6) Tang, F., Zhou, Y., & Kato, N. (2020). Deep reinforcement learning for dynamic uplink/downlink resource allocation in high mobility 5G HetNet. IEEE Journal on selected areas in communications, 38(12), 2773-2782.
7) Adedoyin, M. A., & Falowo, O. E. (2020). Combination of ultra-dense networks and other 5G enabling technologies: A survey. IEEE Access, 8, 22893-22932.
8) 고남석;박노익;김선미. (2021). 6G 모바일 코어 네트워크 기술 동향 및 연구 방향. 전자통신동향분석, 2021, 1-12. 10.22648/ETRI.2021.J.360401
9) Liang, F., Shen, C., Yu, W., & Wu, F. (2019). Towards optimal power control via ensembling deep neural networks. IEEE Transactions on Communications, 68(3), 1760-1776.
10) Zhao, N., Liang, Y. C., Niyato, D., Pei, Y., Wu, M., & Jiang, Y. (2019). Deep reinforcement learning for user association and resource allocation in heterogeneous cellular networks. IEEE Transactions on Wireless Communications, 18(11), 5141-5152.
11) Ma, B., Guo, W., & Zhang, J. (2020). A survey of online data-driven proactive 5G network optimisation using machine learning. IEEE Access, 8, 35606-35637.
12) 앤드류스 텍사스대 교수 "6G 시대, 높은 전송 속도·초연결·상황인지 기술 필수", AI타임스, 2022.05.16.
http://www.aitimes.com/news/articleView.html?idxno=144582
13) Rahman, I., Razavi, S. M., Liberg, O., Hoymann, C., Wiemann, H., Tidestav, C., ... & Gerstenberger, D. (2021). 5G evolution toward 5G Advanced: An overview of 3GPP releases 17 and 18. Ericsson Technology Review, 2021(14), 2-12.
14) NOKIA. (2021). 5G-Advanced: Expanding 5G for the connected world, NOKIA White paper, https://onestore.nokia.com/asset/210984?_ga=2.225330905.236247623.1670292730-145358675 3.1670292730
15) Khan, A., Gupta, S., & Gupta, S. K. (2022). Emerging UAV technology for disaster detection, mitigation, response, and preparedness. Journal of Field Robotics.
16) 신아영, & 임유진. (2022). UAV 지원 MEC 시스템의 로드 밸런싱과 에너지 효율성을 고려한 강화학습 기반
태스크 마이그레이션. 한국정보처리학회 학술대회논문집, 29(1), 74-77.
17) 한국지능정보사회진흥원. (2022). Beyond 5G(B5G)를 위한 공중 통신 플랫폼, AI Network Lab Insight, Vol.5
18) International Telecommunication Union. (2015). IMT Traffic Estimates for the Years 2020 to 2030.. Report ITU, 2370.
19) Zhang, S., Zeng, Y., & Zhang, R. (2018). Cellular-enabled UAV communication: A connectivity-constrained trajectory optimization perspective. IEEE Transactions on Communications, 67(3), 2580-2604.
20) Cai, Y., Wei, Z., Li, R., Ng, D. W. K., & Yuan, J. (2020). Joint trajectory and resource allocation design for energy-efficient secure UAV communication systems. IEEE Transactions on Communications, 68(7), 4536-4553.
21) Zhao, J., Liu, J., Jiang, J., & Gao, F. (2020). Efficient deployment with geometric analysis for mmWave UAV communications. IEEE Wireless Communications Letters, 9(7), 1115-1119.
22) Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021).
Physics-informed machine learning. Nature Reviews Physics, 3(6), 422-440.
23) Lu, L., Jin, P., & Karniadakis, G. E. (2019). Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators. arXiv preprint arXiv:1910.03193.
24) Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics, 378, 686-707.
25) Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021).
Physics-informed machine learning. Nature Reviews Physics, 3(6), 422-440.
26) Marketsandmarkets. (2022). Smart Factory Market - Analysis and Forecast to 2027
27) NVIDIA. (2021). Accelerating Product Development with Physics-Informed Neural Networks and NVIDIA Modulus,
https://developer.nvidia.com/blog/accelerating-product-development-with-physics-informed-neural- networks-and-modulus/
28) Siemens. (2022). Simultelligence
https://www.siemens.com/global/en/company/stories/research-technologies/artificial-intelligence/si multelligence.html
29) Su, J., Vargas, D. V., & Sakurai, K. (2019). One pixel attack for fooling deep neural networks. IEEE Transactions on Evolutionary Computation, 23(5), 828-841.
30) Zhu, Y., & Jiang, Y. (2021). Imperceptible adversarial attacks against traffic scene recognition.
Soft Computing, 25(20), 13069-13077.
31) http://www.aitimes.com/news/articleView.html?idxno=136220 32) http://www.aitimes.com/news/articleView.html?idxno=144975
33) Yin, J., Li, Y. H., Liao, S. K., Yang, M., Cao, Y., Zhang, L., ... & Pan, J. W. (2020).
Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature, 582(7813),
501-505.
34) Thomas, P., Ruscio, L., Morin, O., & Rempe, G. (2022). Efficient generation of entangled multi-photon graph states from a single atom. arXiv preprint arXiv:2205.12736.
35) 정지형, 최병철. (2019). 빛의 속도로 계산하는 꿈의 컴퓨터, 양자 컴퓨터, KISTEP Issue Paper, 265.
36) 이혁성. (2019). 양자컴퓨터 기술 동향 및 산업 응용, 한국콘텐츠학회 17(2), 25-28.
https://koreascience.kr/article/JAKO201918454914289.pdf
37) 고영호 등. (2019). 양자 정보기술을 위한 양자 광원 연구 동향, 전자통신동향분석 34(5), 99-112.
38) 고영호 등. (2019). 양자 정보기술을 위한 양자 광원 연구 동향, 전자통신동향분석 34(5), 99-112.
39) https://www.giikorea.co.kr/report/infi991134-global-quantum-computing-market.html 40) 심동희. (2021). 양자 암호 보안 표준화 동향, 정보보호학회지 31(3), 23-27.
https://koreascience.kr/article/JAKO202125761250597.pdf
41) 한국과학기술정보연구원. (2022). 포스트 퀀덤시대의 안전한 통신을 위한 KREONET, KISTI ISSUE BRIEF 48.
42) 고영호 등. (2019) 양자 정보기술을 위한 양자 광원 연구 동향, 전자통신동향분석 34(5), 99-122.
https://ettrends.etri.re.kr/ettrends/179/0905179011/34-5_99-112.pdf
43) https://www.giikorea.co.kr/report/qyr1068406-global-quantum-key-distribution-qkd-market-size.html 44) KISTEP 수요포럼 포커스. (2022). 양자통신의 미래-양자암호에서 양자인터넷으로, 138회.
45) Benjamens, S., Dhunnoo, P., & Mesk ó , B. (2020). The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ digital medicine, 3(1), 1-8.
46) Keil, A. P., Buckley, J. P., O’Brien, K. M., Ferguson, K. K., Zhao, S., & White, A. J. (2020). A quantile-based g-computation approach to addressing the effects of exposure mixtures.
Environmental health perspectives, 128(4), 047004.
47) Austin, P. C., & Fine, J. P. (2019). Propensity‐score matching with competing risks in survival analysis. Statistics in medicine, 38(5), 751-777.
48) Athey, S., Tibshirani, J., & Wager, S. (2019). Generalized random forests. The Annals of Statistics, 47(2), 1148-1178.
49) Biele, G., Gustavson, K., Czajkowski, N. O., Nilsen, R. M., & Reichborn-Kjennerud, T. Per Minor Magnus, Camilla Stoltenberg, and Heidi Aase. 2019.“Bias from Self Selection and Loss to Follow-up in Prospective Cohort Studies.”. European Journal of Epidemiology, 34(10), 1-12.
50) Eldh, A. C., Almost, J., DeCorby-Watson, K., Gifford, W., Harvey, G., Hasson, H., ... & Yost, J.
(2017). Clinical interventions, implementation interventions, and the potential greyness in between-a discussion paper. BMC health services research, 17(1), 1-10.
51) Mattia, P., Guo, Y., Matt, S., Koopman, J. S., Min, J. S., He, X., ... & Bian, J. (2020). Causal inference and counterfactual prediction in machine learning for actionable healthcare. Nature Machine Intelligence, (7), 369-375.
52) 미 FDA 홈페이지, (2022). Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices,
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-mach ine-learning-aiml-enabled-medical-devices
53) Markets and markets. (2022). AI in Healthcare Market - Analysis and Forecast to 2027
Dalam dokumen
디지털 전환과 혁신을 이끄는 미래과학기술
(Halaman 111-114)