• Tidak ada hasil yang ditemukan

U 4000

N/A
N/A
Protected

Academic year: 2025

Membagikan "U 4000"

Copied!
109
0
0

Teks penuh

(1)

㸯㸬ᶵჾศᯒศ㔝ࡢ┠ⓗ

ᶵჾศᯒศ㔝ࡣࠊᏛෆእࡢඹྠᩍ⫱◊✲ᨭ᥼᪋タ࡜ࡋ࡚ࠊ኱ᆺศᯒᶵჾ➼ࢆ㞟୰⟶⌮ࡋࠊᒱ㜧኱Ꮫ

࡟࠾ࡅࡿᩍ⫱ཬࡧ◊✲ࡢ฼⏝࡟౪ࡍࡿ࡜࡜ࡶ࡟ࠊศᯒᢏ⾡ࡢ◊✲ࠊ㛤Ⓨ➼ࢆ⾜࠺ࡇ࡜ࢆ┠ⓗ࡜ࡍࡿࠋ

㸰㸬ἢ㠉

᫛࿴㸳㸳ᖺᗘ ᒱ㜧኱Ꮫ⤫ྜ⛣㌿࡟క࠸ࠊᏛෆඹྠᒱ㜧኱Ꮫ᝟ሗ࣭ィ ࢭࣥࢱ࣮ࢆタ⨨ࠋ

᫛࿴㸳㸶ᖺᗘ ᒱ㜧኱Ꮫィ ࢭࣥࢱ࣮ཬࡧᒱ㜧኱Ꮫ᝟ሗฎ⌮ࢭࣥࢱ࣮࡟ᨵ⤌ࠋ ᖹᡂ 㸷ᖺᗘ ┬௧໬࡟క࠸ࠊᒱ㜧኱Ꮫᶵჾศᯒࢭࣥࢱ࣮࡜ࡋ࡚᪂ࡓ࡟Ⓨ㊊ࠋ

⣸እྍどศගගᗘィ㸦᪥❧U 4000ᆺ㸧ࢆタ⨨ࠋ

ᖹᡂ㸯㸮ᖺᗘ ⥲ྜ᝟ሗฎ⌮ࢭࣥࢱ࣮ࡢ⛣タ࡟క࠸ࠊࢭࣥࢱ࣮ෆࡢ୍㒊ᨵ⿦ࢆ⾜࠺ࠋ ᶵჾศᯒᐊ㸳ࠊ஦ົᐊࠊࢭࣥࢱ࣮㛗ᐊࠊᩍᐁ◊✲ᐊࢆቑタࠋ

㉸㧗㏿ᗘ⌧㇟ゎᯒࢩࢫࢸ࣒㸦㉸㧗㏿ᗘ᧜ᙳ⿦⨨࢘ࣝࢺࣛࢼࢵࢡFS501ࠊ

㧗㏿ᗘࣅࢹ࢜⿦⨨ࢥࢲࢵࢡ࣭࢚ࢡࢱࣉࣟHS-4540-2ࠊᇼሙ〇సᡤ࣭᫬㛫ศゎ⺯ගศග ගᗘィ⿦⨨NASE-700D➼㸧ཬࡧ㉮ᰝᆺࣉ࣮ࣟࣈ㢧ᚤ㙾ࢩࢫࢸ࣒㸦ࢭ࢖ࢥ࣮࢖ࣥࢫࢶ

࣓ࣝࣥࢶ SPI3800 ࢩ࣮ࣜࢬ㸪ᕤᏛ㒊ࡼࡾ㸧ࢆタ⨨ࠋ㉸㧗⏬㉁ࣇ࣮ࣝ࢝ࣛࢹࢪࢱࣝࣉ

ࣜࣥࢱ࣮㸦ᐩኈ෗┿ࣇ࢕࣒ࣝ ࣆࢡࢺࣟࢢࣛࣇ࢕࣮4000㸧ࢆタ⨨ࠋ

ᖹᡂ㸯㸯ᖺᗘ 㟁Ꮚ㢧ᚤ㙾ࡢ㝃ᒓ⿦⨨ࠊ㹖⥺ศᯒ⿦⨨ࢹ࣮ࢱฎ⌮㒊 KevexELTA PC ᥋⥆࢟ࢵࢺ

FLAMEࢆタ⨨ࠋ

ᖹᡂ㸯㸰ᖺᗘ 㧗ศゎ⬟㉁㔞ศᯒ⿦⨨㸦᪥ᮏ㟁Ꮚ GC Mate II GCMSsystem㸪ᕤᏛ㒊ࡼࡾ㸧ཬࡧ᭷ᶵᚤ 㔞ඖ⣲ศᯒ⿦⨨㸦ࣖࢼࢥ 㹁㹆㹌ࢥ࣮ࢲ࣮MT-6ࠊ㓟⣲ศᯒ࢟ࢵࢺࠊ࣮࢜ࢺࢧࣥࣉ࣮ࣛ

MTA-620㸧ࢆタ⨨ࠋ

ᖹᡂ㸯㸱ᖺᗘ ෇஧Ⰽᛶศᩓィ㸦᪥ᮏศග J-820P㸧ࢆタ⨨

ᖹᡂ㸯㸲ᖺᗘ ࣇ࣮࢚ࣜኚ᥮᰾☢Ẽඹ㬆⿦⨨㸦᪥ᮏ㟁Ꮚ JNM-ECA500࣭㟁Ꮚࢫࣆࣥඹ㬆⿦⨨㸦᪥ᮏ 㟁Ꮚ JES-FA100㸧ࢆタ⨨ࠋ㸦ඹ࡟㐃㎰኱Ꮫ㝔ࡼࡾ㸧

㉮ᰝᆺ㟁Ꮚ㢧ᚤ㙾㸦᪥❧ S-4300㸧ཬࡧࣇ࣮࢚ࣜኚ᥮ᆺ㢧ᚤ㉥እศගගᗘィ㸦᪥ᮏศ

ග IRT-30-16㸧ࠊ 㢧ᚤ࣮ࣞࢨ࣮࣐ࣛࣥศගࢩࢫࢸ࣒㸦᪥ᮏศග NRA-1000㸧ࢆタ⨨ࠋ

」ྜᆺ⾲㠃ศᯒ⿦⨨㸦ᓥὠ ESCA-3400 ᕤᏛ㒊ࡼࡾ㸧ࢆタ⨨ࠋ ᖹᡂ㸯㸳ᖺᗘ ࢭࣥࢱ࣮⤫ྜ࡟ࡼࡾ⏕࿨⛉Ꮫ⥲ྜᐇ㦂ࢭࣥࢱ࣮ᶵჾศᯒศ㔝࡟ᨵྡࠋ

㧗ศゎ⬟㉁㔞ศᯒ⿦⨨㸦᪥ᮏ㟁Ꮚ JMS-700࣭AMSUN200㸧࣭ᾮయࢡ࣐ࣟࢺࢢࣛࣇ

㸦Agilent1100 MS-52011LC㸧࣭㉮ᰝᆺ㟁Ꮚ㢧ᚤ㙾㸦᪥❧ S-3000N㸧࣭⇕ศᯒࢩࢫࢸ࣒㸦ࢭ

࢖ࢥ࣮ EXSTAR6000㸧࣭ࣉ࣮ࣟࣇ㺼ᘧࣇ࣮࢚ࣜኚ᥮㉥እศගගᗘィ 㸦⡿ᅜASI Applied

Systems ♫ ReactIR 400F-GU㸧࣭᥋ゐᆺ㢧ᚤ㙾ࣇ࣮࢚ࣜኚ᥮㉥እศගගᗘィ㸦⡿ᅜࢭ

ࣥࢧ࣮ࢸࢡࣀࣟࢪ࣮ࢬ♫ IlluminatIR 㸧࣭PIV ࢩࢫࢸ࣒(㸺࣮ࣞࢨ࣮㸼࢝ࣥࢸࣝ♫

TwinsUltra120࣭ 㸺࣓࢝ࣛ㸼 ࢜ࢵࢡࢫࣇ࢛࣮ࢻ࣮ࣞࢨ࣮♫ ES1.0-NI1422࣭㸺ࣉࣟࢭ

ࢵࢧ㸼᪥ᮏ࣮ࣞࢨ࣮♫ VPP-2D)ࢆタ⨨ࠋᶵჾศᯒศ㔝඲㤋ࡢ✵ㄪࢩࢫࢸ࣒ࢆ⠇㟁ᆺ ࡢࡶࡢ࡟᭦᪂ࠋ

ᖹᡂ㸯㸴ᖺᗘ ᾮయ❅⣲࢞ࢫ㈓ⶶ᪋タࡢᗫṆࠋ

኱ᆺ⢭ᐦᶵჾ㧗ᗘ฼⏝බ㛤ࢭ࣑ࢼ࣮㛤ጞࠋᏛእྥࡅࡢཷクヨ㦂ไᗘࢆᩚഛࠋ ᖹᡂ㸯㸵ᖺᗘ ⏕࿨⛉Ꮫ⥲ྜ◊✲ᨭ᥼ࢭࣥࢱ㸫࡬ྡ⛠ኚ᭦ࠋ

ࣇ࢙࣒ࢺ⛊ࣇ࢓࢖ࣂ࣮࣮ࣞࢨ࣮㸦࢔࢖ࢩࣥ⢭ᶵ ࣇ࢙࣒ࢺࣛ࢖ࢺ BS-60-YS㸧ࢆタ⨨ࠋ

ࢿ࢜࢜ࢫ࣑࣒࢘ࢥ࣮ࢱ࣮㸦┕࿴ၟ஦ NE-01044㸧ࢆタ⨨ࠋ ᶵჾศᯒศ㔝㤋ෆ࡟ዪᏊࢺ࢖ࣞࢆ᪂タࠋ

ᖹᡂ㸯㸶ᖺᗘ ⋞㛵⮬ືࢻ࢔ࢆタ⨨ࠋ

ᶵჾ᭦᪂࡟క࠸ࠊᶵჾᐊ㸯࣭ᶵჾᐊ㸲࣭✵ㄪᐊࢆᨵಟࠋ

ࣇ࣮࢚ࣜኚ᥮᰾☢Ẽඹ㬆⿦⨨㸦᪥ᮏ㟁ᏊJNM-ECX400P࣭JNM-ECA600㸧ࢆタ⨨ࠋ

(2)

㧗ศゎ⬟㟁⏺ᨺฟᆺ㉮ᰝ㟁Ꮚ㢧ᚤ㙾㸦᪥❧ S-4800㸧ࢆタ⨨ࠋ

࢖࣑࢜ࣥࣜࣥࢢ⿦⨨㸦᪥❧ E-3500㸧ࢆタ⨨ࠋ

ࢸࣛ࣊ࣝࢶศග㉮ᰝᆺ㢧ᚤ㙾㸦࢜ࢨ࣡ THz-TDS㸧ࢆタ⨨ࠋ ࢫࢺࢵࣉࢺࣇ࣮ࣟศගගᗘィ㸦኱ሯ㟁Ꮚ RA-401㸧ࢆᗫᲠࠋ

࣮ࣞࢨ࣮↷᫂⿦⨨㸦NAC lS20-30㸧ࢆᕤᏛ㒊࡬⟶⌮᥮࠼ࠋ

㉸㧗⏬㉁ࣇ࣮ࣝ࢝ࣛࢹࢪࢱࣝࣉࣜࣥࢱ࣮㸦ᐩኈ෗┿ࣇ࢕࣒ࣝ ࣆࢡࢺࣟࢢࣛࣇ࢕࣮

4000㸧ࢆᛂ⏝⏕≀⛉Ꮫ㒊࡬⟶⌮᥮࠼ࠋ

ᖹᡂ㸰㸮ᖺᗘ ㄏᑟ⤖ྜࣉࣛࢬ࣐Ⓨගศᯒ⿦⨨㸦᪥ᮏ㟁Ꮚ ࣮࣐ࣜࣥ PS-1000UV㸧ࢆᗫᲠࠋ ㄏᑟ⤖ྜࣉࣛࢬ࣐Ⓨගศᯒ⿦⨨㸦ᇼሙ࣭JOVIN㸧ࢆタ⨨ࠋ

ᖹᡂ㸰㸯ᖺᗘ ኱ᆺ㟁Ꮚ㢧ᚤ㙾㸦㏱㐣ᆺH-8100ᙧ㸧ࠊ」ྜᆺ⾲㠃ศᯒ⿦⨨㸦ᓥὠ ESCA-3400㸧ࠊᘬఙ ᶵ࠾ࡼࡧࢹࣗ࢔ࣝ࢖࣑࢜ࣥࣜࣥࢢࢆᗫᲠࠋ

኱ᆺ㟁Ꮚ㢧ᚤ㙾㸦㏱㐣ᆺH-7000ᙧ㸧ࠊCCD࣓࢝ࣛ㸦㏱㐣ᆺH-7000ᙧ㸧⏝ࢆタ⨨

YAG᳨ฟჾ㸦SEM-4800㸧⏝ࢆタ⨨

኱ᆺ㟁Ꮚ㢧ᚤ㙾㸦㏱㐣ᆺJEM-2100ᙧ㸧ࢆタ⨨ࠋ

኱ᆺ㟁Ꮚ㢧ᚤ㙾タ⨨࡟క࠸TEMᐊࡢᨵಟ

⢭ᐦ࢖࣏࢜ࣥࣜࢵࢩࣥࢢ⿦⨨ࢆタ⨨ࠋ

᪂ศ㔝㛗㉱௵࡟క࠸ࠊᩍဨᐇ㦂ᐊ㸦ᬯᐊྵࡴ㸧ࡢᨵಟࠋ ᶵჾᐊ㸱ᡬࡢᨵಟࠋ

ᾮ໬❅⣲࣎ࣥ࣋ࡢ㓄⟶ᕤ஦࠾ࡼࡧᆅ㟈ᑐ⟇Ᏻ඲ᕤ஦ࠋ ᖹᡂ㸰㸰ᖺᗘ X⥺࣐࢖ࢡࣟCTࢫ࢟ࣕࢼ㸦Skyscan 1172㸧ࢆタ⨨ࠋ

⢏Ꮚᚄ࣭⢏Ꮚᙧ≧ ᐃ⿦⨨㸦FPIA-3000㸧ࢆタ⨨ࠋ

⢏Ꮚᚄ࣭ࢮ࣮ࢱ㟁఩࣭ศᏊ㔞 ᐃ⿦⨨㸦ࢮ࣮ࢱࢧ࢖ࢨ࣮ࢼࣀZS㸧ࢆタ⨨ࠋ ࢹࢪࢱ࣐ࣝ࢖ࢡࣟࢫࢥ࣮ࣉ㸦DVM-5000㸧ࢆタ⨨ࠋ

᪕ගᗘィ㸦P-2300㸧ࠊ࣓࣮ࣞ࢜ࢱ࣮㸦AR-Gϩ KG㸧ࠊືⓗ⢓ᙎᛶ ᐃ⿦⨨㸦DMA Q800

KG㸧ࠊ㉸㡢Ἴࢹ࢕ࢫࢡ࢝ࢵࢱ࣮ 㸦MODEL 601㸧ࠊࢲ࢖ࣖࣔࣥࢻ࣡࢖࣮ࣖࢯ࣮

㸦DWS3242㸧ࠊࢫࣃࢵࢱࢥ࣮ࢱ࣮㸦SC200㸧ࠊ࣮࢝࣎ࣥࢥ࣮ࢱ࣮㸦CADE-EHS㸧ࠊ⣸እ

ྍどศගගᗘィ㸦UV-Vis㸧ࠊࣇ࣮࢚ࣜኚ᥮㉥እศගගᗘィ 㸦FT-IR㸧ࢆタ⨨ࠋ

࣮࢝ࢻᘧධᐊ⟶⌮ᆺ⋞㛵⮬ືࢻ࢔࡟ᨵಟࠋ

(3)

㸱㸬⟶⌮㐠Ⴀ⤌⧊ᅗ

㸦 㸧ෆࡣෆ⥺␒ྕ

ࢤ ࣀ ࣒ ◊ ✲ ศ 㔝 ᨺᑕᛶྠ఩ඖ⣲ᐇ㦂᪋タ

᎘ Ẽ ᛶ ⳦ ◊ ✲ ศ 㔝

ື ≀ ᐇ 㦂 ศ 㔝 ᶵ ჾ ศ ᯒ ศ 㔝

⏕࿨⛉Ꮫ⥲ྜ◊✲ᨭ᥼ࢭࣥࢱ࣮㛗

ศ㔝㛗㸦ᑓ௵ᩍဨ㸧 ᑓ ௵ ᩍ ဨ

ศ 㔝 ⫋ ဨ

༠ ຊ ဨ

㏆Ụ 㟹๎ (2037) 㙊㊊ 㞝ྖ (6151)

≟ሯ ಇᗣ (6152)

⋢ᕝ ༤ᗣ (2035)

ᮧ℩⏤⨾Ꮚ ( ࠌ )

ᮡᒣ ▱⨾ ( ࠌ ) 㔠᳃༓⤮⨾ (6603)

㸦ḟ࣮࣌ࢪࢆཧ↷㸧

(4)

㸲㸬ᶵჾศᯒศ㔝༠ຊဨྡ⡙㸦ᶵჾู㸧

㹆㸰㸱㸬㸲㸬㸯

۔㸸ᶵჾྲྀᢅ㈐௵⪅

ᶵ ჾ ྡ Ặ ྡ 㟁ヰ␒ྕ 㒊 ᒁ

࠙ᰗᡞ᪋タࠚ

኱ᆺ㟁Ꮚ㢧ᚤ㙾

㸦㏱㐣ᆺH-7000ᙧ࣭TEM࣭᪥❧㸧

㸦㏱㐣ᆺJEM-2100ᙧ࣭TEM࣭᪥ᮏ㟁Ꮚ㸧

㉮ᰝᆺ㟁Ꮚ㢧ᚤ㙾 㸦S-4300࣭SEMࠊEDX㸧

㉮ᰝᆺ㟁Ꮚ㢧ᚤ㙾 㸦S-3000N࣭SEM㸧

㧗ศゎ⬟㟁⏺ᨺฟᆺ㉮ᰝ㟁Ꮚ㢧ᚤ㙾 㸦S-4800࣭SEM㸧

┿✵⵨╔⿦⨨࣭ࣇ࣮ࣜࢬࣞࣉࣜ࢝⿦⨨

࢖࢜ࣥࢫࣃࢵࢱ࣭

࢚࢔࣏࣮ࣞࢩࣙࣥࣘࢽࢵࢺ㸦࣮࢝࣎ࣥᑓ⏝㸧

ࢹ࢕ࣥࣉࣝࢢࣛ࢖ࣥࢲ࣮

࢞ࣛࢫࢼ࢖ࣇసᡂჾ

㉸࣑ࢡࣟษ∦స〇ࢩࢫࢸ࣒

ࢿ࢜࢜ࢫ࣑࣒࢘ࢥ࣮ࢱ࣮

࢖࣑࢜ࣥࣜࣥࢢ

⢭ᐦ࢖࣏࢜ࣥࣜࢵࢩࣥࢢ⿦⨨

࠙་Ꮫ᪋タࠚ

኱ᆺ㟁Ꮚ㢧ᚤ㙾

㸦㏱㐣ᆺJEM㸫2100FGK࣭TEM㸧

࣮ࣝࢳࣥ⏝ࢡࣜ࢜ࢫࢱࢵࢺ

۔኱▮ ㇏ ᮾ ⳹ᓅ

ᮡᾆ 㝯 Ḉ⏣ ಟ

኱࿴ ⱥᘯ ᑠᮧ ㈼୍

ྜྷ⏣ 㐨அ

ྜྷᓮ ⠊ኵ 㓇஭ ὒᶞ ᒾᮏ ᝅᚿ ᱓⏣ ୍ኵ

㸰㸳㸶㸷 㸴㸰㸷㸳 㸰㸳㸷㸮 㸰㸳㸵㸲 㸰㸴㸶㸰 㸰㸴㸮㸮 㸰㸳㸴㸴 㸰㸶㸳㸱 㸰㸷㸳㸵 㸰㸷㸰㸲 㸴㸯㸲㸱

ᕤᏛ㒊

་Ꮫ㒊 ᕤᏛ㒊

ࠌ ࠌ ࠌ ࠌ ᛂ⏝⏕≀⛉Ꮫ㒊

ࠌ ࠌ 㐃ྜ๰⸆

࠙ᰗᡞ᪋タࠚ

㉮ᰝᆺX⥺ග㟁Ꮚศගศᯒ⿦⨨

㸦Quantera SXM-GS㸧

۔ఀ⸨ ㈗ྖ

Ḉ⏣ ಟ

ᮡᾆ 㝯

⚄ཎ ಙᚿ ኟཎ ኱᐀

᳜ᮧ ୍ᗈ ᯇᮌ ఙ⾜

㸰㸴㸶㸮 㸰㸳㸵㸲 㸰㸳㸷㸮 㸰㸳㸶㸯 㸰㸴㸷㸶 㸰㸳㸴㸯 㸰㸴㸷㸱

ᕤᏛ㒊 ࠌ ࠌ ࠌ ࠌ ࠌ ࠌ

࠙ᰗᡞ᪋タࠚ

㧗ศゎ⬟㉁㔞ศᯒ⿦⨨

㸦JMS-700, AMSUN200, GCmate II㸧 ᾮయࢡ࣐ࣟࢺࢢࣛࣇ

㸦Agilent1100-MS-52011LC㸧

࠙་Ꮫ᪋タࠚ

᭷ᶵ໬ྜ≀⮬ືศྲྀ⢭〇ࢩࢫࢸ࣒

(LC-MS, waters)㸦་Ꮫ᪋タ㸧

۔ගỌ ᚭ

ྜྷᯇ ୕༤ ᯇᒃ ṇᶞ

ᮧ஭ ฼᫛

ྜྷ⏣ ᩄ

▼⏣ ຾ ᒣෆ ு ᰗ℩ ➗Ꮚ ▮㒊 ᐩ㞝 ᱓⏣ ୍ኵ

㸰㸷㸰㸮 㸰㸰㸳㸯 㸰㸴㸮㸯 㸰㸴㸯㸲 㸰㸴㸳㸳 㸰㸴㸯㸱 㸰㸷㸱㸮 㸰㸷㸯㸲 㸰㸷㸯㸱 㸴㸯㸲㸱

ᛂ⏝⏕≀⛉Ꮫ㒊 ᩍ⫱Ꮫ㒊

ᕤᏛ㒊 ࠌ ࠌ ࠌ ᛂ⏝⏕≀⛉Ꮫ㒊

ࠌ ࠌ 㐃ྜ๰⸆

(5)

࠙ᰗᡞ᪋タࠚ

ࣇ࣮࢚ࣜኚ᥮᰾☢Ẽඹ㬆⿦⨨

㸦JNM-ECX400P, JNM-ECA500,ᅛయ JNM-ECA600㸧

࠙་Ꮫ᪋タࠚ

ࣇ࣮࢚ࣜኚ᥮᰾☢Ẽඹ㬆⿦⨨

㸦Avance500,Avance600,Avance800㸧

۔‶಴ ᾈ୍

฼㒊 ఙ୕

ྂᒣ ᾈᏊ ⧴⧭ Ᏺ ᑠᮧ ㈼୍

❑⏣ ⿱኱

ගỌ ᚭ ᰗ℩ ➗Ꮚ Ᏻ⸨ ᘯ᐀

᱓⏣ ୍ኵ

㸰㸴㸲㸷 㸰㸰㸳㸱 㸴㸳㸮㸳 㸰㸴㸯㸷 㸰㸴㸮㸮 㸰㸳㸷㸴 㸰㸷㸰㸮 㸰㸷㸯㸲 㸱㸲㸳㸰 㸴㸯㸲㸱

ᕤᏛ㒊 ᩍ⫱Ꮫ㒊

་Ꮫ㒊 ᕤᏛ㒊

ࠌ ࠌ ᛂ⏝⏕≀⛉Ꮫ㒊

ࠌ ࠌ 㐃ྜ๰⸆

࠙ᰗᡞ᪋タࠚ 㟁Ꮚࢫࣆࣥඹ㬆⿦⨨

㸦JES-FA100࣭ESR㸧

࠙་Ꮫ᪋タࠚ 㟁Ꮚࢫࣆࣥඹ㬆⿦⨨

㸦EMX Micro-6/1࣭ESR㸧

۔ᒣᐙ ග⏨

ἅỈ ⚈୍

ᒣෆ ு ᱓⏣ ୍ኵ

㸱㸮㸳㸰 㸰㸳㸵㸱 㸰㸷㸱㸮 㸴㸯㸲㸱

ᕤᏛ㒊 ࠌ ᛂ⏝⏕≀⛉Ꮫ㒊

㐃ྜ๰⸆

࠙ᰗᡞ᪋タࠚ

ㄏᑟ⤖ྜࣉࣛࢬ࣐Ⓨගศᯒ⿦⨨

㸦ULTIMA2 ᇼሙ㸧

۔Ḉ⏣ ಟ ⢑㇂ ᚿ㑻 ᑠᮧ ㈼୍

ᐑᮏ Ꮫ ᑠᒣ ༤அ

ඵ௦⏣ ┿ே

㸰㸳㸵㸲 㸱㸮㸵㸱 㸰㸴㸮㸮 㸰㸳㸶㸶 㸰㸷㸯㸯 㸰㸶㸴㸵

ᕤᏛ㒊 ᆅᇦ⛉Ꮫ㒊

ᕤᏛ㒊 ࠌ ᛂ⏝⏕≀⛉Ꮫ㒊

࠙ᰗᡞ᪋タࠚ

㉮ᰝᆺࣉ࣮ࣟࣈ㢧ᚤ㙾ࢩࢫࢸ࣒

㸦SPI3800࣭SPM㸧

۔Ṋ㔝 ᫂⩏

኱▮ ㇏ ▼㯮 ு ᯇᮌ ఙ⾜

㸰㸴㸰㸷 㸰㸳㸶㸷 㸰㸴㸮㸵 㸰㸴㸷㸱

ᕤᏛ㒊 ࠌ ࠌ ࠌ

࠙ᰗᡞ᪋タࠚ

㉸㧗㏿ᗘ⌧㇟ゎᯒࢩࢫࢸ࣒

㸦UHC࣭HV࣭II࣭PG࣭TC㸧

۔㧗ᶫ ࿘ᖹ ௒ᑿ ⱱᶞ ᐑᆏ Ṋᚿ

㸰㸳㸱㸷 㸰㸳㸰㸯 㸰㸳㸰㸱

ᕤᏛ㒊 ࠌ ࠌ

࠙ᰗᡞ᪋タࠚ

᫬㛫ศゎ⺯ගศගගᗘィ⿦⨨

㸦NAES-700㸧

࠙་Ꮫ᪋タࠚ

࣑ࣝࣀ࢖࣓࣮ࢪ࢔ࢼࣛ࢖ࢨ࣮

㸦Fujifilm LAS-1000UVmini㸧

⺯ගศගගᗘィ 㸦ᓥὠ㸧

۔ᒣᐙ ග⏨

டᒣ ၨ୍

❑⏣ ⿱኱

᱓⏣ ୍ኵ

㸱㸮㸳㸰 㸰㸴㸮㸶 㸰㸳㸷㸴 㸴㸯㸲㸳

ᕤᏛ㒊 ࠌ ࠌ 㐃ྜ๰⸆

(6)

࠙ᰗᡞ᪋タࠚ ᑠᆺᶵჾ

㸦UV-Vis࣭FT-IR࣭ 㢧 ᚤ FT-IR࣭ReactIR࣭ IlluminatIR࣭CD࣭᪕ගᗘィ㸧

۔ἅỈ ⚈୍

బ⸨ ⠇Ꮚ

᝴Ⰻ ⪷୍

▼㯮 ு Ⱚཎ ᩥ฼

ᰗ℩ ➗Ꮚ

㸰㸳㸵㸱 㸰㸰㸳㸲 㸴㸰㸱㸷 㸰㸴㸮㸵 㸰㸴㸯㸴 㸰㸷㸯㸲

ᕤᏛ㒊 ᩍ⫱Ꮫ㒊

་Ꮫ㒊 ᕤᏛ㒊

ࠌ ᛂ⏝⏕≀⛉Ꮫ㒊

࠙ᰗᡞ᪋タࠚ

᭷ᶵᚤ㔞ඖ⣲ศᯒ⿦⨨

㸦CHNO㸧 㸦MT-6㸧

۔ྜྷᯇ ୕༤

ྂᒣ ᾈᏊ

⧴⧭ Ᏺ ᾏ⪁ཎᫀᘯ

⯪᭥ ୍ṇ ႐ከᮧᚨ᫛

㸰㸰㸳㸯 㸴㸳㸮㸳 㸰㸴㸯㸷 㸰㸳㸵㸰 㸰㸳㸷㸷 㸰㸴㸲㸯

ᩍ⫱Ꮫ㒊

་Ꮫ㒊 ᕤᏛ㒊

ࠌ ࠌ ࠌ

࠙ᰗᡞ᪋タࠚ

㢧ᚤ࣮ࣞࢨ࣮࣐ࣛࣥศගࢩࢫࢸ࣒

㸦NRS-1000㸧

۔ஂ⡿ ᚭ஧

Ṋ㔝 ᫂⩏

⚄ཎ ಙᚿ

㸰㸴㸶㸯 㸰㸴㸰㸷 㸰㸳㸶㸯

ᕤᏛ㒊 ࠌ ࠌ

࠙ᰗᡞ᪋タࠚ

⇕ศᯒࢩࢫࢸ࣒

㸦DSC࣭TMA࣭TG-DTA㸧 㸦EXSTAR-6000㸧

࣓࣮ࣞ࢜ࢱ࣮㸦AR-Gϩ KG㸧

ືⓗ⢓ᙎᛶ ᐃ⿦⨨㸦DMA Q800 KG㸧

۔ἅỈ ⚈୍

Ṋ㔝 ᫂⩏

Ḉ⏣ ಟ ᮌᮧ ᾈ ᐑᮏ Ꮫ すὠ ㈗ஂ

ᒾᮏ ᝅᚿ

㸰㸳㸵㸱 㸰㸴㸰㸷 㸰㸳㸵㸲 㸰㸴㸰㸰 㸰㸳㸶㸶 㸰㸶㸶㸶 㸰㸷㸰㸲

ᕤᏛ㒊 ࠌ ࠌ ࠌ ࠌ ᛂ⏝⏕≀⛉Ꮫ㒊

࠙ᰗᡞ᪋タࠚ

ࣇ࢙࣒ࢺ⛊ࣇ࢓࢖ࣂ࣮࣮ࣞࢨ࣮

㸦BS-60-YS㸧

ࢸࣛ࣊ࣝࢶศග㉮ᰝᆺ㢧ᚤ㙾

۔ྜྷ⏣ ᘯᶞ ᒣᐙ ග⏨

㸰㸵㸮㸴 㸱㸮㸳㸰

ᕤᏛ㒊 ࠌ

࠙ᰗᡞ᪋タࠚ

㸱ḟඖ≀㉁ᚤ⣽ᵓ㐀ゎᯒࢩࢫࢸ࣒

X⥺࣐࢖ࢡࣟCTࢫ࢟ࣕࣥ㸦Skyscan1172㸧 ⢏Ꮚᚄ࣭⢏Ꮚᙧ≧ ᐃ⿦⨨㸦FPIA㸫3000㸧 㸦ࢮ࣮ࢱࢧ࢖ࢨ࣮ࢼࣀZS㸧 ࢹࢪࢱ࣐ࣝ࢖ࢡࣟࢫࢥ࣮ࣉ

㸦ࣛ࢖࢝ DVM㸫5000㸧

࠙་Ꮫ᪋タࠚ

⢏Ꮚᚄ࣭ศᏊ㔞 ᐃ⿦⨨

㸦ࢮ࣮ࢱࢧ࢖ࢨ࣮ࢼࣀ㸧

۔すὠ ㈗ஂ

Ṋ㔝 ᫂⩏

క 㝯ᖾ ᳜ᯇ ⨾ᙪ ྜྷ⏣ 㐨அ ᒾᮏ ᝅᚿ

୰㔝 ᾈᖹ ᱓⏣ ୍ኵ

㸰㸶㸶㸶 㸰㸴㸰㸷 㸰㸳㸶㸳 㸰㸳㸮㸯 㸰㸳㸴㸴 㸰㸷㸰㸲 㸰㸶㸷㸵 㸴㸯㸲㸳

ᛂ⏝⏕≀⛉Ꮫ㒊 ᕤᏛ㒊

ࠌ ࠌ ࠌ ᛂ⏝⏕≀⛉Ꮫ㒊

ࠌ 㐃ྜ๰⸆

࠙་Ꮫ᪋タࠚ X⥺⤖ᬗゎᯒ⿦⨨

㸦FR-E Super Bright㸧

۔ᾏ⪁ཎᫀᘯ ᾏ⪁ཎ❶㑻

᱓⏣ ୍ኵ

㸰㸳㸵㸰 㸰㸷㸮㸵 㸴㸯㸲㸳

ᕤᏛ㒊 ᛂ⏝⏕≀⛉Ꮫ㒊

㐃ྜ๰⸆

(7)

ᯏེಽᨆಽ㊁දജຬߦ㑐ߔࠆ↳ߒวࠊߖ

㧔⿰ᣦ㧕

╙1 ߎߩ↳วߖߪޔጘ㒂ᄢቇ↢๮⑼ቇ✚ว⎇ⓥᡰេ࠮ࡦ࠲࡯㧔એਅޟ࠮ࡦ࠲࡯ޠߣ޿߁ޕ㧕ߦ⟎ߊޕ ᯏེಽᨆಽ㊁දജຬ㧔એਅޟදജຬޠߣ޿߁ޕ㧕ߦ㑐ߒޔᔅⷐߥ੐㗄ࠍቯ߼ࠆ⠪ߣߔࠆޕ

╙ 2 දജຬߪޔ࠮ࡦ࠲࡯ߩᯏེಽᨆಽ㊁߇ᚲ᦭ߔࠆᯏེ෸߮⸳஻㧔એਅޟᯏེ╬ޠߣ޿߁ޕ㧕ࠍޔ

⽿છࠍ߽ߞߡขᛒ߁ߎߣ߇ߢ߈ࠆ⠪ߣߔࠆޕ

╙3 දജຬߪᯏེߏߣߦ⟎߈ޔ࠮ࡦ࠲࡯㐳߇ផ⮈ߔࠆጘ㒂ᄢቇߩኾછߩᢎຬࠍ߽ߞߡలߡޔቇ㐳߇

ᆔབྷߔࠆޕ

╙4 දജຬߩ੕ㆬߦࠃࠅᜂᒰߔࠆᯏེߏߣߩ⽿છ⠪㧔એਅޟ⽿છ⠪ޠߣ޿߁ޕ㧕ࠍㆬ಴ߔࠆޕ

╙5 දജຬߪޔ࠮ࡦ࠲࡯ߩᢎ⡯ຬߣදജߒߡᰴߩౝኈࠍද⼏ߒޔᬺോࠍⴕ߁ޕ

Ԙ ᯏེ╬ߩේℂ࡮૶↪ᴺߦ㑐ߔࠆ⻠⠌ળ╬ߦ㑐ߔࠆߎߣޕ ԙ ᯏེ╬ߩ⛽ᜬ▤ℂߦ㑐ߔࠆߎߣޕ

Ԛ ᯏེ╬ߩ૶↪ᴺ╬⋧⺣ߦ㑐ߔࠆߎߣޕ

ԛ ߘߩઁޔᯏེ╬ߩ౞Ṗߥㆇ↪ߦ㑐ߔࠆߎߣޕ

╙6 දജຬߩછᦼߪੑᐕߣߒޔౣછࠍᅹߍߥ޿ޕ

(8)

㸳 タ⨨ᶵჾ➼୍ぴ࠾ࡼࡧᶵჾࡢㄝ᫂

㸦ᰗᡞ᪋タ㸧

H23.4⌧ᅾ ရ ྡ ⣡ධᖺᗘ つ ᱁

1. ኱ᆺ㟁Ꮚ㢧ᚤ㙾㸦TEM㸧

኱ᆺ㟁Ꮚ㢧ᚤ㙾㸦TEM㸧STEM,,EDX

࢞ࣛࢫࢼ࢖ࣇస〇ჾ

㉸࣑ࢡࣟࢺ࣮࣒

┿✵⵨╔⿦⨨

ࣇ࣮ࣜࢬࣞࣉࣜ࢝⿦⨨

ᐇయ㢧ᚤ㙾 ࢖࢜ࣥࢫࣃࢵࢱ

ࢿ࢜࢜ࢫ࣑࣒࢘ࢥ࣮ࢱ࣮

ࢹ࢕ࣥࣉࣝࢢࣛ࢖ࣥࢲ࣮

࢖࣑࢜ࣥࣜࣥࢢ⿦⨨

⢭ᐦ࢖࣏࢜ࣥࣜࢵࢩࣥࢢ⿦⨨

㉸㡢Ἴࢹ࢕ࢫࢡ࢝ࢵࢱ࣮

ࢲ࢖ࣖࣔࣥࢻ࣡࢖࣮ࣖࢯ࣮

ࢫࣃࢵࢱࢥ࣮ࢱ࣮

࣮࢝࣎ࣥࢥ࣮ࢱ࣮

㉮ᰝᆺ㟁Ꮚ㢧ᚤ㙾 (FE-SEM) EDX ㉮ᰝᆺ㟁Ꮚ㢧ᚤ㙾 (N-SEM)

㧗ศゎ⬟㟁⏺ᨺฟᆺ㉮ᰝ㟁Ꮚ㢧ᚤ㙾(FE-SEM)

H21ᖺᗘ S60ᖺᗘ

H9ᖺᗘ S59ᖺᗘ S60ᖺᗘ H9ᖺᗘ H8ᖺᗘ H ᖺᗘ

H5ᖺᗘ H19ᖺᗘ H21ᖺᗘ H22ᖺᗘ

H14ᖺᗘ H15ᖺᗘ H19ᖺᗘ

᪥❧ H-7000,

᪥ᮏ㟁Ꮚ JEM-2100

୕៞⛉Ꮫ࣓ࢵࢧ࣮C

ࣛ࢖࢝ ࢞ࣛࢫࢼ࢖ࣇ࣓࣮࣮࢝ EM KMR

ࣛ࢖࢝ ULTRACUT-UCT

᪥❧ HUS-5GB

᪥❧ HFZ-1 ࢽࢥࣥ SMZ

᪥❧ E-102, E-201

┕࿴ၟ஦ NE-01044

࢞ࢱࣥ MODEL 656 N

᪥❧ E-3500

࢞ࢱࣥ MODEL 601

࢞ࢱࣥ MODEL 601

࣓࢖࣡ࣇ࢛࣮ࢩࢫ DWS3242

࣓࢖࣡ࣇ࢛࣮ࢩࢫ SC200

࣓࢖࣡ࣇ࢛࣮ࢩࢫ CADE-EHS

᪥❧ S-4300㸪ᇼሙ EMAX EX-220

᪥❧ S-3000N

᪥❧ S-4800

㸰㸬㉮ᰝᆺX⥺ග㟁Ꮚศගศᯒ⿦⨨

H19ᖺᗘ ࢔ࣝࣂࢵࢡ࣭ࣇ࢓࢖ Quantera SXM-GS

㸱㸬㧗ศゎ⬟㉁㔞ศᯒ⿦⨨㸦MS

H13ᖺᗘ H15ᖺᗘ

᪥ᮏ㟁Ꮚ GCmate

᪥ᮏ㟁Ꮚ JMS-700

᪥ᮏ㟁Ꮚ AMSUN200(K9)

㸲㸬ᾮయࢡ࣐ࣟࢺࢢࣛࣇ ᖹᡂ15ᖺᗘ Agilent1100 MS-52011LC

㸳㸬ࣇ࣮࢚ࣜኚ᥮᰾☢Ẽඹ㬆⿦⨨㸦FT-NMR㸧 ෆヂ㸸500 MHz

400 MHz 600 MHz

ᅛయ ᐃ⿵ຓ⿦⨨௜(500 MHz)

H14ᖺᗘ H18ᖺᗘ

᪥ᮏ㟁Ꮚ JNM ECA500 500MHz

᪥ᮏ㟁Ꮚ JNM ECX400P 㸦400MHz㸧

᪥ᮏ㟁Ꮚ JNM ECA600 600MHz

᪥ᮏ㟁Ꮚ ᅛయ ᐃ⿵ຓ⿦⨨௜(500 MHz)

㸴㸬㟁Ꮚࢫࣆࣥඹ㬆⿦⨨㸦ESR H14ᖺᗘ ᪥ᮏ㟁Ꮚ JES FA100

㸵㸬ㄏᑟ⤖ྜࣉࣛࢬ࣐Ⓨගศᯒ⿦⨨㸦ICP-AES H20ᖺᗘ ᇼሙ JOVIN YBON ULTIMA2

㸶㸬㉮ᰝᆺࣉ࣮ࣟࣈ㢧ᚤ㙾ࢩࢫࢸ࣒㸦SPM㸧

H12ᖺᗘ ࢚ࢫ࣭࢔࢖࣭࢔࢖ SPI3800 ከᶵ⬟ᆺࣘࢽࢵࢺ SPA400

⎔ቃไᚚࣘࢽࢵࢺ SPA300V

(9)

㸷㸬㉸㧗㏿ᗘ⌧㇟ゎᯒࢩࢫࢸ࣒

ෆヂ㸸㉸㧗㏿ᗘ᧜ᙳ⿦⨨

ගቑᖜගᏛ⿦⨨

㧗㏿ᗘࣅࢹ࢜⿦⨨

ࣃࣝࢫࢪ࢙ࢿ࣮ࣞࢱ ⇕⏬ീゎᯒ⿦⨨

PIVࢩࢫࢸ࣒

᫬㛫ศゎ⺯ගศගගᗘィ㸦NAES㸧

H10ᖺᗘ H15ᖺᗘ

H10ᖺᗘ

NAC FS501 NAC ILS NAC HS-4540-2 NAC DG-535 ࢽࢥࣥ LAIRD 3ASH

࢝ࣥࢸࣝ♫ TwinsUltra120 (࣮ࣞࢨ࣮)

࢜ࢵࢡࢫࣇ࢛࣮ࢻ࣮ࣞࢨ࣮♫

ES1.0-NI1422㸦࣓࢝ࣛ㸧

᪥ᮏ࣮ࣞࢨ࣮♫ VPP-2D㸦ࣉࣟࢭࢵࢧ㸧

ᇼሙ NAES-700D㸪ࢼࣀ⛊ࣛࣥࣉ㸪

❅⣲㸫Ⰽ⣲࣮ࣞࢨ࣮࡞࡝

㸯㸮㸬 ⣸እྍどศගගᗘィ㸦UV-Vis㸧

ࣇ࣮࢚ࣜኚ᥮ᆺ㉥እศගගᗘィ㸦FT-IR㸧

㏱㐣ᆺศගィ 㢧ᚤ࣭཯ᑕᆺศගィ

ࣉ࣮ࣟࣈᘧศගィ 㢧ᚤ࣭᥋ゐᆺศගィ ᪕ගᗘィ

H22ᖺᗘ

H22ᖺᗘ H14ᖺᗘ H15ᖺᗘ

H22ᖺᗘ

ࣃ㸫࢚࣐࣮࢟ࣥࣝ ࣒ࣛࢲ950

ࣃ࣮࢚࣐࣮࢟ࣥࣝ Spectrum100

᪥ᮏศග 460Plus

⡿ᅜASI Applied Systems ReactIR 400F-GU

⡿ᅜSensIR Technologies IlluminatIR

᪥ᮏศග P-2300

㸯㸯㸬 ෇஧Ⰽᛶศᩓィ㸦CD㸧

H13ᖺᗘ ᪥ᮏศග J-820P

㸯㸰㸬᭷ᶵᚤ㔞ඖ⣲ศᯒ⿦⨨㸦CHNO㸧

࣮࢜ࢺࢧࣥࣉ࣮ࣛ

H12ᖺᗘ

ࣖࢼࢥศᯒᕤᴗ MT-6

ࣖࢼࢥศᯒᕤᴗ MTA-620

㸯㸱㸬㢧ᚤ࣮ࣞࢨ࣮࣐ࣛࣥศගࢩࢫࢸ࣒ H14ᖺᗘ ᪥ᮏศග NRS-1000

㸯㸲㸬⇕ศᯒࢩࢫࢸ࣒ (DSC, TMA, TG/DTA)

࣓࣮ࣞ࢜ࢱ࣮㸦AR-Gϩ KG㸧

ືⓗ⢓ᙎᛶ ᐃ⿦⨨㸦DMA Q800 KG㸧

H15ᖺᗘ H22ᖺᗘ

࢚ࢫ࣭࢔࢖࣭࢔࢖ EXSTAR6000

TA࣭࢖ࣥࢫࢶ࣓ࣝࣥࢺ AR-G2 KG

TA࣭࢖ࣥࢫࢶ࣓ࣝࣥࢺ DMA Q800 KG

㸯㸳㸬ࣇ࢙࣒ࢺ⛊ࣇ࢓࢖ࣂ㸫ࣞ㸫ࢨ㸫 ࢸࣛ࣊ࣝࢶศග㉮ᰝᆺ㢧ᚤ㙾

H17ᖺᗘ H19ᖺᗘ

࢔࢖ࢩࣥ⢭ᶵ ࣇ࢙࣒ࢺࣛ࢖ࢺBS-60-YS

࢜ࢨ࣡ THz-TDS

㸯㸴㸬ࡑࡢ௚

㉸㡢ἼὙίჾ ┤♧ኳ⛗

H7ᖺᗘ

BRANSONIC 220

࣓ࢺ࣮ࣛ AG245

㸯㸵. 㸱ḟඖ≀㉁ᚤ⣽ᵓ㐀ゎᯒࢩࢫࢸ࣒

H22ᖺᗘ ᮾὒࢸࢡࢽ࢝ SKYSCAN1172-GU

(10)

㸦་Ꮫ᪋タ㸧

H23.4⌧ᅾ

ရ ྡ ⣡ධᖺᗘ つ ᱁

1. ᰾☢Ẽඹ㬆ศග⿦⨨㸦NMR㸧 ෆヂ㸸800MHz

600MHz 500MHz

H21ᖺᗘ

Bruker Biospin AVANCE III 800 Bruker Biospin AVANCE III 600 Bruker Biospin AVANCE III 500

㸰㸬㟁⏺ᨺᑕᆺ㏱㐣㟁Ꮚ㢧ᚤ㙾 H20ᖺᗘ JEOL JEM-2100FGK

㸱㸬㉸㧗㍤ᗘX⥺ᅇᢡ⿦⨨ H17ᖺᗘ Rigaku FR-E SuperBright

㸲㸬㟁Ꮚࢫࣆࣥඹ㬆⿦⨨㸦ESR㸧 H21ᖺᗘ Bruker Biospin EMXmicro

㸳㸬᭷ᶵ໬ྜ≀⮬ືศྲྀ⢭〇ࢩࢫࢸ࣒ (LC-MS) H18ᖺᗘ waters micromass ZQ

㸴㸬࣮ࣝࢳࣥ⏝ࢡࣜ࢜ࢫࢱࢵࢺ H21ᖺᗘ LEICA CM1850

㸵㸬࣑ࣝࣀ࢖࣓࣮ࢪ࢔ࢼࣛ࢖ࢨ࣮ H18ᖺᗘ Fujifilm LAS-1000UVmini

㸶㸬⺯ගගᗘィ H17ᖺᗘ ᓥὠ RF-5300PC

㸷㸬⢏ᏊᚄศᏊ㔞 ᐃ⿦⨨ H19ᖺᗘ Sysmex Zetasizer Nano-S

㸯㸮㸬࣌ࣉࢳࢻྜᡂ⿦⨨ H18ᖺᗘ Protein Technologies, Inc. PS3

(11)

ᶵჾ㓄⨨ᅗᰗᡞ᪋タ

࣓࣮࣮࣭࢝ᆺ␒

㟁Ꮚࢫࣆࣥඹ㬆⿦⨨ (ESR) ᪥ᮏ㟁Ꮚ JES-FA100 A ࢹࢪࢱ࣐ࣝ࢖ࢡࣟࢫࢥ࣮ࣉ ࣛ࢖࣐࢝࢖ࢡࣟࢩࢫࢸ࣒ࢬ DVM-5000 B

㉮ᰝᆺࣉ࣮ࣟࣈ㢧ᚤ㙾ࢩࢫࢸ࣒ (SPM) SII SPI3800N C

࢞ࣛࢫࢼ࢖ࣇస〇ᶵ ୕៞⛉Ꮫ ࣓ࢵࢧ࣮C

ࣛ࢖࢝ ࢞ࣛࢫࢼ࢖ࣇ࣓࣮࣮࢝ EM D

㉸࣑ࢡࣟࢺ࣮࣒ ࣛ࢖࢝ ULTRACUT-UCT

ᐇయ㢧ᚤ㙾 ࢽࢥࣥ SMZ

㢧ᚤ࣭᥋ゐᆺศගィ ࢭࣥࢧ࣮ࢸࢡࣀࣟࢪ࣮ࢬ Illuminat IR E

㏱㐣ᆺ㟁Ꮚ㢧ᚤ㙾 (TEM) ᪥ᮏ㟁Ꮚ JEM-2100 F

᪥❧ H-7000 G

㉮ᰝᆺ㟁Ꮚ㢧ᚤ㙾 (FE-SEM) ᪥❧ S-4300

࢚ࢿࣝࢠ࣮ศᩓᆺ X ⥺ศᯒ⿦⨨ ᇼሙ EX-220 H

㧗ศゎ⬟㟁⏺ᨺฟᆺ㉮ᰝ㟁Ꮚ㢧ᚤ㙾 ᪥❧ S-4800 I

㉮ᰝᆺ㟁Ꮚ㢧ᚤ㙾 (N-SEM) ᪥❧ S-3000N J

ࢿ࢜࢜ࢫ࣑࣒࢘ࢥ࣮ࢱ࣮ ࣓࢖࣡ࣇ࢛࣮ࢩࢫ NE-01044

K

࢖࣑࢜ࣥࣜࣥࢢ⿦⨨ ᪥❧ E-3500

ࢹ࢕ࣥࣉࣝࢢࣛ࢖ࣥࢲ࣮ ࢞ࢱࣥ MODEL 656N

⢭ᐦ࢖࣏࢜ࣥࣜࢵࢩࣥࢢ⿦⨨ ࢞ࢱࣥ MODEL 691

㉸㡢Ἴࢹ࢕ࢫࢡ࢝ࢵࢱ࣮ ࢞ࢱࣥ MODEL 601 ࢲ࢖ࣖࣔࣥࢻ࣡࢖࣮ࣖࢯ࣮ ࣓࢖࣡ࣇ࢛࣮ࢩࢫ DWS3242

࢖࢜ࣥࢫࣃࢵࢱ࣮ ᪥❧ E-102, E-201 ࢫࣃࢵࢱࢥ࣮ࢱ࣮ ࣓࢖࣡ࣇ࢛࣮ࢩࢫ SC200

࣮࢝࣎ࣥࢥ࣮ࢱ࣮ ࣓࢖࣡ࣇ࢛࣮ࢩࢫ CADE-EHS

ࣇ࣮ࣜࢬࣞࣉࣜ࢝⿦⨨ ᪥❧ HFZ-1

┿✵⵨╔⿦⨨ ᪥❧ HUS-5GB

᭷ᶵᚤ㔞ඖ⣲ศᯒ⿦⨨ (CHNO) ࣖࢼࢥศᯒᕤᴗ CHNࢥ࣮ࢲ࣮ MT-6

࣮࢜ࢺࢧࣥࣉ࣮ࣛ MTA-620 L

㢧ᚤ࣮ࣞࢨ࣮࣐ࣛࣥศගࢩࢫࢸ࣒ ᪥ᮏศග NRS-1000 M

ࣉ࣮ࣟࣈᘧศගィ ASI Applied Systems ReactIR 4100F-GU N

㉁㔞ศᯒ⿦⨨ (MS) ᪥ᮏ㟁Ꮚ GCmateϩ O

᪥ᮏ㟁Ꮚ JMS-AMSUN200 (K-9) P

᪥ᮏ㟁Ꮚ JMS-700 Q

ᾮయࢡ࣐ࣟࢺࢢࣛࣇ ࢔ࢪࣞࣥࢺ MS-52011LC R

ࣇ࣮࢚ࣜኚ᥮᰾☢Ẽඹ㬆⿦⨨ (FT-NMR) ᪥ᮏ㟁Ꮚ JMN ECA-500࣭ᅛయ S

᪥ᮏ㟁Ꮚ JMN ECX-400P T

᪥ᮏ㟁Ꮚ JMN ECA-600 U

PIV ᐃ⿦⨨ ᪥ᮏ࣮ࣞࢨ࣮ Visi Vector

㉸㧗㏿ᗘ᧜ᙳ⿦⨨ NAC࣭FS501, ILS, HS-4540-2 V

⇕⏬ീゎᯒ⿦⨨ ࢽࢥࣥ LAIRD 3ASH

⣸እྍどศගගᗘィ (UV-Vis) ࣃ㸫࢚࣐࣮࢟ࣥࣝ ࣒ࣛࢲ950 W 㢧ᚤࣇ࣮࢚ࣜኚ᥮㉥እศගගᗘィ (㢧ᚤIR) ᪥ᮏศග 460Plus, IRT-30 X

ࣇ࣮࢚ࣜኚ᥮㉥እศගගᗘィ (FT-IR) ࣃ࣮࢚࣐࣮࢟ࣥࣝ Spectrum100 Y

෇஧Ⰽᛶศᩓィ (CD) ᪥ᮏศග J-820P Z

㉮ᰝᆺ X ⥺ග㟁Ꮚศගศᯒ⿦⨨ ࢔ࣝࣂࢵࢡ࣭ࣇ࢓࢖ Quantera SXM-GS Z

᪕ගᗘィ ᪥ᮏศග P-2300 a

X⥺࣐࢖ࢡࣟCTࢫ࢟ࣕࣥ SKYSCAN SKYSCAN1172-GU b ࢸࣛ࣊ࣝࢶศග㉮ᰝᆺ㢧ᚤ㙾 ࢜ࢨ࣡ THz-TDS

ࣇ࢙࣒ࢺ⛊ࣇ࢓࢖ࣂ࣮࣮ࣞࢨ࣮ ࢔࢖ࢩࣥ⢭ᶵ ࣇ࢙࣒ࢺࣛ࢖ࢺBS-60-YS d

ࣇ࣮ࣟᘧ⢏Ꮚീศᯒ⿦⨨ ࣐ࣝࣂ࣮ࣥ FPIA-3000 e

⢏Ꮚᚄ࣭ࢮ࣮ࢱ㟁఩࣭ศᏊ㔞 ᐃ⿦⨨ ࣐ࣝࣂ࣮ࣥ ࢮ࣮ࢱࢧ࢖ࢨ࣮ࢼࣀZS f

(12)

ᶵჾ㓄⨨ᅗᰗᡞ᪋タ

࣓࣮࣮࣭࢝ᆺ␒

᰾☢Ẽඹ㬆ศග⿦⨨㸦NMR㸧 Bruker Biospin AVANCE III 600 A

Bruker Biospin AVANCE III 800 B

㟁Ꮚࢫࣆࣥඹ㬆⿦⨨㸦ESR㸧 Bruker Biospin EMXmicro C

㉸㧗㍤ᗘX⥺ᅇᢡ⿦⨨ Rigaku FR-E SuperBright D 㟁⏺ᨺᑕᆺ㏱㐣㟁Ꮚ㢧ᚤ㙾 JEOL JEM-2100FGK E

࣮ࣝࢳࣥ⏝ࢡࣜ࢜ࢫࢱࢵࢺ LEICA CM1850 F

᭷ᶵ໬ྜ≀⮬ືศྲྀ⢭〇ࢩࢫࢸ࣒(LC-MS) waters micromass ZQ G

࣑ࣝࣀ࢖࣓࣮ࢪ࢔ࢼࣛ࢖ࢨ࣮ Fujifilm LAS-1000UVmini H

⢏ᏊᚄศᏊ㔞 ᐃ⿦⨨ Sysmex Zetasizer Nano-S I

࣌ࣉࢳࢻྜᡂ⿦⨨ Protein Technologies, Inc. PS3 J

⺯ගගᗘィ ᓥὠ RF-5300PC K

᰾☢Ẽඹ㬆ศග⿦⨨㸦NMR㸧 Bruker Biospin AVANCE III 500 L

L

5

Ҕܖᢿ౐Ჲ᨞

G

I

J K H

F

Ҕܖᢿ౐᨞

E

D

ဃԡᅹܖ౐Ძ᨞

྘᧙ B

A

C

F G K

R

V A C

M

S

U T

g c

ೞ֥ЎௌܴᲫ ೞ֥ЎௌܴᲬ

ೞ֥ЎௌܴᲭ

૙Ճ᬴ܱܴ

ೞ֥ЎௌܴᲮ ೞ֥ЎௌܴᲯ

ʙѦܴ

Ў

ܴ

Ճ

ܴ

྘᧙

૙Ճ

᬴ܱܴ

Z

d

k

ᆰᛦೞ఺ܴ

P Q

L

J O

i j D

I

h

Y X W

H B

N E

a b

f e

(13)

ᶵჾศᯒศ㔝㸦ᰗᡞ᪋タ㸧ࡢෆ⥺␒ྕ᱌ෆ

ศ㔝㛗ᐊ 㸦㏆Ụ㸧 2037

⫋ဨ஦ົᐊ㸦⋢ᕝ࣭ᮧ℩࣭ᮡᒣ㸧 2035 (FAX 2036)

ᶵჾศᯒᐊ㸯

㢧ᚤ࣮ࣞࢨ࣮࣐ࣛࣥศගࢩࢫࢸ࣒ 2035 MS, ඖ⣲ศᯒ

㉮ᰝ㟁Ꮚ㢧ᚤ㙾, 㟁㢧㛵㐃ᑠᆺᶵჾ

㏱㐣ᆺ㟁Ꮚ㢧ᚤ㙾 9571

ᶵჾศᯒᐊ㸰

AFM, 㟁㢧㛵㐃ᑠᆺᶵჾ, ESR 2035

ࢹࢪࢱ࣐ࣝ࢖ࢡࣟࢫࢥ࣮ࣉ

ᶵჾศᯒᐊ㸱

FT-NMR᪥ᮏ㟁Ꮚ(500 MHz) 9572

ᅛయ

ᶵჾศᯒᐊ㸲

FT-NMR᪥ᮏ㟁Ꮚ(400 MHz࣭600 MHz) 9570

ᶵჾศᯒᐊ㸳

CD, ESCA, FT-IR, 㢧ᚤFT-IR, 9573

UV-Vis, NAES, ㉸㧗㏿ᗘ⌧㇟ゎᯒࢩࢫࢸ࣒,

㉮ᰝᆺX⥺ග㟁Ꮚศගศᯒ⿦⨨

ࣉ࣮ࣟࣈᘧศගィ, 㢧ᚤ࣭᥋ゐᆺศගィ, PIV ᐃ⿦⨨, ICP(ᇼሙ)

⇕⏬ീゎᯒ⿦⨨, ⇕ศᯒࢩࢫࢸ࣒

ࣇ࢙࣒ࢺ⛊ࣇ࢓࢖ࣂ࣮㢧ᚤ㙾 ࢸࣛ࣊ࣝࢶศග㉮ᰝᆺ㢧ᚤ㙾 X⥺࣐࢖ࢡࣟCTࢫ࢟ࣕࣥ

⢏Ꮚᚄ࣭⢏Ꮚᙧ≧ ᐃࠖ⿦⨨

⢏Ꮚᚄ࣭ࢮ࣮ࢱ㟁఩࣭ศᏊ㔞 ᐃ⿦⨨

᪕ගᗘィࠊ࣓࣮ࣞ࢜ࢱ࣮ࠊືⓗ⢓ᙎᛶ ᐃ⿦⨨

ᩍဨᐇ㦂ᐊ 3169

(14)

ᶵჾศᯒศ㔝㸦་Ꮫ᪋タ㸧ࡢෆ⥺␒ྕ᱌ෆ

ᩍဨᒃᐊ㸦㙊㊊㸧 6151

ᩍဨᒃᐊ㸦≟ሯ㸧 6152

⫋ဨ஦ົᐊ㸦㔠᳃㸧 6603 (FAX 6603)

་Ꮫᮏ㤋7F 7N30 8263

᭷ᶵ໬ྜ≀⮬ືศྲྀ⢭〇ࢩࢫࢸ࣒(LC-MS) waters micromass ZQ

࣑ࣝࣀ࢖࣓࣮ࢪ࢔ࢼࣛ࢖ࢨ࣮ Fujifilm LAS-1000UVmini

⺯ගගᗘィ ᓥὠ RF-5300PC

࣌ࣉࢳࢻྜᡂ⿦⨨Protein Technologies, Inc. PS3

⢏ᏊᚄศᏊ㔞 ᐃ⿦⨨ Sysmex Zetasizer Nano-S

་Ꮫᮏ㤋7F 7N16 8236

㟁⏺ᨺᑕᆺ㏱㐣㟁Ꮚ㢧ᚤ㙾 JEOL JEM-2100FGK

࣮ࣝࢳࣥ⏝ࢡࣜ࢜ࢫࢱࢵࢺLEICA CM1850

་Ꮫᮏ㤋8F 8S28 8266

᰾☢Ẽඹ㬆⿦⨨ (NMR) Bruker Biospin AVANCE III 500

་Ꮫ⏕࿨⛉ᏛᲷ 110 6602

᰾☢Ẽඹ㬆⿦⨨ (NMR) Bruker Biospin AVANCE III 600

᰾☢Ẽඹ㬆⿦⨨ (NMR) Bruker Biospin AVANCE III 800

་Ꮫ⏕࿨⛉ᏛᲷ 111 6602

㟁Ꮚࢫࣆࣥඹ㬆⿦⨨ (ESR) Bruker Biospin EMXmicro

་Ꮫ⏕࿨⛉ᏛᲷ 114 8937

㉸㧗㍤ᗘX⥺ᅇᢡ⿦⨨ Rigaku FR-E SuperBright

(15)

࠙ᰗᡞ᪋タࠚ 㸯㸬኱ᆺ㟁Ꮚ㢧ᚤ㙾

ᰗᡞ᪋タ࡟ࡣࠊ㸰ྎࡢ㏱㐣ᆺ㟁Ꮚ㢧ᚤ㙾࠾ࡼࡧ㸱ྎࡢ㉮ᰝᆺ㟁Ꮚ㢧ᚤ㙾ࡀタ⨨ࡉࢀ࡚࠸ࡿࠋ

Ϩ㸧 ḟඖ㏱㐣ᆺ㟁Ꮚ㢧ᚤ㙾㸦7(0㸧᪥ᮏ㟁Ꮚ -(0ࠊ᪥❧ +㸦ᶵჾศᯒᐊ㸯㸧

ᙜศ㔝࡟タ⨨ࡉࢀ࡚࠸ࡿ㟁Ꮚ㢧ᚤ㙾㸦᪥ᮏ㟁Ꮚ -(0ࠊ᪥❧ +㸧ࡣࠊ㧗ศゎ⬟ほᐹࠊ㟁Ꮚ

⥺ᅇᢡࠊࣇ࢕࣒ࣝࢆ⏝࠸ࡎ࡟ &&' ࣓࢝ࣛ࡟ീࡀ᧜ᙳ㸦ࣇ࢕࣒࡛ࣝࡢほᐹྍ⬟㸧ࢆ⾜࠺ࡇ࡜ࡀฟ᮶ࡿࠋ

᪥ᮏ㟁Ꮚ -(0 ࡣࠊ67(0 ࡟ࡼࡿほᐹࠊ('; ࡟ࡼࡿඖ⣲ศᯒࠊᑐ㇟ࢆ㸱ḟඖ࡛ほᐹ࡛ࡁࡿ㸱' ࢺࣔ

ࢢࣛࣇࡶྍ⬟࡛࠶ࡿࠋࡲࡓࠊศゎ⬟ࡶ㧗ࡃࠊ67(0 ീࡶ &&' ࡛᧜ᙳྍ⬟࡛࠶ࡾࠊ('; ࡛ࡣ࣍࢘⣲ࡼࡾ㔜

࠸ඖ⣲࡞ࡽศᯒྍ⬟࡛࠶ࡿࠋ་Ꮫ࣭⏕≀⛉Ꮫ࠾ࡼࡧᮦᩱ⛉Ꮫ࡟࠾ࡅࡿヨᩱࡢ⥲ྜⓗศᯒࡀྍ⬟࡟࡞ࡗ

࡚࠾ࡾࠊୗグࡢࡼ࠺࡞ศᯒࡀ᪥ᖖⓗ࡟⾜ࢃࢀ࡚࠸ࡿࠋ 㸯㸧㏱㐣ീほᐹ7(0 㸦ᶵჾศᯒᐊ㸯㸧

⏕≀ᮦᩱ࠾ࡼࡧ㠀⏕≀ᮦᩱࡢ㉸ⷧษ∦ࢆ ಸ࠿ࡽ ୓ಸ࡟ᣑ኱ࡋࠊෆ㒊ࡢᚤ⣽ᵓ㐀ࢆほᐹࡍࡿ

ࡇ࡜ࡀ࡛ࡁࡿࠋศゎ⬟ࡣࠊύ㸦᱁Ꮚീ㸧࠿ࡽ ύ㸦Ⅼほᐹീ㸧࡛࠶ࡿࠋຍ㏿㟁ᅽࡣ N9

ࡲ࡛ᣲࡆࡿࡇ࡜ࡀฟ᮶ࠊ࠸ࢁ࠸ࢁ࡞✀㢮ࡢヨᩱࡀ౑⏝ྍ⬟࡛࠶ࡿࠋ㏱㐣ᆺ㟁Ꮚ㢧ᚤ㙾ࡣ㟁Ꮚࢆ㏱㐣ࡋ

࡚ほᐹࡍࡿ⿦⨨࡛࠶ࡿ࠿ࡽࠊ㟁Ꮚࡀ㏱㐣ࡍࡿࡃࡽ࠸ࡢཌࡉࡲ࡛ヨᩱࢆⷧࡃࡍࡿࡇ࡜ࡀ๓ฎ⌮࡜ࡋ࡚㔜 せ࡛࠶ࡿࠋࡇࡢ๓ฎ⌮⏝ࡢタഛࡶഛ࠼࡚࠸ࡿࠋࡲࡓࠊヨᩱࡢほᐹࡣ⺯ගᯈୖ࡟ᢞᙳࡉࢀࡓീࢆぢ࡚⾜

࠸ࠊグ㘓ࡋࡓ࠸ീࡣ෗┿ࣇ࢕࣒࡛ࣝ᧜ᙳࡍࡿࠋ᧜ᙳࡋࡓᚋࡣ⌧ീ࣭ᐃ╔➼࠾ࡇ࡞࠸ࠊࢿ࢞ࣇ࢕࣒ࣝࢆ

ᚓࡿࠋࡇࢀࡽࡢ᧯స࡟ࡣⱝᖸࡢ⇍⦎ࢆせࡍࡿࠋ⏕≀ᮦᩱࡢሙྜ࡟ࡣࠊ㏻ᖖࠊษ∦ࢆ✀ࠎࡢ㔠ᒓ࡛ᰁⰍ ࡋ࡚ほᐹࡍࡿࡀࠊᰁⰍ᧯సࢆ㑊ࡅࡓ࠸ሙྜࡣࠊ㉮ᰝ㏱㐣ീ67(0ᶵ⬟࡟ࡼࡾࠊ↓ᰁⰍࡢษ∦ࢆ᫂ど㔝

ീ࡜ࡋ࡚ほᐹࡍࡿࡇ࡜ࡶ࡛ࡁࡿࠋࡲࡓࠊഴᩳゅᗘࢆኚ࠼ࡿࡇ࡜࡟ࡼࡾࠊ‽㉸ⷧษ∦࠿ࡽࢫࢸࣞ࢜㟁Ꮚ 㢧ᚤ㙾෗┿ࢆస〇ࡍࡿࡇ࡜ࡶྍ⬟࡛࠶ࡿࠋࡉࡽ࡟⏕ࡁࡓ⣽⬊ࡢෆ㒊ᵓ㐀ࢆㄪ࡭ࡿࡓࡵࡢࣇ࣮ࣜࢬ࢚ࢵ

ࢳࣥࢢࡸ⏕య⭷ࡢෆ㒊ᵓ㐀ࢆㄪ࡭ࡿࡓࡵࡢࣇ࣮ࣜࢬࣇࣛࢡࢳ࣮ࣕࡶྍ⬟࡛࠶ࡿࠋษ∦స〇ࡢࡓࡵࡢ㉸

࣑ࢡࣟࢺ࣮࣒㸦ᶵჾศᯒᐊ㸰㸧࠾ࡼࡧ┿✵⵨╔⿦⨨㸦ᶵჾศᯒᐊ㸯㸧ࡶศ㔝࡟タ⨨ࡋ࡚࠶ࡿࠋ 7(0 ࡛ྍ⬟࡞ほᐹ᪉ἲ࡟ࡣࠊ㏻ᖖࡢ᫂ど㔝ീࠊヨᩱ࡟ࡼࡗ࡚ᩓ஘ࡉࢀࡓ㟁Ꮚ⥺ࡢࡳࢆ⤖ീࡉࡏࡿᬯ

᪥❧H-7000

᪥ᮏ㟁ᏊJEM-2100

!!"#$%!!!&'()*

+,-./&'()*

(16)

㸰㸧; ⥺ศᯒ(';㸦ᶵჾศᯒᐊ㸯㸧

ヨᩱ࡟㟁Ꮚࣅ࣮࣒ࢆᙜ࡚ࡿ࡜ࠊヨᩱ୰ࡢඖ⣲࠿ࡽ≉ᛶ㹖⥺ࡀᨺฟࡉࢀࡿࠋࡇࡢ㹖⥺ࡢ࢚ࢿࣝࢠ࣮ࢆ

ࢩࣜࢥ᳨ࣥฟჾ࡛ศගࡋࠊࢫ࣌ࢡࢺࣝࢆᚓࡿࡇ࡜࡛ྵࡲࢀࡿඖ⣲ࡢศᯒࢆ⾜࠺ࡇ࡜ࡀ࡛ࡁࡿࠋ67(0

ീࠊ7(0 ീࢆほᐹࡋ࡞ࡀࡽᕼᮃࡢ㒊఩࡟㟁Ꮚ⥺ࢆ⤠ࡗ࡚↷ᑕࡋࠊࡑࡢ㒊఩ࡢⅬศᯒࢆ⾜ࡗࡓࡾࠊ⤠ࡗ ࡓ㟁Ꮚ⥺࡛ヨᩱࢆ㉮ᰝࡋ࡚㠃ศᯒࢆ⾜࠺ࡇ࡜ࡀ࡛ࡁࡿࠋࡲࡓࠊࣇ࢕࣒ࣝୖ࡟ 67(0 ീ࡜ࠊඖ⣲ࡢศᕸ

ࢆ㔜ࡡྜࢃࡏࡿ࡞࡝࠸ࢁ࠸ࢁ࡞⾲⌧᪉ἲࡀྍ⬟࡛࠶ࡿࠋ

㸱㸧ࢹ࢕ࣥࣉࣝࢢࣛ࢖ࣥࢲ࣮㸦*DWDQ0RGHO㸧 㸦ᶵჾศᯒᐊ㸯㸧

ࢭ࣑ࣛࢵࢡࢫࠊ༙ᑟయ࡞࡝ࡢ㏱㐣㟁Ꮚ㢧ᚤ㙾ほᐹ⏝ࡢⷧ∦ヨᩱసᡂࡢࡓࡵ࡟⏝࠸ࡿࠋヨᩱ⾲㠃ࢆࢲ

࢖࢔ࣔࣥࢻ࣮࣌ࢫࢺ࠶ࡿ࠸ࡣ࢔࣑ࣝࢼ࣮࣌ࢫࢺ࡛◊☻ࡋࠊ⌫㠃≧ࡢ❑ࡳࢆసᡂࡍࡿࡇ࡜ࡀ࡛ࡁࡿࠋ୺

࡜ࡋ࡚ḟ㡯࡛㏙࡭ࡿ࢖࣑࢜ࣥࣜࣥࢢฎ⌮ࡢ๓ฎ⌮࡟⏝࠸ࡿࠋ㏻ᖖࠊ᭱ᑠཌࡉ㒊ศࡀ ȣP㹼ȣP

ࡲ࡛◊☻ࡀྍ⬟࡛࠶ࡿࡀࠊὀព῝࠸᧯స࡟ࡼࡾ ȣP ࡲ࡛ⷧࡃࡍࡿࡇ࡜ࡀྍ⬟࡛࠶ࡿࠋ

㸲㸧࢖࣑࢜ࣥࣜࣥࢢ⿦⨨㸦*DWDQ3,36㸧 㸦ᶵჾศᯒᐊ㸯㸧

୺࡜ࡋ࡚ࢭ࣑ࣛࢵࢡࢫࠊ༙ᑟయ࡞࡝ࡢ㏱㐣㟁Ꮚ㢧ᚤ㙾ほᐹ⏝ヨᩱࡢసᡂࡢ᭱⤊ฎ⌮࡟⏝࠸ࡽࢀࡿࠋ

࠶ࡽ࠿ࡌࡵᩘ༑ȣP ௨ୗࡢཌࡉ࡟ࡋࡓヨᩱ⾲㠃࡟ࠊ㧗┿✵୰࡛ຍ㏿ࡉࢀࡓ࢔ࣝࢦࣥ࢖࢜ࣥࢆ↷ᑕࡋࠊ ヨᩱ࡟✰ࢆ㛤ࡅࡿࠋࡇࡢ᫬ࠊ࢖࢜ࣥࣅ࣮࣒ࢆ࠶ࡿゅᗘ࡛↷ᑕࡍࡿ࡜ࠊ✰ࡢ࢚ࢵࢪ㒊ศࡀᩘ༑㹼ᩘⓒ

QP ࡢཌࡉ࡜࡞ࡾࠊ㏱㐣㟁Ꮚ㢧ᚤ㙾ほᐹࡀྍ⬟࡜࡞ࡿࠋᙜศ㔝࡟タ⨨ࡉࢀ࡚࠸ࡿ *DWDQ3,36 ࡣྠ

᫬࡟ຍᕤ࡛ࡁࡿヨᩱᩘࡣ㸯ಶ࡛࠶ࡿࡀࠊຍᕤࢫࣆ࣮ࢻࡀⴭࡋࡃྥୖࡋࡓࠋ㓟໬≀ࡢヨᩱ࡛ࡶᩘ᫬㛫࡛

TEM࡟ࡼࡿほᐹࡀྍ⬟࡞≧ែ࡛࠶ࡿࠋ

!"#$%&%'(

)*+,-./0/12%34

(17)

ϩ

ϩ㸧㉮ᰝᆺ㟁Ꮚ㢧ᚤ㙾㸦6(0㸧᪥❧ 6㸪61㸪6㸪( 㸦ᶵჾศᯒᐊ㸯㸧

ᙜศ㔝࡟タ⨨ࡋ࡚࠶ࡿ㉮ᰝᆺ㟁Ꮚ㢧ᚤ㙾ࡣࠊ᪥❧〇సᡤ〇 6ࠊ6 ࠾ࡼࡧ 61 ࡛࠶ࡿࠋ 6 ࡣࠊ㟁⏺ᨺฟᆺ㟁Ꮚ㖠)(*ࢆഛ࠼ࡓ⿦⨨࡛࠶ࡾࠊ㧗㍤ᗘ࣭㧗ศゎ⬟ほᐹࡀྍ⬟࡛ࠊ('; ࡟ࡼ

ࡿඖ⣲ศᯒࡶྍ⬟࡞ᶵ✀࡛࠶ࡿࠋ61 ࡣࠊ(6(' ࡸ཯ᑕ㟁Ꮚ᳨ฟჾࢆഛ࠼࡚࠾ࡾࠊ3D ࡢప┿

✵ᗘ࡛ࡢほᐹࡸ↓⵨╔ほᐹࡀ࡛ࡁࡿᶵ✀࡛࠶ࡿࠋ

㟁⏺ᨺฟᆺ㟁Ꮚ㢧ᚤ㙾 6 㸦ᶵჾศᯒᐊ㸯㸧

ࡇࡢ㟁Ꮚ㢧ᚤ㙾ࡣ෭㝜ᴟ㟁⏺ᨺฟᆺ㟁Ꮚ㖠ࢆഛ࠼ࡓ⿦⨨࡛࠶ࡾࠊຍ㏿㟁ᅽࡀ0.5㹼30 kVࡢ⠊ᅖ࡛

ྍኚྍ⬟࡛࠶ࡾࠊಸ⋡ࡀ20㹼500,000ಸࠊศゎ⬟ࡀ1.5 nm㸦15 kV㸧࠾ࡼࡧ5.0 nm㸦1 kV㸧࡛࠶ࡿࠋ 㧗㍤ᗘ㟁Ꮚ㖠࡛࠶ࡾࠊపຍ㏿㟁ᅽ౛࠼ࡤ1 kV࡛ࡶ㧗ศゎീࢆᚓࡿࡇ࡜ࡀྍ⬟࡛࠶ࡿࠋࡲࡓపຍ㏿㟁 ᅽ࡛ࡣࠊ↓⵨╔ほᐹ࡛ࡁࡿヨᩱࡶ࠶ࡿࠋࡉࡽ࡟⿦ഛࡉࢀ࡚࠸ࡿEDXࡣⅣ⣲࠿ࡽࡢศᯒࡀྍ⬟࡞ࢱ࢖

ࣉ࡛࠶ࡾࠊᐃᛶ࣭ᐃ㔞ศᯒࡣࡶࡕࢁࢇࠊ⏬ീࢆࣃࢯࢥࣥ࡟ྲྀࡾ㎸ࢇ࡛⤌ᡂീ࡜ࡢྜᡂࡶྍ⬟࡛࠶ࡿࠋ ࡇࡢSEMࡣࡍ࡭࡚ࣃࢯࢥ࡛ࣥไᚚ࡛ࡁࡿࢱ࢖ࣉ࡛࠶ࡾࠊ᧜ᙳࡋࡓീࡶࢹࢪࢱࣝ᝟ሗ࡜ࡋ࡚ᚓࡽࢀࡿࠋ

᧯సୖὀពࡍ࡭ࡁⅬࡣࠊEDX ࡢ㹖⥺ྲྀࡾ㎸ࡳ❆ࡀ㠀ᖖ࡟ⷧࡃࠊᚤ⢏Ꮚ࡛ࡉ࠼ᐜ᫆࡟◚ᦆࡢཎᅉ࡜࡞

ࡿࡇ࡜࡛࠶ࡾࠊヨᩱࢆᮏయ࡟ᤄධࡍࡿ๓࡟ࡣ࢚࢔࣮ࣈ࣮࣮࡛ࣟ࣡ᚤ⢏Ꮚࢆྲྀࡾ㝖ࡃࡇ࡜ࢆບ⾜ࡍࡿࠋ

ࡲࡓࠊ㟁Ꮚ㖠㏆ഐࡣ㠀ᖖ࡟㧗࠸┿✵ᗘ࡟ಖࡘᚲせࡀ࠶ࡾࠊヨᩱࡶ๓ࡶࡗ࡚༑ศ⬺Ẽࡍࡿᚲせࡀ࠶ࡿࠋ

ప┿✵㟁Ꮚ㢧ᚤ㙾 61 㸦ᶵჾศᯒᐊ㸯㸧

ࡇࡢ㟁Ꮚ㢧ᚤ㙾ࡣ㏻ᖖࡢࢱࣥࢢࢫࢸࣥ࣊࢔ࣆࣥࣇ࢕࣓ࣛࣥࢺࢆഛ࠼ࡓ⿦⨨࡛࠶ࡾࠊຍ㏿㟁ᅽࡀ0.3 㹼30 kVࡢ⠊ᅖ࡛ྍኚྍ⬟࡛ࠊಸ⋡ࡀ5㹼300,000ಸࠊ஧ḟ㟁Ꮚീศゎ⬟ࡣ3.0 nm(㧗┿✵࣮ࣔࢻࠊ

ຍ㏿㟁ᅽ25 kV)ࠊ཯ᑕ㟁Ꮚീศゎ⬟ࡣ4.0 nm(ప┿✵࣮ࣔࢻࠊຍ㏿㟁ᅽ25 kV)࡛࠶ࡿࠋࡇࡢ㟁Ꮚ㢧

ᚤ㙾ࡢ≉ᚩࡣࠊప┿✵270 Pa㸦⣙2 torr㸧࡛ヨᩱࡢほᐹࡀྍ⬟࡞ࡇ࡜࡛࠶ࡿࠋྵỈ㔞ࡀᑡ࡞࠸ヨᩱ

࡛ࡣࠊࡑࡢࡲࡲヨᩱᐊ࡟ධࢀ࡚↓⵨╔࡛ࡢほᐹࡀྍ⬟࡛࠶ࡿࠋࡇࡢほᐹ࡟ࡣ͆⎔ቃSED, ESED͇ࡲ

ࡓࡣ཯ᑕ㟁Ꮚ⥺᳨ฟჾࢆ⏝࠸ࡿࠋ⏕యヨᩱࡣࡶࡕࢁࢇࠊ࣏࣐࣮ࣜࡸ㏻ᖖࡢ≧ែ࡛ࡣࢳ࣮ࣕࢪ࢔ࢵࣉࡀ

⏒ࡔࡋ࠸ࡶࡢࡢほᐹࢆᚓព࡜ࡋ࡚࠸ࡿࠋࡲࡓヨᩱᐊࡶ኱ࡁࡃࠊほᐹ⠊ᅖࡣ2x6 cm࡜ᗈ࠸ࠋࡉࡽ࡟ࣃ

ࢯࢥࣥ࡟ࡼࡿ⮬ື໬ࡀ㐍ࢇ࡛࠾ࡾࠊึᚰ⪅࡛ࡶᐜ᫆࡟㩭᫂࡞⏬ീࢆᚓࡿࡇ࡜ࡀྍ⬟࡛࠶ࡿࠋࡲࡓࠊࡇ ࡢ㟁Ꮚ㢧ᚤ㙾ࡣ㧗┿✵࡛ࡣᬑ㏻ࡢࢱࣥࢢࢫࢸࣥࣇ࢕࣓ࣛࣥࢺࡢ㟁Ꮚ㢧ᚤ㙾࡜ࡋ࡚ࡶ༑ศ࡞⬟ຊࡀ࠶

ࡿࠋ㏻ᖖࡢࢱࣥࢢࢫࢸࣥࣇ࢕࣓ࣛࣥࢺ࡟ᚲせ࡞㣬࿴Ⅼࡢ᳨ฟࡸࣂ࢖࢔ࢫ࡞࡝ࡶࡍ࡭࡚⮬ື໬ࡉࢀ࡚࠸

!

"#$

(18)

㟁㟁⏺ᨺฟᆺ㟁Ꮚ㢧ᚤ㙾 6 㸦ᶵჾศᯒᐊ㸯㸧

ࡇࡢ㟁⏺ᨺฟᆺ㟁Ꮚ㢧ᚤ㙾ࡣࠊS-4300ࡼࡾᛶ⬟࡜౑࠸຾ᡭࡀྥୖࡋࡓ⿦⨨࡛࠶ࡾࠊ௨ୗ࡟ࡇࡢ⿦

⨨ࡢ≉ᚩࢆ♧ࡍࠋ

1. 15 kV࡛1.0 nmࠊ1 kV࡛ࡶ2 nm㸦ࣜࢱ࣮ࢹ࢕ࣥࢢᶵ⬟ࢆ౑࠺࡜1.4 nm㸧ࡢ㧗ศゎ⬟

2. ಙྕ᳨ฟჾࡀᑐ≀ࣞࣥࢬࡢୖୗ࡟ྛ୍ಶ᭷ࡾࠊ2ḟ㟁Ꮚ⥺ࡸ཯ᑕ㟁Ꮚ⥺ࡢಙྕࡢ⤌ྜࡏࡀྍ⬟

3. ヨᩱࡢฟࡋධࢀࡀ࣎ࢱࣥࢫ࢖ࢵࢳ㸦ࣞࣂ࣮ࢆ᧯సࡍࡿᚲせࡀ࡞࠸㸧 4. ヨᩱࡢX-Y⛣ື࠾ࡼࡧᅇ㌿ࡢ3㍈ࡀ㟁ື

ࡇࢀࡽࡢ≉ᚩࢆ฼⏝ࡍࡿࡇ࡜࡛ࠊ㠀ᖖ࡟Ⰻ࠸⏬ീࢆ᧜ᙳྍ⬟࡛࠶ࡿࠋ౛࠼ࡤࠊ᳨ฟჾࡸ 2 ḟ㟁Ꮚ

⥺࡜཯ᑕ㟁Ꮚ⥺ࢆ㑅ᢥࡍࡿࡇ࡜࡛ࠊ࢚ࢵࢪຠᯝࡀ࡯࡜ࢇ࡝↓࠸ീࢆᚓࡿࡇ࡜ࡀฟ᮶ࡿࠋࣜࢱ࣮ࢹ࢕ࣥ

ࢢᶵ⬟ࢆ౑࠼ࡤศゎ⬟ࡀ㧗ࡃ࡞ࡿࡔࡅ࡛࡞ࡃࠊ㧗㟁ᅽ࡛ࡢ㟁Ꮚ⥺↷ᑕ࡛ၥ㢟࡟࡞ࡿヨᩱࡢࢲ࣓࣮ࢪࡶ

኱ᖜ࡟㍍ῶ࡛ࡁࡿࠋࡲࡓࠊヨᩱᐊࡣࢱ࣮࣎ศᏊ࣏ࣥࣉ࡛᤼Ẽࡋ࡚࠾ࡾࠊᾮయ❅⣲ࡢ࢔ࣥࢳࢥࣥࢱ࣑ࢿ

࣮ࢩࣙࣥࢺࣛࢵࣉࢆే⏝ࡋ࡚Ύί࡞㞺ᅖẼ࡛ほᐹࡀฟ᮶ࡿࠋヨᩱྎࡣ 4 mmȭ ࡢࢿࢪ࡛ࢭࢵࢺ࡛ࡁ

ࡿࡀࠊ࣮࣡࢟ࣥࢢࢹ࢕ࢫࢱࣥࢫࡀᑠࡉࡃࠊ⫼ࡢ㧗࠸ヨᩱࡣほᐹ࡛ࡁ࡞࠸ࡇ࡜ࡶ࠶ࡿࠋ

(19)

࢔࢔ࣝࢦࣥ࢖࣑࢜ࣥࣜࣥࢢ⿦⨨ ( 㸦ᶵჾศᯒᐊ㸯㸧

ࡇࡢ࢖࣑࢜ࣥࣜࣥࢢ⿦⨨ࡣࠊ࢖࢜ࣥ࢞ࣥ୰࡛࢔ࣝࢦࣥ࢞ࢫࢆᨺ㟁࣭࢖࢜ࣥ໬ࡋࠊ㧗㟁ᅽࢆ༳ຍࡋ࡚

࢖࢜ࣥࢆᘬࡁฟࡋ࡚ヨᩱ࡟⾪✺ࡉࡏࠊ◊☻ࡍࡿ⿦⨨࡛࠶ࡿࠋヨᩱࡢ୍㒊ࡣ㐽ⶸᯈ࡛ಖㆤࡋࠊࡇࡢ㐽ⶸ ᯈ࡟ࡼࡗ࡚ࡁࢀ࠸࡞᩿㠃ࡢᙧᡂࡀྍ⬟࡟࡞ࡿࠋࡲࡓࠊ◊☻㏿ᗘࡶࠊ࢞ࣛࢫࡸࢩࣜࢥࣥ࡞࡝࡛ࡣ 1 ᫬ 㛫࡟100 Pm࡜ࠊ࢖࢜ࣥࢩࢽࣥࢢ⿦⨨ࡼࡾ᱁ẁ࡟኱ࡁ࠸࣑ࣜࣥࢢ࣮ࣞࢺࡀᚓࡽࢀࡿࠋࡲࡓࠊ◊☻ࡉ

ࢀࡓ㠃ࡣ㠀ᖖ࡟ᖹ⁥࡛࠶ࡿࠋ

(20)

1. Electron Microscope

There are two types of microscope in the Center, i.e., two transmission electron microscopes (TEM) and three scanning electron microscopes (SEM).

Ϩ

Ϩ Transmission Electron Microscopy (TEM) (Room 1)

The transmission electron microscope (TEM) allows the investigation of the internal microstructure of organic samples as well as the inorganic, provided that they are thin enough to transmit electrons. The microscope is equipped with an X-ray detector made of Si semiconductor and energy dispersive spectrometer.

The set (energy disparsive X-ray spectrometer, EDX) enables us to analyze a chemical composition.

1) Transmission Electron Microscopy (TEM) (JEOL JEM-2100, Hitachi H-7000, Room 1)

We can observe ultra-thin-sections of biological specimens, ceramics, semiconductors, and metals using the TEM. The maximum resolution of the TEM was 0.144 nm (lattice image) and 0.021 nm (structure image) with magnification up to 1,000,000. Although an ordinal operation voltage of the JEM-2100 and H-7000 are 200 kV and 100kV, respectively, lower voltages are also available. Since the sample have to be thin enough, there are various instruments to make the specimen thin. The observation is conducted by adjusting an image on the fluorescent viewing screen and by recording the image on a negative film. The film has to be developed, fixed, and sometimes printed. The whole operation needs some technical skills. The biological specimens are usually observed after being stained with various metal solutions. However, the JEM-2100 can observe a bright field image of non-stained specimens with a scanning-transmission (STEM) mode. It is also possible to make a stereo pair of photographs by changing the tilt angle of semi-ultrathin sections. The ultramicrotome (in Room 2) and equipment for freeze-etching and freeze-fracture techniques are also available in the Center.

Bright field images, dark field images, which used the scattered electron beam for imaging, and the scanning-transmission images are available. When the specimen is crystalline, the Bragg reflection makes another type of image, an electron diffraction image, which can be used for determination of the crystal and an orientation of the crystal. The JEM-2100 and H-7000 have a computer-controlled lens that provides the best correlation of selected area image and diffraction pattern for all magnifications.

2) Energy Dispersive X-ray Analyzer (EDX) (Room 1)

An elemental microanalysis can be achieved by detecting a specific X-ray energy emitted from specimens on application of the electron beam. Point analyses can be carried out by viewing the S(T)EM or TEM image of the specimens and radiated the electron beam to the point of interest. Area scan mode is also available.

Various kinds of expression for data imaging are possible with this system, for example, the STEM image can be recorded simultaneously with an elemental mapping.

3) Dimple Grinder (GATAN Model 656/3) (Room 1)

A dimple grinder is an instrument used for grinding circular dimple of spherical profile in the surface of materials such as ceramics and semiconductors. The fundamental application is to prepare the specimens for TEM observation. This technique is normally used for pretreatment of ion milling. The operator can carefully produce a specimen with the thickness less than 5 μm. However, in most cases, a final thickness between 20

(21)

4) Ion Milling (GATAN PIPS-691) (Room 1)

The PIPS-691 is a machine which can “mill” the specimens such as ceramics and semiconductors for TEM observation. Ion milling involves directing a several-keV beam of argon ions at both sides of a specimen. As the ions strike the specimen, the surface atoms are sputtered out, which leads to thin the specimen.

ϩ Scanning Electron Microscopy (SEM) (Room 1)

In the center, there are two SEMs, type S-4300 and S–3000N. The former has a field emission type cold gun.

This type of the gun enables a bright and high-resolution image. The elemental analyzer, EDX, is also equipped. The latter type of the SEM is used for low-vacuum observation. The SEM can be operate as low vacuum as 270 Pa (about 2 torr) by an “environmental secondary electron detector, ESED” and/or a back scattering electron detector. This SEM can observe an insulating material without any conductive coating.

1) Scanning Electron Microscopy (SEM) (Hitachi, S-4300, Room 1)

The surface of tissues, cells, bacteria, viruses, and non-biological materials can be observed. The resolution is 1.5 nm (accelerate voltage; 25 kV) and 5.0 nm (1 kV). The electron beam is emitted from a field emission cold gun and a clear image can be obtained even the accelerate voltage is low, such as 1 kV. Some insulating specimen can be observed without any conductive coating. The SEM is equipped with EDX analyzer. This EDX can detect the characteristic X-ray from the so light elements such as carbon. The qualitative and quantitative analysis, a color mapping image of any element, digital files of all images and spectrum are available. The EDX, however, has very thin and delicate X-ray window and any dusts of micrometer size have to be avoided, otherwise the hit of the small particle causes fatal damage for the EDX. The instrument is controllable via PC and this brings an easy operation as a PC-SEM. The specimen has to be de-gassed before an introduction into the chamber. For the sample preparation of insulating materials, a critical point drying apparatus (in Room 5) and a conductive coating apparatus (in Room 5) are available in the Center.

2) Scanning Electron Microscopy (SEM) (S-3000N, Room 1)

This type of SEM has an ordinal tungsten hairpin type filament and can operate with accelerate voltage ranged 0.3 to 30 kV. Resolutions of the SEM are 3.0 nm (high vacuum mode, 25 kV) and 4.0 nm (low vacuum mode, 25 kV). An advantage of the SEM consists of an ability of low vacuum operation. The special type of the secondary electron detector, “Environmental SED”, can detect the secondary electron images even at low vacuum of 270 Pa (about 2 torr). Consequently, insulating samples and samples easily destroyed in vacuum are targets of the SEM. Further the specimen chamber is wide and the observation area is 4 x 6 cm size. When the SEM is operated under high vacuum, the SEM can be regarded as a high performance SEM with ordinal W filament. The SEM is a PC-SEM and easy operation is capable.

3) Scanning Electron Microscopy (SEM) , (S-4800, Room 1)

A new scanning electron microscope (SEM), Hitachi type S-4800, is introduced to the Division of Instrumental Analysis in 2008. The type S-4800 SEM has a field emission gun with the highest resolution of 1.0 nm at acceleration voltage of 15 kV. By using Beam Deceleration Technology, it has a resolution of 1.4 nm even at very low acceleration voltage of 1 kV. This also brings less damaged image with high resolution. The

(22)

specimen size is 100 mm. The working distance is usually 8 mm and tall specimen should be avoided.

4) Ion milling system, (E-3500, Room 1)

In order to prepare a cross-section of very thin area for SEM observation, a new ion milling apparatus, Hitachi E-3500, is now available. The E-3500 makes "mirror finished" cross-section by Ar ion bombardment with a shielding plate. The milling rate is about 100 m/h or more. Rounding of the edge, distortion and micro-cracking during machining and polishing of cross-section can be removed and clear-cut cross section can be obtained.

(23)

㸰㸬ᮦᩱ㟁Ꮚ≧ែゎᯒ⿦⨨㸸; ⥺ග㟁Ꮚศᯒ⿦⨨㸦(6&$;36㸧

ᙜศ㔝࡟ࡣ࢔ࣝࣂࢵࢡ࣭ࣇ࢓࢖Quantera-SXM-GS ࡢ⾲㠃ศᯒ⿦⨨ࡀタ⨨ࡉࢀ࡚࠸ࡿࠋ⾲㠃ศᯒ

࡛ࡣࠊᅛయ⾲㠃ࡢ᭱⾲㠃ࡢᩘཎᏊᒙ࡟ࡘ࠸࡚ࡢ໬Ꮫ⤌ᡂศᯒࡀྍ⬟࡜࡞ࡿࠋX⥺ග㟁Ꮚศගศᯒ(XPS) ࡣࠊESCA ࡜ࡶゝࢃࢀࠊ⾲㠃ศᯒࡢ୰࡛ࡶ᭱ࡶࡦࢁࡃ౑⏝ࡉࢀ࡚࠸ࡿศᯒἲࡢ୍ࡘ࡛࠶ࡿࠋ㉸㧗┿

✵୰࡛Al-KD⥺࠶ࡿ࠸ࡣMg-KD⥺࡜࠸ࡗࡓ㌾X⥺ࢆヨᩱ⾲㠃࡟↷ᑕࡋࡓ᫬࡟ヨᩱ⾲㠃࠿ࡽ࡛ࡿග㟁 Ꮚࡢ⤖ྜ࢚ࢿࣝࢠ࣮ࢆ࢚ࢿࣝࢠ࣮࣭࢔ࢼࣛ࢖ࢨ࣮࡛ ᐃࡍࡿࠋග㟁Ꮚࣆ࣮ࢡࡢ⤖ྜ࢚ࢿࣝࢠ࣮࡜ᙉᗘ

࠿ࡽࠊඖ⣲ࡢྠᐃࠊᐃ㔞ศᯒࡢ௚ࠊ⤖ྜ࢚ࢿࣝࢠ࣮ࡢᚤጁ࡞ࢩࣇࢺ࠿ࡽ໬Ꮫ≧ែศᯒࡀ࡛ࡁࡿࡇ࡜ࡀ

≉ᚩ࡛࠶ࡿ(Electron Spectroscopy for Chemical Analysis, ESCA)ࠋXPSࡢᛂ⏝⠊ᅖࡣࠊ㧗ศᏊࠊゐ

፹ࠊ༙ᑟయࠊ㟁Ꮚᮦᩱ࡜࠸ࡗࡓᵝࠎ࡞ᕤᴗ〇ရ࡞࡝ከᒱ࡟ࢃࡓࡾࠊ௒᪥ᚲせ୙ྍḞ࡞⿦⨨࡜࡞ࡗ࡚࠸

ࡿࠋ⾲㠃ศᯒἲ࡛ศᯒ࡛ࡁࡿ῝ࡉࡣ0.5㹼5 nm࡯࡝࡛࠶ࡿࡇ࡜࠿ࡽࠊ㉮ᰝ㟁Ꮚ㢧ᚤ㙾࡟ྲྀࡾ௜ࡅࡽ

ࢀࡓ࢚ࢿࣝࢠ࣮ศᩓᆺ X ⥺ศᯒ⿦⨨(SEM-EDX)ࡸࣇ࣮࢚ࣜኚ᥮㉥እศගศᯒ⿦⨨(FT-IR)࡜ẚ࡭࡚

ヨᩱࡢᴟ⾲㠃ࡔࡅࡢ໬Ꮫ⤌ᡂࢆศᯒࡍࡿࡢ࡟㐺ࡋ࡚࠸ࡿࠋᴟ⾲㠃ࡢ᝟ሗࡋ࠿ᚓࡿࡇ࡜ࡀ࡛ࡁ࡞࠸ࡢ࡛ࠊ Ar࢖࢜ࣥࢆ↷ᑕ࡟ࡼࡗ࡚⾲㠃ࢆ࢚ࢵࢳࣥࢢࡋ࡚ ᐃࡍࡿࡇ࡜ࢆ⧞ࡾ㏉ࡍࡇ࡜࡟ࡼࡗ࡚ࠊ῝ࡉ᪉ྥ࡛

໬Ꮫ≧ែࡀ࡝ࡢᵝ࡟ኚ໬ࡍࡿࡢ࠿ࢆ㏣㊧ࡍࡿࡇ࡜ࡶ࡛ࡁࡿࠋ

࢔ࣝࣂࢵࢡ࣭ࣇ࢓࢖Quantera-SXM-GS (㉮ᰝᆺ; ⥺ග㟁Ꮚศගศᯒ⿦⨨㸦ᶵჾศᯒᐊ㸳㸧 X⥺※: ศගࡉࢀࡓAl-KD⥺  ᐃ࣮ࣔࢻ: XPS(ESCA) (ᚤᑠ㡿ᇦࠊ⥺ศᯒࠊ㠃ศᯒ) X⥺ࡢ↷ᑕᚄࢆ9Pm㹼100 Pm࡛ྍኚࡋࠊ㉮ᰝࡋ࡚ヨᩱ⾲㠃࡟↷ᑕࡍࡿࡇ࡜ࡀྍ⬟

ᶆ‽ヨᩱྎ 75×75 mm (ヨᩱཌࡉ < 20 mm) ຍ⇕࣭෭༷ ᐃ

!"#$%&'()*&+,+-./01 23456

(24)

㸰㸬Surface Analysis Instrument (XPS)

The Center has two surface analysis instruments, Ulvac-Phi Quantera-SXM-GS and Shimadzu ESCA-3400.

The objective of a surface analysis is to determine the chemical composition of the outer few atomic layers of a solid surface. X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA), is one of the most widely used surface analysis techniques. The sample is irradiated with mono-energetic soft X-rays (Al-KD or Mg-KD) causing photoelectrons to be emitted from the sample surface in ultra high vacuum environment. An electron energy analyzer determines the binding energy of the photoelectrons. From the binding energy and intensity of a photoelectron peak, the elemental identity, chemical state, and quantity of an element are determined. The information XPS provides about surface layers or thin film structures is of value in many industrial applications as follows, polymer surface modification, catalysis, corrosion, adhesion, semiconductor and dielectric materials, electronics packaging, magnetic media, thin film coatings used in a number of industries and so on.

The average analysis depth of these surface analysis techniques is approximately 0.5-5 nm, with the exact analysis depth dependent on the specific technique. As a result, surface analysis techniques provide unique information that cannot be obtained with instruments having a larger analysis depth, such as energy dispersive X-ray analysis (SEM-EDX) and fourier transform infrared analysis (FT-IR). To probe below the surface, surface analysis instruments are equipped with a sputter Ar ion gun to allow the controlled removal of material from the sample surface. This allows the thickness of surface layers to be measured and multi-layer thin film structures to be characterized.

Ulvac-Phi Quantera-SXM-GS (Scanning X-ray microprobe) Room 5 X-ray sources: monochromatic Al-KD

The diameter of the x-ray beam can be adjusted from less than 9μm to 100μm in diameter.

Measurement mode: XPS (spectroscopy, depth profiling, mapping, line analysis, etc.) Standard platen: 75×75 mm (up to 20 mm thick)

Hot/Cold sample stage

(25)

㸱㸬㧗ศゎ⬟㉁㔞ศᯒ⿦⨨06

㉁㔞ศᯒ⿦⨨ࡣࠊ᭷ᶵ໬ྜ≀ࡢྠᐃ࡟୙ྍḞ࡛࠶ࡿࠋヨᩱศᏊࢆ࢖࢜ࣥ໬ࡉࡏ࡚⏕ࡌࡿศᏊ࢖࢜ࣥ

ࡸࣇࣛࢢ࣓ࣥࢺ࢖࢜ࣥࢆ ᐃࡍࡿࠋ

ᙜศ㔝࡟タ⨨ࡉࢀ࡚࠸ࡿ⿦⨨࡛ࡣࠊศᯒ࡟ᚲせ࡞ヨᩱࡢ㔞ࡣᩘࢼࣀࢢ࣒࡛ࣛ࠶ࡿࠋヨᩱࡣࠊ┤᥋ࠊ 㛫᥋ࠊ࢞ࢫࢡ࣐ࣟࢺࢢࣛࣇ࢕࣮*&➼࡛ᑟධࡉࢀࠊ୺࡟ࠊ㟁Ꮚ⾪ᧁ(,ἲࠊ໬Ꮫ࢖࢜ࣥ໬&,ἲࠊ㧗

㏿ཎᏊ⾪✺)$%ἲ࡛࢖࢜ࣥ໬ࡉࢀࡿࠋ

௨ୗ࡟♧ࡍ㸱✀㢮ࡢ⿦⨨ࡀタ⨨ࡉࢀ࡚࠸ࡿࠋ໬ྜ≀ࡢ✀㢮ࡸ ᐃࡢ┠ⓗู࡟ᶵ✀ࢆ㑅ᢥࡍࡿࡇ࡜ࡀ

࡛ࡁࡿࠋ

㸯㸧-0606WDWLRQ㸦᪥ᮏ㟁Ꮚ㸧㸦஧㔜཰᮰㸧㸦ᶵჾศᯒᐊ㸯㸧

࠙௙ᵝࠚ

 ᐃ㉁㔞⠊ᅖ㸸 ࢲࣝࢺࣥ㸦ຍ㏿㟁ᅽN9 ࡛ 㸧ࠊศゎ⬟㸸ࠊ ヨᩱᑟධ㸹┤᥋ࠊ㛫᥋ࠊ*&㸦/&㸧ࠊ࢖࢜ࣥ※㸸(,&,)$%

 ᐃ࣮ࣔࢻ㸸పศゎ⬟ ᐃࠊ㧗ศゎ⬟ ᐃࠊṇ࣭㈇࢖࢜ࣥࠊࡑࡢ௚㸸ࣜࣥࢡࢺࢫ࢟ࣕࣥ

!"#$%&'

(26)

㸰㸧-06$0681*,.㸦᪥ᮏ㟁Ꮚ㸧㸦ᅄ㔜ᴟᆺ㸧㸦ᶵჾศᯒᐊ㸯㸧

࠙௙ᵝࠚ

 ᐃ㉁㔞⠊ᅖ㸸 ࢲࣝࢺࣥࠊศゎ⬟㸸!ࠊ ヨᩱᑟධ㸸*&ࠊ࢖࢜ࣥ※㸸(,&,ࠊ

 ᐃ࣮ࣔࢻ㸸పศゎ⬟ ᐃ

㸱㸧*&0DWH,,*&06ࢩࢫࢸ࣒㸦᪥ᮏ㟁Ꮚ㸧㸦ᶵჾศᯒᐊ㸯㸧

࠙௙ᵝࠚ

 ᐃ㉁㔞⠊ᅖ㸸 ࢲࣝࢺࣥ㸦ຍ㏿㟁ᅽN9㸧ࠊ ࢲࣝࢺࣥ㸦ຍ㏿㟁ᅽN9㸧 ศゎ⬟㸸㸦ࢥࣥࣆࣗࢱࢥࣥࢺ࣮ࣟࣝ㸲ẁษࡾ᭰࠼㸧

ヨᩱᑟධ㸸┤᥋ᑟධࠊ*&ࠊ࢖࢜ࣥ※㸸(,&,)$%

 ᐃ࣮ࣔࢻ㸸పศゎ⬟ ᐃࠊṇࠊ㈇࢖᳨࢜ࣥฟྍ

!"

#$ %&'$()*+ !"

(27)

3. Mass Spectrometer System (MS) (Room 1)

Mass spectrometry is essential to identify organic compounds. After ionization of sample materials, the molecular and fragment ions are measured.

The mass instruments in this center require only a few nanogram order of samples. The samples are introduced into the chamber directly, indirectly, and by way of gas chromatography (GC). Then, the samples are ionized by electron impact (EI), chemical ionization (CI), and fast atom bombardment (FAB) methods.

There are three instruments in this center. Users can select the instruments depending on the kinds of sample materials and the purpose of measurements.

1) JMS-MStation 700 (JEOL) (Double focus type) (Room 1) Specifications:

Mass range: 1-24,000 Da (accelerating voltage: 1 kV) Resolution: 60,000

Introduction: direct and indirect inlet, GC (LC) Ionization: EI, CI, FAB

Measurement mode: low and high resolution, positive and negative ion mode Others: Linked scan

㸧-MS-AMSUN200/GI (K9) (JEOL) (Quadropolar type) (Room 1) Specifications:

Mass range: 1-1,000 Da Resolution: > 2,000 Introduction: GC Ionization: EI, CI

Measurement mode: low resolution

3) GC Mate II GCMS System (JEOL) (Room 1) Specifications:

Mass range: 1-1,000 Da (accelerating voltage: 2.5 kV), 1-2,000 Da (accelerating voltage: 1.25 kV) Resolution: 500, 1000, 3000, 5000 (controlled by computer)

Introduction: direct inlet, GC Ionization: EI, CI, FAB

Measurement mode: low resolution, positive and negative ion mode

(28)

㸲㸬ᾮయࢡ࣐ࣟࢺࢢࣛࣇ㸦+3/&㸧

ࡇࡢHPLCࡣࠊ᳨ฟჾ࡜ࡋ࡚ࠊ⣸እྍどගศ ග᳨ฟჾ㸦190㹼600 nm㸧ࠊ⺯ග᳨ฟჾ㸦280㹼

900 nm㸧ࠊ♧ᕪᒅᢡ⋡᳨ฟჾ㸦ᒅᢡ⋡ 1.00㹼

1.75㸹ᐊ 㸩5㹼55|C ௨ୖࡢ⠊ᅖ୍࡛ᐃ࡟タᐃ

ྍ⬟㸧ࢆഛ࠼࡚࠸ࡲࡍࠋࡇࢀࡽࡢ᳨ฟჾࢆ౑࠸

ࡇ࡞ࡍࡇ࡜࡟ࡼࡗ࡚ࠊ࡯࡜ࢇ࡝ࡢ᭷ᶵ≀ࡢ㧗ឤ ᗘ᳨ฟࡀྍ⬟࡟࡞ࡾࡲࡍࠋࡲࡓࠊHPLC࡜㉁㔞 ศᯒィ࡜ࢆ᥋⥆ࡍࡿࡇ࡜࡟ࡼࡾࠊὶฟ≀ࡢ㐃⥆

㉁㔞ศᯒࡀྍ⬟࡛ࡍ㸦LC-MS㸧ࠋ

HPLCᮏయࡣࠊḟࡢࡼ࠺࡞㒊ศ࠿ࡽᡂࡾ❧ࡗ

࡚࠸ࡲࡍࠋ

z ࢥࣥࢺ࣮ࣟࣝࣔࢪ࣮ࣗࣝࠊไᚚPCཬࡧࢯࣇࢺ

z ࣑ࢡࣟࢹ࢞ࢵࢧ㸦⁐፹୰ࡢ࢞ࢫࢆྲྀࡾ㝖ࡁἻࡀฟ࡞࠸ࡼ࠺࡟ࡍࡿ㸧

z ࣂ࢖ࢼ࣮࣏ࣜࣥࣉ㸦㧗ᅽ2ᾮΰྜ࡟ࡼࡗ࡚ࢢࣛࢪ࢚ࣥࢺࢆసࡾ0.001㹼5 ml/minࡢὶ㔞ࢆㄪ⠇

࡛ࡁࡿ㸧

z ࣒࢝ࣛᜏ ᵴ㸦࣒࢝ࣛ ᗘࢆᐊ ࠊ㸫10㹼80|C௨ୖࡢ⠊ᅖ୍࡛ᐃ࡟ಖࡘ㸧 z ࣇࣛࢡࢩࣙࣥࢥࣞࢡࢱ࣮㸦ࢧࣥࣉࣝࢆศྲྀࡍࡿ㸧

HPLC࡛≀㉁ࡢศ㞳ࢆᡂຌࡉࡏࡿ࡟ࡣࠊ࣒࢝ࣛࡢ㑅ᢥࡀ㔜せ࡛ࡍࠋ

⌧ᅾࡢHPLC ࡟࠾࠸࡚ࡣࡑࡢ࣒࡛࢝ࣛࡢศ㞳࣮ࣔࢻ࡜ࡋ࡚ࡣḟࡢ✀㢮ࡀ୺࡟㐺⏝ࡉࢀࠊศᯒ⏝࡜

ศྲྀ⏝ࡀ࠶ࡾࡲࡍࠋ

㸦㸧㡰┦ࢡ࣐ࣟࢺࢢࣛࣇ࢕࣮

㸦㸧㏫┦ࢡ࣐ࣟࢺࢢࣛࣇ࢕࣮

㸦㸧ࢧ࢖ࢬ᤼㝖ࢡ࣐ࣟࢺࢢࣛࣇ࢕࣮

㸦㸧࢖࢜ࣥࢡ࣐ࣟࢺࢢࣛࣇ࢕࣮

ࡇࡢ୰࡛ࠊ≉࡟㢖⦾࡟౑ࢃࢀࡿࡢࡣ㏫┦ࢡ࣐ࣟࢺࢢࣛࣇ࢕࣮࡛ࡍࠋ

౑⏝ࡍࡿ࣒࢝ࣛࡣྛ⮬⏝ពࡋ࡚ࡃࡔࡉ࠸ࠋࡲࡓᗫᾮࡣྛ⮬ᣢࡕᖐࡿࡼ࠺࡟ࡋ࡚ࠊᐇ㦂⤊஢ᚋࡣὶ㊰

࡞࡝ࢆ࣓ࢱࣀ࣮࡛ࣝὙίࡋ࡚࠾࠸࡚ࡃࡔࡉ࠸ࠋ

4. HPLC system (Agilent-1100 series)Room 1

This system with LC-MS (JMS700) interface may be used for mass analysis of eluates under continuous detection mode.

This HPLC system can detect various organic molecules in high sensitivity under three detection modes;

UV-VIS spectroscopic mode (190~600 nm), fluorescence mode (280~900 nm), and differential refractive index mode (RI 1.00~1.75 at room temperature +5 to 55|C).

Specifications:

z Control module: PC (Windows OS) and control/analysis software

z Degas: micro degasser (to remove gasses in solvents used, resulting in suppression of bubbles) z Pump: Binary pumps for two solvents making gradients with various flow rates (0.001~5 ml/min) z Column temperature: Column chamber with constant temperatures (at room temperature, -10 to 80|C) z Collection of eluates: fraction collector

Notes.

It is important to select suitable columns to succeed in good separation of materials. Packed columns are used mainly for chromatography, such as normal phase, reversed phase, size-exclusion, and ion chromatography. Among them the revsersed phase chromatography is most frequently used in the field of biological and analytical chemistry.

For person who want to use this HPLC system he or she must prepare his or her own column, and should take out waste solvents and wash the flow pipes by methanol after completion of the experiment.

(29)

㸳㸬ࣇ࣮࢚ࣜኚ᥮᰾☢Ẽඹ㬆⿦⨨㸦)7105㸧

⌧ᅾࠊ᰾☢Ẽඹ㬆105ࡣศᏊࡢᵓ㐀ࡸ≀ᛶࢆ▱ࡿ᭱ࡶ㔜せ࡞ศᯒἲࡢ୍ࡘ࡛ࠊ᭷ᶵ໬Ꮫ㸪≀⌮໬

Ꮫࡢࡳ࡞ࡽࡎ㎰Ꮫࠊ་Ꮫ࡞࡝ࡢ⏕࿨⛉Ꮫࡢ◊✲࡟ࡶᗈࡃ౑ࢃࢀ࡚࠸ࡿࠋࡉࡽ࡟ࠊኳ↛≀໬Ꮫ࡬ࡢᐤ୚ࠊ

་⒪ศ㔝࡛ࡢ 105 ࢖࣓࣮ࢪࣥࢢ㸦057 ᩿ᒙᫎീ㸧࡞࡝࡛ࡶヰ㢟࡟࡞ࡗ࡚࠸ࡿࠋ

≀㉁ࢆ☢ሙࡢ୰࡟⨨࠸ࡓ࡜ࡁࠊ+ࠊ& ࡜࠸ࡗࡓཎᏊࡢཎᏊ᰾ࡢ≧ែࡣ࠸ࡃࡘ࠿ࡢ࢚ࢿࣝࢠ࣮‽఩

࡟ศ⿣ࡋࠊࡇࢀ࡟ඹ㬆࿘Ἴᩘࡢࣛࢪ࢜Ἴࢆ↷ᑕࡍࡿࡇ࡜࡛ࡑࡢ‽఩㛫ࡢ㑄⛣ࡀ㉳ࡇࡿࠋࡑࡢ㑄⛣࢚ࢿ

ࣝࢠ࣮㸦ࡍ࡞ࢃࡕࣛࢪ࢜Ἴࡢඹ㬆࿘Ἴᩘ㸧ࡣཎᏊ᰾ࡢ㟁Ꮚ≧ែ࡟ࡼࡾᚤጁ࡟␗࡞ࡗ࡚࠾ࡾ㸦ࡇࢀࢆ໬

Ꮫࢩࣇࢺ࡜࠸࠺㸧ࠋࡇࡢࡇ࡜࠿ࡽྛࠎࡢཎᏊࡢ≧ែࠊ࠶ࡿ࠸ࡣࡑࡢཎᏊࢆྵࡴཎᏊᅋ㸦⨨᥮ᇶ㸧ࡢ໬

Ꮫⓗᛶ㉁ࢆ▱ࡿࡇ࡜ࡀ࡛ࡁࡿࠋ

㉸㟁ᑟ☢▼࡟ࡼࡿ㧗☢ሙࡢᐇ⌧ࠊࣇ࣮࢚ࣜኚ᥮ἲ࠾ࡼࡧࢥࣥࣆ࣮ࣗࢱ࡞࡝ࡢ㐍Ṍ࡟ࡼࡾࠊࣛࢪ࢜Ἴ

ࣃࣝࢫ࡟ࡼࡿ ᐃࡀྍ⬟࡟࡞ࡾࠊ✀ࠎࡢᑐ㇟≀ࢆᐜ᫆࡟࠿ࡘ㧗⢭ᗘ࡟ศᯒࡍࡿࡇ࡜ࡀྍ⬟࡟࡞ࡗࡓࠋ ᙜศ㔝࡟ࡣࠊḟࡢ ✀ࡢ )7105 ࡀタ⨨ࡉࢀ࡚࠸ࡿࠋ

㸯㸧᪥ᮏ㟁Ꮚ (&$㸦0+]㸧㸦ᶵჾศᯒᐊ㸲㸧 ㏻ᖖ ᐃ㸦+㸪&㸪'(37㸪&26< ࡞࡝㸧ࡣࡶ࡜ࡼ

ࡾࠊࣃࣝࢫ☢ሙ໙㓄ἲ㸦3)*㸧ࢆ⏝࠸ࡿࡇ࡜࡟ࡼࡾࠊ

ຠ⋡ⓗ࡞ ḟඖࡢ ᐃࡸ +0%&ࠊ+04&ࠊ72&6<ࠊ'26<

ࢆྵࡴ࢖ࣥࣂ࣮ࢫ ᐃ࡞࡝ࡢ࠸ࢁ࠸ࢁ࡞ ᐃᡭἲ

ࢆᐇ᪋ࡍࡿࡇ࡜ࡀ࡛ࡁࡿࠋᙜศ㔝࡛ࡶ᭱㧗ᓠࡢᶵ

✀࡛࠶ࡾࠊ㧗࠸ศゎ⬟ࢆ᭷ࡋ࡚࠸ࡿࠋ

㉸ఏᑟ࣐ࢢࢿࢵࢺᇶ‽☢ሙ㸸7

࣎࢔ᚄ㸸PP

ࣉ࣮ࣟࣈ㸸࣮࢜ࢺࢳ࣮ࣗࣥ PP)*7+ ࢳ࣮ࣗࢼࣈࣝ

ࣉ࣮ࣟࣈ

ほ ᰾㸦ࣉ࣮ࣟࣈ㸧㸸+)1㹼3  ᗘྍኚ⠊ᅖ㸦ࣉ࣮ࣟࣈ㸧㸸Υ㹼Υ

㸰㸧᪥ᮏ㟁Ꮚ (&;3㸦0+]㸧㸦ᶵჾศᯒᐊ㸲㸧 ୖ㏙ࡢ (&$ ࡜ྠᵝ࡟⏝࠸ࡽࢀ࡚࠸ࡿᶵ✀࡛

࠶ࡾࠊࡇࡕࡽࡶ࠸ࢁ࠸ࢁ࡞ ᐃᡭἲࢆᐇ᪋ࡍࡿࡇ

࡜ࡀ࡛ࡁࡿࠋ

㉸ఏᑟ࣐ࢢࢿࢵࢺᇶ‽☢ሙ㸸7

࣎࢔ᚄ㸸PP

ࣉ࣮ࣟࣈ㸸࣮࢜ࢺࢳ࣮ࣗࣥ PP)*7+ ࢳ࣮ࣗࢼࣈࣝ

ࣉ࣮ࣟࣈ

ほ ᰾㸦ࣉ࣮ࣟࣈ㸧㸸+)1㹼3  ᗘྍኚ⠊ᅖ㸦ࣉ࣮ࣟࣈ㸧㸸Υ㹼Υ

!""!""#$%&'()*

+,-"".-""#$%&'()*

(30)

㸱㸧᪥ᮏ㟁Ꮚ (&$㸦0+]㸧㸦ᶵჾศᯒᐊ㸱㸧

㏻ᖖ ᐃ㸦+㸪&㸪'(37㸪&26<㸪+0%&㸪+04&㸪 ᕪ 12( ࡞࡝㸧ࡢࡳ࡞ࡽࡎࠊࣃࣝࢫ☢ሙ໙㓄ἲ 㸦3)*㸧ࢆ⏝࠸ࡿࡇ࡜࡟ࡼࡾࠊຠ⋡ⓗ࡞ ḟ ඖࡢ ᐃࠊྛ✀ከ᰾ࡢ ᐃࠊ ᗘྍኚ ᐃࡶ

㠀ᖖ࡟⡆౽࡟ ᐃ࡛ࡁࡿࠋࡲࡓࠊᅛయ 105   ᐃࣘࢽࢵࢺࡀ⿦ഛࡉࢀࠊᅛయ໬Ꮫࠊ⏕య㧗 ศᏊศ㔝࡟ࡶᛂ⏝ྍ⬟࡛࠶ࡿࠋ

ᅛయ 105  ᐃࣘࢽࢵࢺ㸦10&30㸧

ࣉ࣮ࣟࣈ㸸PP ᚄ &30$6 ࣉ࣮ࣟࣈ

ほ ᰾㸦ࣉ࣮ࣟࣈ㸧㸸+16L㹼3

5. Fourier Transform Nuclear Magnetic Resonance Spectroscopy (FT-NMR)

Nuclear Magnetic Resonance (NMR) spectroscopy has become one of the most important tools for investigating the molecula

Referensi

Dokumen terkait

X-Ray Diffraction (XRD) Scanning Electron Microscope (SEM). Pengujian EIS Pengujian

Karakterisasi Scanning Electron Microscope (SEM) EDX dilakukan di Laboratorium Fisika Universitas Medan (Unimed) Sampel yang akan dianalisa dengan Scanning Electron

Analyses using nitrogen adsorption-desorption, transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray

Karakterisasi Scanning Electron Microscope (SEM) EDX dilakukan di Laboratorium Fisika Universitas Medan (Unimed) Sampel yang akan dianalisa dengan Scanning

Karakterisasi Scanning Electron Microscope (SEM) EDX dilakukan di Laboratorium Fisika Universitas Medan (Unimed) Sampel yang akan dianalisa dengan Scanning Electron

High resolution transmission electron microscope HRTEM, Field Emission Scanning Electron Microscopy FESEM, nitrogen isotherms, X-ray diffraction XRD, Fourier transform infrared

Morphology, particle size and optical properties were characterized with Scanning electron microscopy SEM, UV/VIS Lambda 750 S spectrometer and Auger electron spectroscopy AES equipped

Uniform CNTs forest was characterized using scanning electron microscopy SEM, Raman spectroscopy and transmission electron microscopy TEM.. Advantages of the present method include