tAR0;

(10)

withDh2fðxÞ:¼ fðxÞ 2fðxþhÞ þfðxþ2hÞ. In particular, if f ACp1, pAN0, then

wpðxÞjSnðf;xÞ fðxÞjaM10

ffiffiffix n r

; xAR0;nAN

where M10¼const: >0.

Theorem 1, Theorem 2 and Corollary in this paper show that operators Lnðf;p;r;1;Þ, nAN, give better the degree of approximation of functions

f ABp, pAN, than Sn and the operators examined in [1, 4, 6, 7].

Acknowledgment

The author would like to thank the referee for his valuable comments and proposals.

References

[ 1 ] M. Becker, Global approximation theorems for Sza´sz-Mirakjan and Baskakov operators in polynomial weight spaces, Indiana Univ. Math. J.,27 (1978), no. 1, 127–142.

[ 2 ] R. A. De Vore, G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin 1993.

[ 3 ] Z. Finta, On approximation by modified Kantorovich polynomials, Math. Balcanica (N. S.), 13 (1999), no. 3–4, 205–211.

[ 4 ] M. Herzog, Approximation theorems for modified Sza´sz-Mirakjan operators in polynomial weight spaces, Matematiche (Catania),54 (1999), no. 1, 77–90 (2000).

[ 5 ] H. G. Lehnho¤, On a Modified Sza´sz-Mirakjan Operator, J. Approx. Th., 42 (1984), 278–282.

[ 6 ] M. Les´niewicz, L. Rempulska, Approximation by some operators of the Sza´sz-Mirakjan type in exponential weight spaces, Glas. Math. 32 (1997), 57–69.

[ 7 ] L. Rempulska, Z. Walczak, Approximation properties of certain modified Sza´sz-Mirakyan operators, Matematiche (Catania), 55 (2000), no. 1, 121–132 (2001).

[ 8 ] A. Sahai, G. Prasad, On Simultaneous Approximation by Modified Lupas Operators, J.

Approx. Th., 45 (1985), 122–128.

[ 9 ] Z. Walczak, On certain linear positive operators in exponential weighted spaces, Math. J.

Toyama Univ., 25 (2002), 109–118.

[10] Z. Walczak, On certain linear positive operators in polynomial weighted spaces, Acta Math. Hungar., 101(3) (2003), 179–191.

[11] Z. Walczak, On some linear positive operators in exponential weighted spaces, Math.

Commun., 8 (2003), no. 1, 77–84.

Institute of Mathematics Poznan´ University of Technology

Piotrowo 3A 60-965 Poznan´, Poland E-mail: [email protected]

Referensi

Dokumen terkait

Cabrera and Volodin [3] obtained mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability.. Then n

a class of functions related to local behavior of mapping by generalized fractional integral operators; and the generalized Morrey spaces are classes of functions related to

Dung and Son [4] established the rate of convergence in the central limit theorem for arrays of martingale difference random vectors in the bounded Lipschitz metric.. In this article,

The null space property of a certain matrix obtained from the initial frame ensures the existence of an equivalent frame with a strictly smaller coherence.. The main contributions of

Chapter 3 Strictly Semimonotone and Completely-Q Transformations In this chapter we consider the linear complementarity problem over the cone of squares symmetric cone in a Euclidean

Obdarovic M, Ponnusamy S., Radius of univalence of certain combination of univalent and analytic function.. Fournier R, Ponnusamy S., A class of locally univalent functions defined by

where some results about random fixed points of weakly con- tractive and semi-contraciive completely random operators were presented, m this paper we obtain some results on random fixed

The highest percentage of the mentors 82.10% believe that a Bachelor’s or Master’s degree in Healthcare Management should be a prerequisite; 57.50% consider a certain number of years of