35 (2005), 115–124
On the rate of convergence for some linear operators
Zbigniew Walczak
(Received February 4, 2004) (Revised September 21, 2004)
Abstract. We consider certain linear operators Ln in polynomial weighted spaces of functions of one variable and study approximation properties of these operators, including theorems on the degree of approximation.
1. Introduction
Approximation properties of Sza´sz-Mirakyan operators ð1Þ
Snðf;xÞ:¼enxXy
k¼0
ðnxÞk k! f k
n ; xAR0¼ ½0;þyÞ;nAN:¼ f1;2. . .g;
in polynomial weighted spaces Cp were examined in [1]. The space Cp, pA N0:¼ f0;1;2;. . .g, is associated with the weighted function
w0ðxÞ:¼1; wpðxÞ:¼ ð1þxpÞ1 if pb1;
ð2Þ
and consists of all real-valued continuous functions f on R0 for which wpf is uniformly continuous and bounded on R0. The norm on Cp is defined by
kfkp1kfðÞkp:¼ sup
xAR0
wpðxÞjfðxÞj:
ð3Þ
In [1] there were theorems on the degree of approximation of f ACp by operators Sn defined by (1). From these theorems it was deduced that
n!ylim Snðf;xÞ ¼ fðxÞ
for every f ACp, pAN0, and xAR0. Moreover, the above convergence is uniform on every interval ½x1;x2, x2>x1b0.
In this paper by Mkða;bÞ, we shall denote suitable positive constants depending only on indicated parameters a and b.
2000 Mathematics Subject Classification. 41A36
Key words and phrases. Linear operator, degree of approximation.
The Sza´sz-Mirakyan operators are important in approximation theory.
They have been studied intensively, in connection with di¤erent branches of analysis, such as numerical analysis. Recently in many papers various modifications of operators Sn were introduced. Approximation properties of modified Sza´sz-Mirakyan operators
Bnðf;r;xÞ:¼ 1 gððnxþ1Þ2;rÞ
Xy
k¼0
ðnxþ1Þ2k
ðkþrÞ! f kþr nðnxþ1Þ
; xAR0;n;rAN;
where
gðt;rÞ ¼Xy
k¼0
tk
ðkþrÞ!; tAR0; in polynomial weighted spaces were examined in [10].
In [10] it was proved that if f ACp, pAN0, then kBnðf;r;Þ fðÞkpaM0o1 f;Cp;1
n
; n;rAN;
where M0¼const: >0 and o1ðf;Cp;Þ is the modulus of continuity of f defined by
o1ðf;Cp;tÞ:¼ sup
0ahat
kDhfðÞkp; tAR0;
where DhfðxÞ ¼ fðxþhÞ fðxÞ for h;xAR0. In particular, if f ACp1, pAN0, then
kBnðf;r;Þ fðÞkpaM1
n ; n;rAN;
where M1¼const: >0. The above inequalities estimate the rate of uniform convergence offBnðf;r;Þg. Similar results in exponential weighted spaces can be found in [9, 11].
The Sza´sz-Mirakyan operators Sn are defined in terms of a sample of the given function f on the points k=n, called knots, for kAN0, nAN. For the operators introduced in [9–11] the knots are the numbers ðkþrÞ=ðnðnxþ1ÞÞ for kAN0, nAN and xAR0 (r being fixed).
Thus the question arises, whether the knots ðkþrÞ=ðnðnxþ1ÞÞ cannot be replaced by a given subset of points, which are independent of x, provided this will not change essentially the degree of convergence. In connection with this question we introduce the operators (4).
Let Bp, pAN, be the set of all real-valued continuous functions fðxÞ on R0 for whichwpðxÞxkfðkÞðxÞ, k¼0;1;2. . .;p, are continuous and bounded on R0 and fðpÞðxÞ is uniformly continuous on R0. The norm on Bp is given by (3).
We introduce the following class of operators in Bp, pAN.
Definition. Let rAN, pAN, s>0 be fixed numbers. For functions f ABp we define the operators
Lnðf;p;r;s;xÞ ð4Þ
:¼ 1
gðnsx;rÞ Xy
k¼0
ðnsxÞk ðkþrÞ!
Xp
j¼0
fðjÞ kþr ns
xkþr ns j
j! ; xAR0;nAN;
where
gðt;rÞ ¼Xy
k¼0
tk
ðkþrÞ!; tAR0: ð5Þ
Observe that
gð0;rÞ ¼1
r!; gðt;rÞ ¼ 1
tr etXr1
j¼0
tj j!
!
if t>0:
In this paper we shall state some estimates of the rate of uniform con- vergence of the operators Ln, nAN.
Theorems given in [1, 4–7] are concerned with pointwise approximation.
We give theorems on the degree of approximation of functions in Bp by Ln with respect to norm estimates.
Let us introduce the notation
Anðf;r;s;xÞ:¼ 1 gðnsx;rÞ
Xy
k¼0
ðnsxÞk
ðkþrÞ!f kþr ns ð6Þ
for f ABp, pAN0, xAR0, n;rAN and s>0.
We shall apply the method used in [1, 3–11].
2. Auxiliary results
In this section we shall give some properties of the above operators, which we shall apply to the proofs of the main theorems.
From (5) and (6) we easily derive the following formulas Anð1;r;s;xÞ ¼1;
ð7Þ
Anðt;r;s;xÞ ¼xþ 1
nsðr1Þ!gðnsx;rÞ; Anðt2;r;s;xÞ ¼x2þx
ns 1þ 1
ðr1Þ!gðnsx;rÞ
þ r
n2sðr1Þ!gðnsx;rÞ for every fixed rAN and for all nAN and xAR0.
Using (5), (6) and mathematical induction on qAN we can prove the following lemma (see [10]).
Lemma 1. Fix qAN0, rAN and s>0. Then there exist positive numbers aq;j depending only on j, q, and bq;jðrÞ depending only on r, j and q, 0ajaq such that
Anðtq;r;s;xÞ ¼Xq
j¼0
xj
nsðqjÞ aq;jþ bq;jðrÞ gðnsx;rÞ
ð8Þ
for all nAN and xAR0. Moreovera0;0¼1,b0;0ðrÞ ¼0 and aq;0¼bq;qðrÞ ¼0, aq;q¼1, bq;0ðrÞ ¼ rq1
ðr1Þ! for qAN.
Next we shall prove
Lemma 2. Let pAN0, rAN and s>0 be fixed numbers. Then there exists a positive constant M21M2ðp;rÞ such that
kAnð1=wpðtÞ;r;s;ÞkpaM2; nAN.
ð9Þ
Proof. The inequality (9) is obvious for p¼0 by (2), (3) and (7).
Let pAN. From (5) we get 1
gðt;rÞar! for tAR0: ð10Þ
From (10) and by (2) and (6)–(8) we have
wpðxÞAnð1=wpðtÞ;r;s;xÞ ¼wpðxÞf1þAnðtp;r;s;xÞg
¼ 1
1þxpþXp
j¼0
xj
nsðpjÞð1þxpÞ ap;jþ bp;jðrÞ gðnsx;rÞ
a1þXp
j¼0
xj
1þxpðap;jþr!bp;jðrÞÞaM2ðp;rÞ
for xAR0, nAN, s>0 and rAN, where M2ðp;rÞ is a positive constant depending only p and r. This completes the proof of Lemma 2. 9
Similarly we can prove the following lemma.
Lemma 3. Let pAN0, rAN and s>0 be fixed numbers. Then there exists a positive constant M31M3ðp;rÞ such that
sup
xAR0
wpðxÞxkAnð1=wpkðtÞ;r;s;xÞaM3; nAN;k¼0;1;2;. . .;p:
Lemma 4. Fix pAN, rAN and s>0. Then for all xAR0 and nAN we have
AnððxtÞp;r;s;xÞ ¼Xp
j¼1
xj1
nsðpjþ1Þ ap;jþ bp;j gðnsx;rÞ
ð11Þ ;
where ap;j, bp;j are numbers depending only on the paremeters r, j and p.
Proof. Let pb1. Applying Lemma 1, we get AnððxtÞp;r;s;xÞ ¼ 1
gðnsx;rÞ Xy
k¼0
ðnsxÞk
ðkþrÞ! xkþr ns p
¼ 1
gðnsx;rÞ Xy
k¼0
ðnsxÞk ðkþrÞ!
Xp
i¼0
p
i ð1Þixpi kþr ns i
¼Xp
i¼0
p
i ð1ÞixpiAnðti;r;s;xÞ
¼Xp
i¼0
p
i ð1ÞixpiXi
j¼0
xj
nsðijÞ ai;jþ bi;jðrÞ gðnsx;rÞ
¼xpþXp
i¼1
p
i ð1Þixpi Xi1
j¼0
xj
nsðijÞ ai;jþ bi;jðrÞ gðnsx;rÞ
þxi
" #
¼xpXp
i¼0
p
i ð1ÞiþXp
i¼1
p i ð1Þi Xi1
j¼0
xjþpi
nsðijÞ ai;jþ bi;jðrÞ gðnsx;rÞ
:
Using the elementary identity
Xp
i¼0
p
i ð1Þi¼ ð11Þp¼0; pAN;
we receive the representation AnððxtÞp;r;s;xÞ ¼Xp
i¼1
p
i ð1ÞiXi
k¼1
xkþpi1
nsðikþ1Þ ai;k1þbi;k1ðrÞ gðnsx;rÞ
¼Xp
j¼1
xj1 nsðpjþ1Þ
Xp
i¼pjþ1
p
i ð1Þi ai;iþjp1þbi;iþjp1ðrÞ gðnsx;rÞ
¼Xp
j¼1
xj1
nsðpjþ1Þ ap;jþ bp;j gðnsx;rÞ
: 9
Lemma 5. Fix p;rAN and s>0. Then there exists a positive constant M41M4ðf;p;rÞ such that
kLnðf;p;r;s;ÞkpaM4 ð12Þ
for all f ABp.
The formulas (4), (5) and (12) show that Lnðf;p;r;sÞ is well-defined on the space Bp, pAN.
Proof. First we suppose that f ABp, pAN. From this, using the ele- mentary inequality ðaþbÞka2k1ðakþbkÞ, a;b>0, kAN0, we get
jxtjkjfðkÞðtÞja2k1jfðkÞðtÞjfxkþtkg aM5ðf;p;kÞ 1
wpðtÞþ xk wpkðtÞ
; k¼0;1;2;. . .;p; x;tAR0: This implies that
wpðxÞjLnðf;p;r;s;xÞj aM6ðf;pÞ wpðxÞ
gðnsx;rÞ Xy
k¼0
ðnsxÞk ðkþrÞ!
1
wpððkþrÞ=nsÞþXp
j¼0
xj wpjððkþrÞ=nsÞ
( )
¼M6ðf;pÞwpðxÞ Anð1=wpðtÞ;r;s;xÞ þXp
j¼0
xjAnð1=wpjðtÞ;r;s;xÞ
( )
:
From this and in view of Lemmas 2 and 3 we get wpðxÞjLnðf;p;r;s;xÞjaM4ðf;p;rÞ:
This ends the proof of (12). 9
3. Rate of convergence
In this section we shall study properties of Lnðf;p;r;sÞ. We shall give theorems on the degree of approximation of f ABp, pAN, by these operators.
We can state now the main results of this paper.
Theorem 1. Fix pAN0, rAN and s>0. Then there exists a positive constant M71M7ðp;r;sÞ such that for every f AB2pþ1 we have
kLnðf;2pþ1;r;s;Þ fðÞk2pþ1aM7o1 fð2pþ1Þ;C0;1 ns
; nAN:
ð13Þ
Proof. First we suppose that f AB2pþ1. This implies that fð2pþ1ÞAC0. Let pAN0. Using the modified Taylor formula
fðxÞ ¼2pþ1X
j¼0
fðjÞ kþr ns
xkþr ns j
j! þ
xkþr ns 2pþ1
ð2pÞ!
ð1
0
ð1tÞ
2p
fð2pþ1Þ kþr
ns þt xkþr ns
fð2pþ1Þ kþr ns
dt and the definition of modulus of continuity and (4), (5), we obtain
w2pþ1ðxÞjLnðf;2pþ1;r;s;xÞ fðxÞj
aw2pþ1ðxÞ gðnsx;rÞ
Xy
k¼0
ðnsxÞk ðkþrÞ!
2pþ1X
j¼0
fðjÞ kþr ns
xkþr ns j
j! fðxÞ
aw2pþ1ðxÞ gðnsx;rÞ
Xy
k¼0
ðnsxÞk ðkþrÞ!
xkþr ns
2pþ1
ð2pÞ!
ð1
0
ð1tÞ
2p
fð2pþ1Þ kþr
ns þt xkþr ns
fð2pþ1Þ kþr ns
dt
aw2pþ1ðxÞ gðnsx;rÞ
Xy
k¼0
ðnsxÞk ðkþrÞ!
xkþr ns
2pþ1
ð2pÞ!
ð1
0
ð1tÞ2po1ðfð2pþ1Þ;C0;tjx ðkþrÞ=nsjÞdt:
Observe that
o1ðfð2pþ1Þ;C0;tjx ðkþrÞ=nsjÞað1þtjx ðkþrÞ=nsjnsÞo1ðfð2pþ1Þ;C0;1=nsÞ:
From this, using the elementary inequality ðaþbÞka2k1ðakþbkÞ, a;b>0, kAN0, and (6) and (7), we get
w2pþ1ðxÞjLnðf;2pþ1;r;s;xÞ fðxÞj aw2pþ1ðxÞ
gðnsx;rÞ Xy
k¼0
ðnsxÞk
ðkþrÞ! xkþr ns 2pþ2
nsþ xkþr ns
" 2pþ1#
o1ðfð2pþ1Þ;C0;1=nsÞ
aw2pþ1ðxÞfnsAnððxtÞ2pþ2;r;s;xÞ þAnððtþxÞ2pþ1;r;s;xÞg o1ðfð2pþ1Þ;C0;1=nsÞ
aw2pþ1ðxÞfnsAnððtxÞ2pþ2;r;s;xÞ þ22pAnðt2pþ1;r;s;xÞ þ22px2pþ1g o1ðfð2pþ1Þ;C0;1=nsÞ:
Applying Lemmas 1 and 4, (10) and (2), we immediately obtain w2pþ1ðxÞjLnðf;2pþ1;r;s;xÞ fðxÞj
aw2pþ1ðxÞ (2pþ2X
j¼1
xj1
nsð2pjþ2Þ a2pþ2;jþ b2pþ2;j
gðnsx;rÞ
þ22p2pþ1X
j¼0
xj
nsð2pþ1jÞ a2pþ1;jþb2pþ1;jðrÞ gðnsx;rÞ
þ22px2pþ1 )
o1ðfð2pþ1Þ;C0;1=nsÞ
aM8ðp;sÞ 2pþ2X
j¼1
ðja2pþ2;jj þr!jb2pþ2;jjÞ þ22p2pþ1X
j¼1
ða2pþ1þr!b2pþ1ðrÞÞ þ22p
( )
o1ðfð2pþ1Þ;C0;1=nsÞaM7ðp;r;sÞo1ðfð2pþ1Þ;C0;1=nsÞ
for xAR0, n;rAN, s>0. This completes the proof of Theorem 1. 9 Theorem 2. Fix pAN0, rAN and s>0. Then there exists a positive constant M91M9ðp;r;sÞ such that for every f AB2pþ2 we have
kLnðf;2pþ2;r;s;Þ fðÞk2pþ2aM9ðp;r;sÞ
ns kfð2pþ2Þk0; nAN:
ð14Þ
Proof. First we suppose that f AB2pþ2. This implies that fð2pþ2ÞAC0. Arguing as in the first part of the proof of Theorem 1 we obtain w2pþ2ðxÞjLnðf;2pþ2;r;s;xÞ fðxÞj
aw2pþ2ðxÞ gðnsx;rÞ
Xy
k¼0
ðnsxÞk ðkþrÞ!
xkþr ns 2pþ2
ð2pþ1Þ!
ð1
0
ð1tÞ
2pþ1
fð2pþ2Þ kþr
ns þt xkþr ns
þ fð2pþ2Þ kþr ns
dt:
From this and by our assumption we get w2pþ2ðxÞjLnðf;2pþ2;r;s;xÞ fðxÞj
a2kfð2pþ2Þk0w2pþ2ðxÞ gðnsx;rÞ
Xy
k¼0
ðnsxÞk
ðkþrÞ! xkþr ns 2pþ2
¼2kfð2pþ2Þk0w2pþ2ðxÞAnððxtÞ2pþ2;r;s;xÞ:
From this, applying Lemma 4, (10) and (2), we immediately obtain w2pþ2ðxÞjLnðf;2pþ2;r;s;xÞ fðxÞj
a 2
nskfð2pþ2Þk0w2pþ2ðxÞ2pþ2X
j¼1
xj1
nsð2pjþ2Þ japþ2;jj þ jbpþ2;jj gðnsx;rÞ
aM9ðp;r;sÞ
ns kfð2pþ2Þk0
for xAR0, n;rAN, s>0. This ends the proof of Theorem 2. 9 From above Theorems we obtain
Corollary. For every fixed rAN, pAN, s>0 and f ABp we have
n!ylim kLnðf;p;r;s;Þ fðÞkp¼0:
Remark. In [1] it was proved that if f ACp, pAN0, then wpðxÞjSnðf;xÞ fðxÞjaM9o2 f;Cp;
ffiffiffix n r
; xAR0;nAN;
where M10 ¼const: >0 and o2ðf;Þ is the modulus of smoothness defined by o2ðf;Cp;tÞ:¼ sup
0ahat
kD2hfðÞkp; tAR0;
withDh2fðxÞ:¼ fðxÞ 2fðxþhÞ þfðxþ2hÞ. In particular, if f ACp1, pAN0, then
wpðxÞjSnðf;xÞ fðxÞjaM10
ffiffiffix n r
; xAR0;nAN
where M10¼const: >0.
Theorem 1, Theorem 2 and Corollary in this paper show that operators Lnðf;p;r;1;Þ, nAN, give better the degree of approximation of functions
f ABp, pAN, than Sn and the operators examined in [1, 4, 6, 7].
Acknowledgment
The author would like to thank the referee for his valuable comments and proposals.
References
[ 1 ] M. Becker, Global approximation theorems for Sza´sz-Mirakjan and Baskakov operators in polynomial weight spaces, Indiana Univ. Math. J.,27 (1978), no. 1, 127–142.
[ 2 ] R. A. De Vore, G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin 1993.
[ 3 ] Z. Finta, On approximation by modified Kantorovich polynomials, Math. Balcanica (N. S.), 13 (1999), no. 3–4, 205–211.
[ 4 ] M. Herzog, Approximation theorems for modified Sza´sz-Mirakjan operators in polynomial weight spaces, Matematiche (Catania),54 (1999), no. 1, 77–90 (2000).
[ 5 ] H. G. Lehnho¤, On a Modified Sza´sz-Mirakjan Operator, J. Approx. Th., 42 (1984), 278–282.
[ 6 ] M. Les´niewicz, L. Rempulska, Approximation by some operators of the Sza´sz-Mirakjan type in exponential weight spaces, Glas. Math. 32 (1997), 57–69.
[ 7 ] L. Rempulska, Z. Walczak, Approximation properties of certain modified Sza´sz-Mirakyan operators, Matematiche (Catania), 55 (2000), no. 1, 121–132 (2001).
[ 8 ] A. Sahai, G. Prasad, On Simultaneous Approximation by Modified Lupas Operators, J.
Approx. Th., 45 (1985), 122–128.
[ 9 ] Z. Walczak, On certain linear positive operators in exponential weighted spaces, Math. J.
Toyama Univ., 25 (2002), 109–118.
[10] Z. Walczak, On certain linear positive operators in polynomial weighted spaces, Acta Math. Hungar., 101(3) (2003), 179–191.
[11] Z. Walczak, On some linear positive operators in exponential weighted spaces, Math.
Commun., 8 (2003), no. 1, 77–84.
Institute of Mathematics Poznan´ University of Technology
Piotrowo 3A 60-965 Poznan´, Poland E-mail: [email protected]