• Tidak ada hasil yang ditemukan

향후 연구 방향

Dalam dokumen 비영리 - S-Space - 서울대학교 (Halaman 129-143)

중요 장소 추출 연구, 사용자 행위 추론 연구, 목적지 예측 연구 를 수행하기 위해 구축한 라이프 로그 수집 플랫폼은 본 연구를 통 해 라이프 로그 연구를 수행하기 위해 필요한 과정임을 확인하였다. 구축한 플랫폼의 범용성 및 활용성을 개선하기 위해서는 시간이나 공간에 의한 1차원적인 조건을 기반으로 작업을 수행하는 것에서 더 나아가 복합적인 조건에 대해서 작업을 수행할 수 있도록 확장 하고, 점점 더 중요성이 높아져가는 개인정보 보호 및 보안을 위한 시스템 고도화의 수행이 필요하고, 이러한 일련의 개선 과정을 통해 좀 더 다양한 연구에 대해 유연하게 실험을 수행할 수 있은 플랫폼 을 제공해 줄 수 있을 것으로 기대된다.

본 연구에서 수행한 중요 장소 추출 연구는 이상점이 다수 존재 하는 현실적인 상황에서 장소를 추출하는 방법론을 제시하였다. 제 시한 방법론은 행위 추론 연구를 위한 중요 장소 추출에 활용되어 그 효과성을 확인하였지만 그 이외의 응용에 대해서는 적용사례가 부족하기 때문에 이에 대한 추후 연구가 필요할 것으로 판단된다. 또한 제시한 방법론은 개인별 중요 장소 추출에 집중한 모형이었지 만 다수의 사용자들에 대한 정보가 확보되면 이를 바탕으로 다중 사용자를 위한 중요 장소 추출 모형으로 개선하는 것도 추후 연구 과제라고 할 수 있다. 마지막으로 장소에 대한 의미 정보가 점차 누 적되고 공개되고 있는 상황에서 이들 정보와 융합하여 좀 더 정교 하게 의미 장소를 추출하거나, 더 나아가 숨겨져 있던 새로운 장소 구분을 도출하는 방향으로 연구가 가능할 것으로 기대된다.

본 연구에서 제안한 행위 추론 모형은 고수준 행위를 현재와 과

120

거의 데이터를 기반으로 예측하는 방법론을 제시하였으며, 기존 대 비 개선된 성능을 보여줌을 확인하였다. 하지만 많은 고수준 행위의 경우 실제적 응용에 사용하기에는 부족한 분류 성능을 제공하기 때 문에 이를 개선할 수 있는 방법론에 대한 지속적 연구가 필요하다 고 할 수 있다. 본 연구에서 사용한 고수준 행위 분류는 관리의 관 점에서 편의를 위해 구분한 분류체계로 기계가 학습을 수행하기에 적합한 분류체계와는 차이가 존재할 수 있다. 따라서 학습에 적합한 형태의 새로운 계층형 고수준 분류 체계를 확립하고 이를 바탕으로 행위 추론을 하는 연구가 필요할 것으로 판단된다.

사용자에 대한 과거와 현재에 대한 이동 기록이 주어졌을 때 방 문할 목적지를 예측하는 방법론을 제안하였으며, 장소들에 대한 사 전 정보가 주어지지 않는 응용에 대해서는 기존 방법론 대비 개선 된 성능을 제공함을 확인하였다. 목적지를 예측하기 위해 사용되는 정보가 적다는 것은 다양한 응용에 폭넓게 사용할 수 있다는 장점 이 있는 반면, 장소에 대한 의미 정보나 사용자의 기호 정보와 같은 예측의 성능을 개선할 수 있는 정보가 주어진 경우에는 이를 활용 하지 못한다는 한계점이 있다. 따라서 사용자의 이동 기록 이외에 이러한 추가 정보가 주어졌을 시 이를 함께 반영하여 예측의 성능 을 높이는 연구를 병행할 필요성이 있다. 또한 사람을 대상으로 하 여 일주일 기반의 주기성을 가정하고 예측을 수행하였지만, 더 나아 가 주기성을 자동으로 도출하고 이를 활용하는 추가 연구가 필요할 것으로 판단된다.

121

참고 문헌

[1] J. K. Laurila, D. Gatica-Perez, I. Aad, J. Blom, O. Bornet, T.-M.-T. Do, O. Dousse, J. Eberle, and M. Miettinen, “The mobile data challenge: Big data for mobile computing research,” in Proceedings of the Workshop on the Nokia Mobile Data Challenge, in Conjunction with the 10th International Conference on Pervasive Computing, 2012, pp. 1–8.

[2] N. Aharony, “A data-rich approach for investigating social mechanisms in the wild,” in Proceedings of the 13th international conference on Ubiquitous computing, New York, NY, USA, 2011, pp. 499–502.

[3] F. Asgari, V. Gauthier, and M. Becker, “A survey on Human Mobility and its applications,” arXiv e-print 1307.0814, Jul. 2013.

[4] N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman, “Activity recognition from accelerometer data,” in Proceedings of the national conference on artificial intelligence, 2005, vol. 20, p. 1541.

[5] J. Yang, “Toward physical activity diary: motion recognition using simple acceleration features with mobile phones,” in Proceedings of the 1st international workshop on Interactive multimedia for consumer electronics, New York, NY, USA, 2009, pp. 1–10.

[6] R. Kadlec and C. Brom, “Towards an automatic diary: an activity recognition from data collected by a mobile phone,” in Workshop proceedings Space, Time and Ambient Intelligence, IJCAI, 2011, pp. 56–

60.

[7] T. Huynh, M. Fritz, and B. Schiele, “Discovery of activity patterns using topic models,” in Proceedings of the 10th international conference on Ubiquitous computing, New York, NY, USA, 2008, pp. 10–19.

[8] V. Bellotti, B. Begole, E. H. Chi, N. Ducheneaut, J. Fang, E. Isaacs, T.

King, M. W. Newman, K. Partridge, B. Price, P. Rasmussen, M. Roberts, D. J. Schiano, and A. Walendowski, “Activity-based serendipitous recommendations with the Magitti mobile leisure guide,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, New York, NY, USA, 2008, pp. 1157–1166.

[9] S. Gambs, M.-O. Killijian, and M. N. del Prado Cortez, “Next place prediction using mobility Markov chains,” in Proceedings of the First Workshop on Measurement, Privacy, and Mobility, New York, NY, USA,

122 2012, pp. 3:1–3:6.

[10] J. Wang and B. Prabhala, “Periodicity based next place prediction,” in Nokia Mobile Data Challenge 2012 Workshop. p. Dedicated task, 2012, vol. 2.

[11] J. J.-C. Ying, W.-C. Lee, T.-C. Weng, and V. S. Tseng, “Semantic trajectory mining for location prediction,” in Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, New York, NY, USA, 2011, pp. 34–43.

[12] L.-Y. Wei, Y. Zheng, and W.-C. Peng, “Constructing popular routes from uncertain trajectories,” in Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, New York, NY, USA, 2012, pp. 195–203.

[13] F. Calabrese, G. Di Lorenzo, and C. Ratti, “Human mobility prediction based on individual and collective geographical preferences,” in 2010 13th International IEEE Conference on Intelligent Transportation Systems (ITSC), 2010, pp. 312–317.

[14] D. Wang, D. Pedreschi, C. Song, F. Giannotti, and A.-L. Barabasi,

“Human mobility, social ties, and link prediction,” in Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, New York, NY, USA, 2011, pp. 1100–1108.

[15] T. Choudhury, S. Consolvo, B. Harrison, J. Hightower, A. LaMarca, L.

LeGrand, A. Rahimi, A. Rea, G. Bordello, B. Hemingway, P. Klasnja, K.

Koscher, J. A. Landay, J. Lester, D. Wyatt, and D. Haehnel, “The Mobile Sensing Platform: An Embedded Activity Recognition System,” IEEE Pervasive Comput., vol. 7, no. 2, pp. 32 –41, Jun. 2008.

[16] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state and future challenges,” IEEE Commun. Mag., vol. 49, no. 11, pp. 32 –39, Nov. 2011.

[17] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi, S.

B. Eisenman, X. Zheng, and A. T. Campbell, “Sensing meets mobile social networks: the design, implementation and evaluation of the CenceMe application,” in Proceedings of the 6th ACM conference on Embedded network sensor systems, New York, NY, USA, 2008, pp.

337–350.

[18] J. H. Kang, W. Welbourne, B. Stewart, and G. Borriello, “Extracting Places from Traces of Locations,” in Proceedings of the 2nd ACM International Workshop on Wireless Mobile Applications and Services

123

on WLAN Hotspots, New York, NY, USA, 2004, pp. 110–118.

[19] L. Liao, D. Fox, and H. Kautz, “Extracting Places and Activities from GPS Traces Using Hierarchical Conditional Random Fields,” Int. J.

Robot. Res., vol. 26, no. 1, pp. 119–134, Jan. 2007.

[20] M. Nanni and D. Pedreschi, “Time-focused clustering of trajectories of moving objects,” J. Intell. Inf. Syst., vol. 27, no. 3, pp. 267–289, Nov.

2006.

[21] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T.

Campbell, “A survey of mobile phone sensing,” IEEE Commun. Mag., vol. 48, no. 9, pp. 140 –150, Sep. 2010.

[22] L. Atallah and G.-Z. Yang, “The use of pervasive sensing for behaviour profiling—a survey,” Pervasive Mob. Comput., vol. 5, no. 5, pp. 447–

464, 2009.

[23] N. Eagle and A. (Sandy) Pentland, “Reality mining: sensing complex social systems,” Pers. Ubiquitous Comput, vol. 10, no. 4, pp. 255–268, Mar. 2006.

[24] K.-H. Kim, S.-J. Lee, and P. Congdon, “On cloud-centric network architecture for multi-dimensional mobility,” in Proceedings of the first edition of the MCC workshop on Mobile cloud computing, New York, NY, USA, 2012, pp. 1–6.

[25] O. D. Lara and M. A. Labrador, “A survey on human activity recognition using wearable sensors,” IEEE Commun. Surv. Tutor., vol.

15, no. 3, pp. 1192–1209, 2013.

[26] S. A. Hoseini-Tabatabaei, A. Gluhak, and R. Tafazolli, “A survey on smartphone-based systems for opportunistic user context recognition,”

ACM Comput. Surv. CSUR, vol. 45, no. 3, p. 27, 2013.

[27] P. Wu, J. Zhu, and J. Y. Zhang, “Mobisens: A versatile mobile sensing platform for real-world applications,” Mob. Netw. Appl., vol. 18, no. 1, pp. 60–80, 2013.

[28] E. Miluzzo, C. T. Cornelius, A. Ramaswamy, T. Choudhury, Z. Liu, and A. T. Campbell, “Darwin phones: the evolution of sensing and inference on mobile phones,” in Proceedings of the 8th international conference on Mobile systems, applications, and services, 2010, pp. 5–20.

[29] D. O. Olguín, B. N. Waber, T. Kim, A. Mohan, K. Ara, and A. Pentland,

“Sensible organizations: Technology and methodology for automatically measuring organizational behavior,” IEEE Trans. Syst. Man Cybern.

Part B Cybern., vol. 39, no. 1, pp. 43–55, 2009.

124

[30] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T. Campbell,

“SoundSense: scalable sound sensing for people-centric applications on mobile phones,” in Proceedings of the 7th international conference on Mobile systems, applications, and services, 2009, pp. 165–178.

[31] P. Klasnja and W. Pratt, “Healthcare in the pocket: mapping the space of mobile-phone health interventions,” J. Biomed. Inform., vol. 45, no. 1, pp. 184–198, 2012.

[32] Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong, B.

Krishnamachari, and N. Sadeh, “A framework of energy efficient mobile sensing for automatic user state recognition,” in Proceedings of the 7th international conference on Mobile systems, applications, and services, New York, NY, USA, 2009, pp. 179–192.

[33] K. K. Rachuri, C. Mascolo, M. Musolesi, and P. J. Rentfrow,

“Sociablesense: exploring the trade-offs of adaptive sampling and computation offloading for social sensing,” in Proceedings of the 17th annual international conference on Mobile computing and networking, 2011, pp. 73–84.

[34] C. Lee, G. Yoon, and D. Han, “A Probabilistic Place Extraction Algorithm Based on a Superstate Model,” Mob. Comput. IEEE Trans.

On, vol. 12, no. 5, pp. 945–956, May 2013.

[35] O. Dousse, J. Eberle, and M. Mertens, “Place Learning via Direct WiFi Fingerprint Clustering,” in 2012 IEEE 13th International Conference on Mobile Data Management (MDM), 2012, pp. 282–287.

[36] D. Ashbrook and T. Starner, “Using GPS to learn significant locations and predict movement across multiple users,” Pers. Ubiquitous Comput, vol. 7, no. 5, pp. 275–286, Oct. 2003.

[37] C. Zhou, N. Bhatnagar, S. Shekhar, and L. Terveen, “Mining Personally Important Places from GPS Tracks,” in 2007 IEEE 23rd International Conference on Data Engineering Workshop, 2007, pp. 517 –526.

[38] L. O. Alvares, V. Bogorny, B. Kuijpers, J. A. F. de Macedo, B. Moelans, and A. Vaisman, “A model for enriching trajectories with semantic geographical information,” in Proceedings of the 15th annual ACM international symposium on Advances in geographic information systems, 2007, p. 1.

[39] A. T. Palma, V. Bogorny, B. Kuijpers, and L. O. Alvares, “A clustering- based approach for discovering interesting places in trajectories,” in Proceedings of the 2008 ACM symposium on Applied computing, New

125 York, NY, USA, 2008, pp. 863–868.

[40] J. A. M. R. Rocha, G. Oliveira, L. O. Alvares, V. Bogorny, and V. C.

Times, “DB-SMoT: A direction-based spatio-temporal clustering method,” in Intelligent Systems (IS), 2010 5th IEEE International Conference, 2010, pp. 114 –119.

[41] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS:

ordering points to identify the clustering structure,” in ACM Sigmod Record, 1999, vol. 28, pp. 49–60.

[42] N. Pelekis, I. Kopanakis, E. E. Kotsifakos, E. Frentzos, and Y.

Theodoridis, “Clustering Trajectories of Moving Objects in an Uncertain World,” in Ninth IEEE International Conference on Data Mining, 2009.

ICDM ’09, 2009, pp. 417–427.

[43] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”

J. ACM JACM, vol. 46, no. 5, pp. 604–632, 1999.

[44] X. Cao, G. Cong, and C. S. Jensen, “Mining significant semantic locations from GPS data,” Proc. VLDB Endow., vol. 3, no. 1–2, pp.

1009–1020, Sep. 2010.

[45] Z. Yan, C. Parent, S. Spaccapietra, and D. Chakraborty, “A Hybrid Model and Computing Platform for Spatio-semantic Trajectories,” in The Semantic Web: Research and Applications, L. Aroyo, G. Antoniou, E. Hyvönen, A. ten Teije, H. Stuckenschmidt, L. Cabral, and T.

Tudorache, Eds. Springer Berlin Heidelberg, 2010, pp. 60–75.

[46] Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and K. Aberer,

“SeMiTri: a framework for semantic annotation of heterogeneous trajectories,” in Proceedings of the 14th International Conference on Extending Database Technology, New York, NY, USA, 2011, pp. 259–

270.

[47] Z. Yan, N. Giatrakos, V. Katsikaros, N. Pelekis, and Y. Theodoridis,

“SeTraStream: Semantic-Aware Trajectory Construction over Streaming Movement Data,” in Advances in Spatial and Temporal Databases, D.

Pfoser, Y. Tao, K. Mouratidis, M. A. Nascimento, M. Mokbel, S.

Shekhar, and Y. Huang, Eds. Springer Berlin Heidelberg, 2011, pp. 367–

385.

[48] G. Marketos, E. Frentzos, I. Ntoutsi, N. Pelekis, A. Raffaetà, and Y.

Theodoridis, “Building real-world trajectory warehouses,” in Proceedings of the 7th ACM International Workshop on Data Engineering for Wireless and Mobile Access, New York, NY, USA, 2008,

126 pp. 8–15.

[49] S. Phithakkitnukoon, T. Horanont, G. D. Lorenzo, R. Shibasaki, and C.

Ratti, “Activity-Aware Map: Identifying Human Daily Activity Pattern Using Mobile Phone Data,” in Human Behavior Understanding, A. A.

Salah, T. Gevers, N. Sebe, and A. Vinciarelli, Eds. Springer Berlin Heidelberg, 2010, pp. 14–25.

[50] J. Wu, A. Osuntogun, T. Choudhury, M. Philipose, and J. M. Rehg, “A Scalable Approach to Activity Recognition based on Object Use,” in IEEE 11th International Conference on Computer Vision, 2007. ICCV 2007, 2007, pp. 1 –8.

[51] A. Madabhushi and J. K. Aggarwal, “A Bayesian approach to human activity recognition,” in Visual Surveillance, 1999. Second IEEE Workshop on, (VS’99), 1999, pp. 25 –32.

[52] J. Lester, T. Choudhury, N. Kern, G. Borriello, and B. Hannaford, “A hybrid discriminative/generative approach for modeling human activities,” in Proceedings of the 19th international joint conference on Artificial intelligence, 2005, pp. 766–772.

[53] P. Turaga, R. Chellappa, V. S. Subrahmanian, and O. Udrea, “Machine Recognition of Human Activities: A Survey,” IEEE Trans. Circuits Syst.

Video Technol., vol. 18, no. 11, pp. 1473–1488, 2008.

[54] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “Human Activity Recognition on Smartphones Using a Multiclass Hardware- Friendly Support Vector Machine,” in Ambient Assisted Living and Home Care, vol. 7657, J. Bravo, R. Hervás, and M. Rodríguez, Eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 216–223.

[55] M. G. J and K. S. Gayathri, “Activity Modeling in Smart Home using High Utility Pattern Mining over Data Streams,” arXiv e-print 1306.5982, Jun. 2013.

[56] P. Lukowicz, H. Junker, M. Stäger, T. von Büren, and G. Tröster,

“WearNET: A Distributed Multi-sensor System for Context Aware Wearables,” in UbiComp 2002: Ubiquitous Computing, G. Borriello and L. E. Holmquist, Eds. Springer Berlin Heidelberg, 2002, pp. 361–370.

[57] E. M. Tapia, S. S. Intille, and K. Larson, “Activity Recognition in the Home Using Simple and Ubiquitous Sensors,” in Pervasive Computing, vol. 3001, A. Ferscha and F. Mattern, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 158–175.

[58] T. V. Duong, H. H. Bui, D. Q. Phung, and S. Venkatesh, “Activity

127

recognition and abnormality detection with the switching hidden semi- Markov model,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, 2005, vol. 1, pp. 838 – 845 vol. 1.

[59] J. Lester, T. Choudhury, and G. Borriello, “A Practical Approach to Recognizing Physical Activities,” in Pervasive Computing, K. P. Fishkin, B. Schiele, P. Nixon, and A. Quigley, Eds. Springer Berlin Heidelberg, 2006, pp. 1–16.

[60] E. M. Tapia, S. S. Intille, W. Haskell, K. Larson, J. Wright, A. King, and R. Friedman, “Real-time recognition of physical activities and their intensities using wireless accelerometers and a heart rate monitor,” in Wearable Computers, 2007 11th IEEE International Symposium on, 2007, pp. 37–40.

[61] J. Parkka, M. Ermes, P. Korpipaa, J. Mantyjarvi, J. Peltola, and I.

Korhonen, “Activity classification using realistic data from wearable sensors,” IEEE Trans. Inf. Technol. Biomed., vol. 10, no. 1, pp. 119–128, 2006.

[62] U. Maurer, A. Smailagic, D. P. Siewiorek, and M. Deisher, “Activity recognition and monitoring using multiple sensors on different body positions,” in Wearable and Implantable Body Sensor Networks, 2006.

BSN 2006. International Workshop on, 2006, p. 4–pp.

[63] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.

[64] O. D. Lara and M. A. Labrador, “A mobile platform for real-time human activity recognition,” in Consumer Communications and Networking Conference (CCNC), 2012 IEEE, 2012, pp. 667–671.

[65] M. Berchtold, M. Budde, D. Gordon, H. R. Schmidtke, and M. Beigl,

“Actiserv: Activity recognition service for mobile phones,” in Wearable Computers (ISWC), 2010 International Symposium on, 2010, pp. 1–8.

[66] L. Bao and S. S. Intille, “Activity recognition from user-annotated acceleration data,” in Pervasive computing, Springer, 2004, pp. 1–17.

[67] D. Riboni and C. Bettini, “COSAR: hybrid reasoning for context-aware activity recognition,” Pers. Ubiquitous Comput., vol. 15, no. 3, pp. 271–

289, 2011.

[68] Y.-P. Chen, J.-Y. Yang, S.-N. Liou, G.-Y. Lee, and J.-S. Wang, “Online classifier construction algorithm for human activity detection using a tri- axial accelerometer,” Appl. Math. Comput., vol. 205, no. 2, pp. 849–860, 2008.

128

[69] S. Lee, H. X. Le, H. Q. Ngo, H. I. Kim, M. Han, Y.-K. Lee, and others,

“Semi-Markov conditional random fields for accelerometer-based activity recognition,” Appl. Intell., vol. 35, no. 2, pp. 226–241, 2011.

[70] V. Etter, M. Kafsi, and E. Kazemi, “Been there, done that: What your mobility traces reveal about your behavior,” in Nokia Mobile Data Challenge 2012 Workshop. p. Dedicated task, 2012, vol. 2.

[71] L. Song, D. Kotz, R. Jain, and X. He, “Evaluating Next-Cell Predictors with Extensive Wi-Fi Mobility Data,” IEEE Trans. Mob. Comput., vol. 5, no. 12, pp. 1633–1649, 2006.

[72] M. Lin and W.-J. Hsu, “Mining GPS data for mobility patterns: A survey,” Pervasive Mob. Comput., 2013.

[73] B. D. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson, J. A.

Bagnell, M. Hebert, A. K. Dey, and S. Srinivasa, “Planning-based prediction for pedestrians,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. IROS 2009, 2009, pp. 3931–3936.

[74] K. Farrahi and D. Gatica-Perez, “What did you do today?: discovering daily routines from large-scale mobile data,” in Proceedings of the 16th ACM international conference on Multimedia, New York, NY, USA, 2008, pp. 849–852.

[75] “Predicting Future Locations and Arrival Times of Individuals,” Virginia Polytechnic Institute and State University, 2011.

[76] S. Gambs, M.-O. Killijian, and M. N. del Prado Cortez, “Show me how you move and I will tell you who you are,” in Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Security and Privacy in GIS and LBS, New York, NY, USA, 2010, pp. 34–41.

[77] J. A. Alvarez-Garcia, J. A. Ortega, L. Gonzalez-Abril, and F. Velasco,

“Trip destination prediction based on past GPS log using a Hidden Markov Model,” Expert Syst. Appl., vol. 37, no. 12, pp. 8166–8171, Dec.

2010.

[78] A. Noulas, S. Scellato, N. Lathia, and C. Mascolo, “Mining User Mobility Features for Next Place Prediction in Location-Based Services,”

in 2012 IEEE 12th International Conference on Data Mining (ICDM), 2012, pp. 1038–1043.

[79] A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti, “WhereNext: A Location Predictor on Trajectory Pattern Mining,” in Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 2009, pp. 637–646.

Dalam dokumen 비영리 - S-Space - 서울대학교 (Halaman 129-143)