• Tidak ada hasil yang ditemukan

세포 배양

Dalam dokumen 저작자표시 (Halaman 107-126)

Fig. 34 및 Fig. 35는 다양하게 표면 처리된 Ti-25Ta-15Hf 합금 표면에 MG-63 조골세포를 37˚C에서 각각 24시간(Fig. 34), 72시간(Fig. 35) 동안 배양 후 관찰 한 FE-SEM image이다. 실험군으로는 표면 처리된 시편(PEO-270 처리, PEO-270 후 HA 코팅, PEO-270 후 20Mg-HA 코팅)을 사용하였고 대조군으로는 bulk 상태의 시편 을 사용하였다. 분석 결과, 대조군에 비해 실험군에서 세포의 증식과 분화가 활발 히 진행되었음이 관찰되었다. 24시간 배양의 경우 bulk 시편에서는 세포의 수나 성장이 미미했으나 그에 반해 표면 처리된 시편에서는 세포는 다양한 형태로 성장 되었고 특히 HA와 20Mg-HA 코팅된 시편에서 다양한 방향으로 lamellipodia 성장이 관찰되었다. 72시간 세포배양 결과 전반적으로 합금에 아무처리도 하지 않은 bulk 를 제외한 마이크로 단위인 PEO 처리와 마이크로와 나노단위의 형상을 한 PEO-270 후 20Mg-HA 코팅처리조건에서 좋은 세포성장과 분화를 보였다. 특히, Mg 이온이 함유된 HA표면에서 더 좋은 세포분화를 보이는데 이는 세포의 초기 부착과 성장은 표면거칠기에 강하게 의존16,118,119)된다는 것과 잘 일치되며 마이크로 기공만 존재 하는 경우 보다는 마이크로 기공과 나노 단위의 표면과 생체 활성화원소가 함유된 Mg-HA 석출물이 공존할 경우 극대화됨을 알 수 있었다. 이는 AFM 분석에서 보여진 표면거칠기의 결과와 일치한다. 선행된 연구에서는 나노구조인 골 조직의 수산화 인회석 결정은 길이 20-40 nm, 두께 4-6 nm이고 콜라겐은 길이 300 nm, 넓이 0.5 nm 및 둘레 67 nm의 범위를 이루고 있어서 임플란트 표면에 골이 결합되기 좋은 환경으로 유도하기 위해서는 1-100 nm 정도의 나노 재료가 골 세포성장 하는데 유 리한 영향을 미치는 것으로 보고되었다16).

이상과 같이 연구결과를 살펴본 결과, PEO 처리 후 마그네슘이 도핑된 수산화인 회석을 코팅한 Ti-25Ta-15Hf 합금의 표면에서 마이크로와 나노 단위의 표면이 형 성되고 세포의 증식과 성장을 유도하여 생체적합성이 가장 우수한 결과를 보였다.

Fig. 34. FE-SEM images of MG63 cell cultured on various surface-treated Ti-25Ta-15Hf alloy for 24h: (a) non-treated, (b) PEO-270, (c) PEO-270 and HA coated, and (d) PEO-270 and 20Mg-HA coated.

Fig. 35. FE-SEM images of MG63 cell cultured on various surface-treated Ti-25Ta-15Hf alloy for 72h: (a) non-treated, (b) PEO-270, (c) PEO-270 and HA coated, and (d) PEO-270 and 20Mg-HA coated.

제 5 장 결 론

본 연구에서는 치과용 임플란트로 사용하기 위해 개발된 Ti-25T-xHf(x=0,3,7 및 15 wt.%) 합금 표면에 플라즈마 전해 산화법으로 산화피막 형성 후, 전기화학적 방법으로 HA 및 Mg-HA를 코팅하여 표면특성을 조사한 결과 다음과 같은 결론을 얻 었다.

1. Ti-25Ta-xHf 합금의 미세조직은 Hf이 증가함에 따라 침상구조에서 등축정구조 로 변화되었고 침상구조의 α'-상은 Hf의 함량이 증가함에 따라 α"상으로 변화 되었다.

2. 동전위 분극시험에서 Ti-25Ta-xHf합금의 부식특성은 Hf의 함량이 증가함에 따 라 높은 부식전위와 낮은 부식전류밀도를 나타냈다. 교류 임피던스시험에서 분 극저항은 300V에서 Ti-25Ta-15Hf 합금 표면에 PEO처리 한 경우가 PEO 처리하지 않은 것, 그리고 240V와 270V에서 처리한 경우에 비하여 크게 증가하였다.

3. Ti-25Ta-xHf에서 PEO처리 후 양극산화층을 분석한 결과, 인가전압에 따라 기공 의 크기가 증가하였고, 균일하게 배열된 양상을 보였다. 표면에 형성된 Ca/P의 비율은 인가전압과 Hf함량의 증가에 따라 증가하였다. PEO처리한 모든 시편에서 표면의 산화피막은 anatase 구조를 보였고 인가된 전압에 비례하여 결정의 크기 가 증가하였으며 300V에서는 균열이 관찰되었다.

4. Mg-Hg 석출표면의 형상은 bulk상태의 Ti-25Ta-xHf 합금표면에서 막대모양 (rod-like)의 Mg-HA의 입자들이 보였고 이 형태는 Mg 함량이 증가함에 따라 기 공이 형성된 표면에서 판상 형태(plate-like)로 변화되었다. 20Mg-HA에서는 판 상 형태가 더욱 얇고 가늘게 나타났다. 표면 평균 거칠 값은 전해질에서 Mg 함 량이 증가됨에 따라 증가되었다.

5. 세포 실험 결과, 세포 성장은 마이크로 기공만 존재하는 경우 보다는 마이크로

기공과 나노단위의 석출물이 공존할 경우가 더 우수했고, 특히 HA 보다는 20Mg-HA가 석출된 시편에서 세포의 증식과 성장이 더 우수했다.

이상의 연구결과로, PEO 처리 후 마그네슘이 도핑된 수산화인회석을 코팅한 Ti-25Ta-15Hf 합금은 마이크로와 나노 단위의 표면이 형성됨으로써 세포의 증식과 성장을 유도하며 골과 임프란트 표면의 계면에서 골 유착을 향상시켜 우수한 환경 을 제공할 것으로 생각되며 공정과정이 간단하여 임플란트 표면처리 적용으로 용 이할 것으로 생각된다.

참 고 문 헌

1. C. Oldani, A. Dominguez, Titanium as a biomaterial for implants, F. Dr.

Samo (Ed.), Recent Advances in Arthroplasty (2012) 149.

2. M. Koike, H. Fujii, The corrosion resistance of pure titanium in organic acids, Biomaterials 22 (2001) 2931.

3. M. Niinomi, D. Kuroda, K. Fukunaga, M. Morinaga, Y. Kato, T. Yashiro, Corrosion wear fracture of new β type biomedical titanium alloys, A.

Suzuki, Mat. Sci. Eng. A. 263 (1999) 193.

4. M.A. Khan, R.L. Williams, D.F. Williams, The corrosion behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions, Biomaterials 20 (1999) 631.

5. D.A. Puleo, A. Nanci, Understanding and controlling the bone–implant interface, Biomaterials, 20 (1999) 2311.

6. M. Niinomi, Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti–29Nb–13Ta–4.6Zr, Biomaterials 24 (2003) 2673.

7. V.S. Saji, H.C. Choe, and W.A. Brantely, An electrochemical study on self-ordered nanoporous and nanotubular oxide on Ti–35Nb–5Ta–7Zr alloy for biomedical applications, Acta Biomater. 5 (2009)

8. Y.L. Zhou, M. Niinomi, T. Akahori, Decomposition of martensite α″

during aging treatments and resulting mechanical properties of Ti−Ta alloys, Mater. Sci. Eng. A 384 (2004) 92.

9. R. Godley, D. Starosvetsky, I. Gotman, Corrosion behavior of a low modulus β-Ti-45%Nb alloy for use in medical implants, J. Mater. Med. 17 (2006) 63.

10. Y.L. Zhou, M. Niinomi, T. Akahori, Changes in mechanical properties of Ti alloys in relation to alloying additions of Ta and Hf, Mater. Sci.

Eng. A 483 (2008) 153.

11. Z. Cai, M. Koike, H. Sato, M. Brezner, Q. Guo, M. Komatsu, O. Okuno, T.

Okabe, Electrochemical characterization of cast Ti–Hf binary alloys ,

Acta Biomater. 1 (2005) 353.

12. C. Sittig, M. Textor, N.D. Spencer, M. Wieland, P.H. Vallotton, Surface characterization, J. Mater. Sci; Mater. Med., 10 (1999) 35.

13. H.M. Jung, C. Yoo, S.J. Park, H.C. Choe, Y.M. Ko, A study on microstructrre characteristics of oxide film and processing factor of titanium implant by electrochemical method, 대한치과재료학회지 33 (2006) 303.

14. M.C. Andrade, M.S. Sader, M.R.T Filgueiras, T. Orasawara, Microstructure of ceramic coating on titanium surface as a result of hydrothermal treatment, J. Mater. Sci; Mater. Med., 11 (2000) 751.

15. K. Alvarez, H. Nakajima, Metallic scaffolds for bone regeneration, Materials, 2 (2009) 790.

16. A.l. Chun, J.G. Moralez, H. Fenniri, T.J. Webster, Helical rosette nanotubes : a more effective orthopaedic implant material, Nanotechnology 15 (2004) 234.

17. H.J. Song, Advanced surface modification techniques for enhancing osseointegration of titanium implant, J Korean Dent. Assoc. 48 (2010) 97.

18. P. Habibovic, J.E. Barralet, Bioinorganics and biomaterials: bone repair, Acta Biomater., 7 (2011) 3013.

19. E. Bertoni, A. Bigi, G. Cojazzi, M. Gandolfi, S. Panzavolta, N. Roveri, Nanocrystals of magnesium and fluoride substituted hydroxyapatite, J.

Inorg. Biochem. 72 (1998) 29.

20. S.J. Kalita, H.A. Bhatt, Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization, Mater. Sci. Eng. C 27 (2007) 837.

21. B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, Biomaterials science: an introduction to materials in medicine, Academic Press, New York (1996)

22. J.B. Park, Biomaterials science and engineering, Plenum Press, New York,(1984)

23. M. Long, H.J. Rack, Titanium alloys in total joint replacement—a materials science perspective, Biomaterials, 19 (1998) 1621.

24. Medical devices(1983). Annual book of ASTM standard, sec.

25. Y. Okazaki, S. Rao, S. Asao, T. Tateishi, S. Katsuda, Y. Furuki, Effect of Ti, Al and V concentration of the relative growth ratio of Bio-Cells, J. Inst. Metals 9 (1996) 890.

26. 이용근, 치과재료의 생체적합성 평가, 대한치과의사협회지, 34 (1996) 640.

27. J. Oazaki, Y. Ito, A. Ito, T. Tateishi, Effect of alloying elements on mechanicl properties of titanium alloys for medical implant, J. inst.

Metals 57 (1993) 332.

28. S.G. Steinmann, Corrosion of surgical implants-in vivo and in vitro tests, Evaluation of Biomaterials (1980) 1.

29. M. McCracken, Dental implant materials: commercially pure titanium and titanium alloys, J.Prosthod, 8 (1999) 40.

30. E.W. Collings, Applied superconductivity, metallurgy, and physics of titanium alloys, vol. 1 and 2, Plenum Press, New York, 1986.

31. R. Boyer, G. Welsch, E.W, Collings, Materials properties handbook:

titanium alloys, ASM, Metals Park, Ohio (1993).

32. M. Niinomi, Mechanical properties of biomedical titanium alloys, Mater.

Sci. Eng., A 243 (1998) 231.

33. C. Chenglin, Z. Jingchuan, Y. Zhongda, L. Pinghua, Optimal design and fabrication of hydroxyapatite–Ti asymmetrical functionally graded biomaterial, Mater Sci Eng A 348 (2003) 244.

34. S.H. Jeong, Y.J. Park, B.S. Kim, H.J. Song, Effects of oxygen content on bioactivity of titanium oxide films fabricated on titanium by electron beam evaporation, J. Nanosci. Nanotechnol., 7 (2007) 3815 35. D.B. Lee, Y.D. Jang, M. Nakamura, High Temperature Oxidation of Ti-47%

Al-1% Mn Alloy. Mater. Trans., 43 (2002) 2531.

36. 정용수, 박영희, 장관섭, 문성모, 최진섭, 정윤미, 양극산화, 화신문화㈜, (2014) 274

37. A.C. Fraker, A.W. Ruff, P. Sung, A.C. Van Orden, K.M. Soeck, Surface

preparation and corrosion behavior of titanium alloys for surgical implants, ASTM, International (1983) 206.

38. D.A. Hanaor, C.C. Sorrell, Review of the anatase to rutile phase transformation, J. Mater. Sci., 46 (2011) 855.

39. P. Tengvall, I. Lundströom, Physico-chemical considerations of titanium as a biomaterial, Clinical Materials, 9 (1992) 115.

40. L.J. Bousse, Zeta potential measurements of Ta2O5 and SiO2 thin films, J. Colloid Interface Sci.,147. 1 (1991) 22.

41. G. Gonzalez, S.M. Saraiva, Isoelectric points for niobium and vanadium pentoxides, Journal of Dispersion Science and Technology, 15 (1994) 123.

42. D.M. Brunette, P. Tengvall, M. Textor, P. Thomsen, Principles of cell behavior on titanium surfaces and their application to implanted devices, In Titanium in medicine, Springer, Berlin, (2001) 485.

43. R. Van Noort, Titanium: The implant material of today, J. Mater. Sci., 22 (1987) 3801.

44. D. Buser, T. Nydegger, T. Oxlad, D.L. Cochran, R.K. Schenk, H.P. Hirt, D. Snetivy, L.P. Nolte, Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs, J. Biomed. Mater. Res. 45 (1999) 75.

45. A. Wennerberg, T. Albrektsson, C. Johansson, B. Andersson, Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography, Biomaterials 17 (1996) 15.

46. M. Kononen, M. Hormia, J. Kivilahti, J. Hautaniemi, I, Thesleff, Effect of surface processing on the attachment, orientation, and proliferation of human gingival fibroblasts on titanium, J. Biomed. Mater. Res. 26 (1992) 1325.

47. A. Nanci, J.D. Wuest, L. Peru, P. Brunet, V. Sharma, S. Zalzal, M.D.

McKee, Chemical modification of titanium surfaces for covalent attachment of biological molecules, J. Biomed. Mater. Res. 40 (1998)

324.

48. Z. Schwartz, J.Y. Martin, D.D. Dean, J. Simpson, D.L. Cochran, B.D.

Boyan, Effect of titanium surface roughness on chondrocyte proliferation, matrix production, and differentiation depends on the state of cell maturation, J. Biomed. Mater. Res. 30 (1996) 145.

49. H.M. Kim, F. Miyaji, T. Kokubo, T. Nakamura, Preparation of bioactive Ti and its alloys via simple chemical surface treatment, J. Biomed.

Mater. Res., 32 (1996) 409.

50. T. Kokubo, S. Ito, Z. Hayashi, S. Sakka, T. Kitsugi, T. Yamamoto, Ca, P-rich. Layer formed on High-Strength Bioactive Glass-Ceramic AW, J.

Biomed. Mater. Res., 24 (1990) 331.

51. H. Ishizawa, M. Ogino, Formation and characterization of anodic titanium oxide films containing Ca and P, J. Biomed. Mater. Res., 29 (1995) 65.

52. C. Yao, T.J. Webster, Anodization: a promising nano-modification technique of titanium implants for orthopedic applications, J. Nanosci.

Nanotechnol., 6 (2006) 2682.

53. A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Plasma electrolysis for surface engineering, Surf. Coat. Technol., 122 (1999) 73.

54. 김해원, 김현이, 생체세라믹스의 이용과 최근 연구동향, 세라미스트, 7 (2004) 11.

55. R.Z. LeGeros, Materials for Bone Repair, Augmentation and implant coatings, in proceedings of the international seminar of orthopedic research, 1990.

56. E.I. Get'man, T.M. Savankova, A.V. Ignatov, K.G. Didorenko, A.Y.

Talykova, L.I. Ardanova, Synthesis, characterization and electrical properties of Pb (8-x) Na2Ndx (Vo4) 6O (x/2) solid solutions, Functional Materials, 21 (2014) 247.

57. FCM Driessens (1982), Monographs in oral science 10 Karger.

58. E. Boanini, M. Gazzano, A. Bigi, Ionic substitutions in calcium

phosphates synthesized at low temperature, Acta Biomater., 6 (2010) 1882.

59. L. Yang, S. Perez-Amodio, Y.F. Florence, B.D. Groot, V. Everts, CAV.

Blitterswijk, P. Habibovic, The effects of inorganic additives to calcium phosphate on in vitro behavior of osteoblasts and osteoclasts, Biomaterials 31 (2010) 2976.

60. M. Sato, M.A. Sambito, A. Aslani, N.M. Kalkhoran, E.B. Slamovich, T.J.

Webster, Increased osteoblast functions on undoped and yttrium- doped nanocrystalline hydroxyapatite coatings on titanium, Biomaterials 27 (2006) 2358.

61. W. Xue, H.L. Hosick, A. Bandyopadhyay, S. Bose, C. Ding, K.D.K. Luk, K.M.C. Cheung, W.W. Lu, Preparation and cell–aterials interactions of plasma sprayed strontium-containing hydroxyapatite coating, Surf. Coat.

Technol., 201 (2007) 4685.

62. W. Xue, K. Dahlquist, A. Banerjee, A. Bandyopadhyay, S. Bose, Synthesis and characterization of tricalcium phosphate with Zn and Mg based dopants, J. Mater. Sci. Mater. Med., 19 (2008) 2669.

63. A. Bandyopadhyay, S. Bernard, W. Xue, S. Bose, Calcium phosphate-based resorbable ceramics: Influence of MgO, ZnO, and SiO2 dopants, J. Am.

Ceram. Soc., 89 (2006) 2675.

64. J.C. Elliott, Structure and chemistry of the apatites and other calcium orthophosphates, Amsterdam: Elsevier (1994).

65. D. McConnell, Apatite. Its crystal chemistry, mineralogy, utilization, and geologic and biologic occurrences, Wien: Springer-Verlag (1973).

66. X. Li, Y. Sogo, A. Ito, H. Mutsuzaki, N. Ochiai, T. Kobayashi, The optimum zinc content in set calcium phosphate cement for promoting bone formation in vivo, Mater. Sci. Eng., 29 (2009) 969.

67. F. Garcia, A. Ortega, J.L. Domingo, J. Corbella, Accumulation of metals in autopsy tissues of subjects living in Tarragona County, Spain, J.

Environ. Sci. Health, 36 (2001) 1767.

68. E.M. Carlisle, Silicon: a possible factor in bone calcification,

Science, 167 (1970) 279.

69. R.K. Rude, F.R. Singer, H.E. Gruber. Skeletal and hormonal effects of magnesium deficiency, J. Am. Coll. Nutr. 28 (2009) 131.

70. E. Landi, G. Logroscino, L. Proietti, A. Tampieri, M. Sandri, S. Sprio, Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behavior, J. Mater. Sci.: Mater. Med., 19 (2008) 239.

71. K. Matsunga, First-principles study of substitutional magnesium and zinc in hydroxyapatite and octacalcium phosphate, J. Chem. Phys. 128 (2008).

72. F. Ren, Y. Leng, R. Xin, X. Ge, Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite, Acta Biomater., 6 (2010) 2787.

73. S.R. Kim, J.H. Lee, Y.T. Kim, D.H. Riu, S.J. Jung, Y.J. Lee, S.C.

Chung, Y.H. Kim, Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviour, Biomaterials 24 (2003) 1389.

74. E. Landi, A. Tampieri, M. Mattioli-Belmonte, G. Celotti, M. Sandri, A.

Gigante, P. Fava, G. Biagini, Biomimetic Mg- and Mg,CO3-substituted hydroxyapatites: synthesis characterization and in vitro behavior, J.

Eur. Ceram. Soc., 26 (2006) 2593.

75. Y Cui, R Xu and D. Li(1997). Experimental studies of the ω phase in a titanium alloy, in Japan-China Workshop on Titanium Alloys and Intermetallics, NRM 111.

76. D. Eylon, R.R. Boyer, D.A. Koss(1990) Beta titanium alloys in 1990' s.AIME.

77. Y. Murakami, Phase Transformation and Heat Treatment, Titanium`80, Science and Technology, 1 (1980) 153.

78. K.A. Bywater, J.W. Christian, Martensitic transformations in titanium-tantalum alloys, Philos. Mag. A 25 (1972) 1249.

79. J.J. Kim, Y.M. Kim, H.C. Choe, Proceedings of the 6th International Symposium on Functional Materials (2014) 219.

80. J.H. Schemel, ASTM manual on zirconium and hafnium, ASTM Int. (1977) 1.

81. 김정재, 최한철, 춘계대한금속학회 논문발표 초록집 (2014) 258.

82. J.J. Kim, Y.M. Kim, H.C. Choe, Proceedings of 19th International Corrosion Congress (2014) 119.

83. J.J. Kim, I.S. Byeon, W.A. Brantley, H.C. Choe, Highly ordered nanotubular film formation on Ti–25Nb–xZr and Ti–25Ta–xHf, Thin Solid Films, 596 (2015) 94.

84. U. Brägger, W. Bürgin, N.P. Lang, D. Buser, Digital subtraction radiography for the assessment of changes in peri-implant bone density, Int. J. Oral. Maxillofac. Implants, 6 (1991) 160.

85. Z. Schwartz, C.H. Lohmann, J. Oefinger, L.F. Bonewald, D.D. Dean, B.D.

Boyan, Implant surface characteristics modulate differentiation behavior of cells in the osteoblastic lineage, Adv. Dent. Res., 13 (1999) 38.

86. D.M. Brunette, B. Chehroudi, The Effects of the surface topography of micromachined titanium substrata on cell behavior in vitro and in vivo, J. Biomech. Eng. 121 (1999) 49.

87. Y.J. Lee, B.U. Lee, Y.S. Kim,  Current studies of implant surface treatment-in perspective of bone healing mechanism, Implantology, 12 (2003)12.

88. R. Bizios, Mini-review: Osteoblasts: An in vitro model of bone-implant interactions, Biotechnol. Bioeng. 43 (1994) 582.

89. J.E. Davies, In vitro modeling of the bone/implant interface, Anat.

Record, 245 (1996) 426.

90. J.J. Kim, H.C. Choe, Proceedings of Thin Films (2014) 54.

91. 김정재, 이강, 최한철, 추계대한금속재료학회 논문발표 초록집 (2015) 58.

92. M.V. Diamanti, B.D. Curto, M. Pedeferri, Anodic oxidation of titanium:

from technical aspects to biomedical applications. J. Appl. Biomater.

Biomech., 9 (2011) 55.

93. K.H. Dittrich, W. Krysmann, P. Kurze, H.G. Schneider, Structure and properties of ANOF layers, Crystal Res. Technol., 19 (1984) 93.

94. H. Tsuchiya, P. Schmuki, Self-organized high aspect ratio porous

Dalam dokumen 저작자표시 (Halaman 107-126)