• Tidak ada hasil yang ditemukan

Battery charging system

Dalam dokumen CHAPTER 1. INTRODUCTION (Halaman 96-110)

CHAPTER 5. RESULTS AND DISCUSSION

5.6 Applications in self-powered devices

5.6.5 Battery charging system

Finally, the Au nanoparticles-embedded mosoporous TENG was connected to a capacitor (1 µF) through a full-wave bridge circuit, as shown by the equivalent circuit in the inset of Figure 58d to demonstrate the application potential as a direct current (DC) power source. Figure 58d shows the charging process of the capacitor, measured under cycled

compressive force from 10 N to 90 N at an applied frequency of 5 Hz using a pushing tester (Labworks Inc., model no. ET-126-4). Higher force yielded higher saturation voltage of the capacitor, which is a result of equilibrium established the charging rate and the capacitor’s leakage rate for the Au nanoparticles-embedded mosoporous TENG. The voltage held by the capacitor reached 4.9 V in 30 s under an external force of 90 N.

CHAPTER 6. CONCLUSION

In summary, I introduce embossed thin film and hemisphere structure for the enhancement of output performance and flexibility for piezoelectric energy harvesting. I reported ZnO embossed hollow hemispheres thin film for highly responsive pressure sensors and piezoelectric nanogenerators. The asymmetric hemispheres, formed by an oblique angle deposition, caused an unsymmetrical piezoelectric field direction by external force, resulting in the control of the current direction and level at about 7 mA/cm2 at normal force of 30 N.

The nanogenerators repeatedly generate the voltage output of ~ 0.2 V, irrespective of the degree of symmetry. I also demonstrated that when one piece of hemisphere layer is stacked over another to form a layer-by-layer matched architecture, the output voltage in nanogenerators increases up to 2 times. This technique will make high-output nanogenerator possible. Additionally, I report highly-stretchable composite-type nanogenerators with the highly-ordered piezoelectric hemispheres in a soft matrix, PDMS. The hemispheres are produced by a Langmuir–Blodgett deposition of 2D polystyrene spheres on planar substrates, followed by the deposition of piezoelectric film by a radio-frequency magnetron sputtering method at room temperature and post-annealing to remove spheres. This fabrication method is broadly applicable to a range of piezoelectric or ferroelectric materials. The composites have a high mechanical durability with good stretchable properties, comparable to the PDMS film. The nanogenerators with single hemisphere layer generated an output voltage of up to 4 V at a current density of 0.13 μA/cm2, which increased up to 6 V and 0.2 μA/cm2 by stacking three layers of such hemispheres layer-by-layer. The strain sensitivity of the films differs according to the bending direction and high sensitivity is achieved by convex bending due to the strong electric dipole alignment. The films are also attached on the surface of a wrist and

its output voltage/current provides information on the wrist direction. The very high sensitivity, small workable strain range and simple fabrication of the sensors, based on highly- stretchable piezoelectric composite films, make them promising candidates for electronic-skin application, especially, to develop directional sensing approaches for the instability and gait disturbance occurred commonly in patients with Alzheimer's disease, Parkinson's disease, and related disorders.

For triboelectrics based energy harvesting, I introduce a new type of high performance sponge-structured based TENG, for stable electrical output performance over a wide range of humidity. Sponge type micro/nano structured films with various diameters were fabricated. I achieve very large output voltage and current of up to 130 V and 0.10 mA/cm2, respectively, from the sponge-structured based TENG, as compared to the electrical output obtained from the film-structured based TENG (50 V and 0.02 mA/cm2), under the same mechanical force.

The electrical output performance of the sponge-structured based TENG increases with decrease in the diameter of pore size, which is attributed to the rapidly increased contact area.

Nanoindentation experiments were also carried out, to confirm the advantage of sponge- structured film, which was evaluated by resistance to deformation by external force. The nanoindentation results show that the elastic module decreases by over 30 % in a sponge- structured film (0.5 μm pores). The results depict that the sponge-structured film is more compressible than the flat film; thereby, increasing the contact area and the capacitance by the increase in effective (ε/d) value under the same force, giving high electrical output to the sponge-structured based TENG. Finally, I achieved a stable output performance from the sponge-structured based TENG, even under a high humid environment. The direct effect of humidity on the performance of sponge-structured based TENG is demonstrated by lighting up several LEDs by their power output under mechanical force. It is believed that this work will serve as the a stepping stone for high performance and stable TENG studies, and will also

inspire the development of the TENG towards other environmental sensors in the near future.

Additionally, I have demonstrated the facile and scalable synthesis of mesoporous films impregnated with Au NPs as effective dielectrics for enhancing the nanogenerator’s performance based on vertical contact-separation mode. The Au NPs were found to be accumulated on one side-wall inside each pore by casting a mixture of PDMS solution and DI water. The porosity of mesoporous film increases up to approximately 59 % as the amount of water increases to 50 %. Thus, the mesoporous film was found to be more flexible than the flat film. The nanogenerator showed the instantaneous power of 13 mW under cycled compressive force, giving over 5-fold power enhancement, compared with the flat film-based TENG, under the same mechanical force. It is beleived that the enhancement ascribes to the increase of the density of charges created by the contact between Au NPs and PDMS inside the pores, thereby, influencing the surface potential energy of mesoporous films. The nanogeneraor with the mesoporous film was successfully demonstrated in applications for self-powered shape mapping sensor, foot-step driven large-scale Au NPs embedded mesoporous film TENG, and an integrated circuit with a capacitor for powering a commercial cell phone. This approach provides a promising large-scale power supply for realizing self-powered systems from footsteps, wind power, and ocean waves.

REFERENCES

[1] A. Hagfeldt, M. Gratzel, Acc. Chem. Res. 2000, 33, 269 – 277.

[2] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, N.

Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 1993, 115, 6382 – 6390.

[3] B. Oregan, M. Gratzel, Nature 1991, 353, 737 – 740.

[4] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science 2002, 295, 2425 – 2427.

[5] Q. B. Pei, G. Yu, C. Zhang, Y. Yang, A. J. Heeger, Science 1995, 269, 1086 – 1088.

[6] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789 – 1791.

[7] B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. Huang, C. M. Lieber, Nature 2007, 449, 885 – 889.

[8] I. Gur, N. A. Fromer, M. L. Geier, A. P. Alivisatos, Science 2005, 310, 462 – 465.

[9] Y. Yang, W. Guo, K. C. Pradel, G. Zhu, Y. Zhou, Y. Zhang, Y. Hu, L. Lin, Z. L. Wang, Nano Lett. 2012, 12, 2833 – 2838.

[10] Z. L. Wang, J. H. Song, Science 2006, 312, 242 – 246.

[11] Z. L. Wang, Sci. Am. 2008, 298, 82 – 87.

[12] X. D. Wang, J. H. Song, J. Liu, Z. L. Wang, Science 2007, 316, 102 – 105.

[13] Y. Qin, X. D. Wang, Z. L. Wang, Nature 2008, 451, 809 – 813.

[14] R. S. Yang, Y. Qin, L. M. Dai, Z. L. Wang, Nat. Nanotechnol. 2009, 4, 34 – 39.

[15] S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z. L. Wang, Nat. Nanotechnol. 2010, 5, 366 – 373.

[16] D. Choi, M.-Y. Choi, W. M. Choi, H.-J. Shin, H. K. Park, J. S. Seo, J. Park, S. M. Yoon, S. J. Chae, Y. H. Lee, S.-W. Kim, J.-Y. Choi, S. Y. Lee, J. M. Kim, Adv. Mater. 2010, 22, 2187–2192.

[17] K. Y. Lee, B. Kumar, J.-S. Seo, K.-H. Kim, J. I. Sohn, S. N. Cha, D. Choi, Z. L. Wang, S.-W. Kim, Nano Lett. 2012, 12, 1959 – 1964.

[18] S. Lee, J.-I. Hong, C. Xu, M. Lee, D. Kim, L. Lin, W. Hwang, Z. L. Wang, Adv. Mater.

2012, 24, 4398 – 4402.

[19] C. E. Chang, V. H. Tran, J. B. Wang, Y. K. Fuh, L. W. Lin, Nano Lett. 2010, 10, 726 – 731.

[20] S. Xu, B. J. Hansen, Z. L. Wang, Nat. Commun. 2010, 1.

[21] G. Zhu, A. C. Wang, Y. Liu, Y. Zhou, Z. L. Wang, Nano Lett. 2012, 12, 3086 – 3090.

[22] S. Lee, S.-H. Bae, L. Lin, Y. Yang, C. Park, S.-W. Kim, S. N. Cha, H. Kim, Y. J. Park, Z.

L. Wang, Adv. Funct. Mater. 2012, 23, 2445 – 2449.

[23] L. Lin, Y. Hu, C. Xu, Y. Zhang, R. Zhang, X. Wen, Z. L. Wang, Nano Energy 2013, 2, 75–81.

[24] S. Lee, J.-I. Hong, C. Xu, M. Lee, D. Kim, L. Lin, W. Hwang, Z. L. Wang, Adv. Mater.

2012, 24, 4398 – 4402.

[25] Z.-H. Lin, Y. Yang, J. M. Wu, Y. Liu, F. Zhang, Z. L. Wang, J. Phys. Chem. Lett. 2012, 3, 3599 – 3604.

[26] S. Cha, S. M. Kim, H. Kim, J. Ku, J. I. Sohn, Y. J. Park, B. G. Song, M. H. Jung, E. K.

Lee, B. L. Choi, J. J. Park, Z. L. Wang, J. M. Kim, K. Kim, Nano Lett. 2011, 11, 5142 – 5147.

[27] K. I. Park, S. Xu, Y. Liu, G.-T. Hwang, S.-J. L. Kang, Z. L. Wang, K. J. Lee, Nano Lett.

2010, 10, 4939 – 4943.

[28] J. M. Wu, C. Xu, Y. Zhang, Z. L. Wang, ACS Nano 2012, 6, 4335 – 4340.

[29] E. Strelcov, S. Dmitriev, B. Button, J. Cothren, V. Sysoev, A. Kolmakov, Nanotechnology 2008, 19, 355502.

[30] C.-H. Pan, H.-Y. Hsieh, K.-T. Tang, Sensors 2013, 13, 193 – 207.

[31] Y. Yang, L. Lin, Y. Zhang, Q. Jing, T.-C. Hou, Z. L. Wang, ACS Nano 2012, 6, 10378–

10383.

[32] P.-H. Yeh, Z. Li, Z. L. Wang, Adv. Mater. 2009, 21, 4975 – 4978.

[33] Y. Yang, Y. Zhou, J. M. Wu, Z. L. Wang, ACS Nano 2012, 6, 8456 – 8461.

[34] W. Wu, X. Wen, Z. L. Wang, Science 2013, 340, 952 – 957.

[35] S. Wang, L. Lin, Z. L. Wang, Nano Lett. 2012, 12, 6339-6346.

[36] S. M. Niu, Y. Liu, S. H. Wang, L. Lin, Y. S. Zhou, Y. F. Hu, Z. L. Wang, Adv. Mater.

2013, 25, 6184.

[37] S. M. Niu, S. H. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. F. Hu, Z. L. Wang, Energ Environ.

Sci. 2013, 6, 3576.

[38] A. Erturk, J. Hoffmann, and D. J. Inman, Applied Physics Letters, 2009, 94, 254102.

[39] D. A. W. Barton, S. G. Burrow, and L. R. Clare, Journal of Vibration and Acoustics, 2010, 132, 021009.

[40] S. C. Stanton, C. C. McGehee, and B. P. Mann, Physica D: Nonlinear Phenomena, 2010, 239, 640–653.

[41] G. K. Ottman, H. F. Hofmann, A. C. Bhatt, and G. A. Lesieutre, IEEE Transactions on Power Electronics, 2002, 17, 669–676.

[42] E. Lefeuvre, A. Badel, C. Richard, and D. Guyomar, Journal of Intelligent Material Systems and Structures, 2005, 16, 865–876.

[43] M. Lallart, S. R. Anton, and D. J. Inman, Journal of Intelligent Material Systems and Structures, 2010, 21, 897–906.

[44] N. Kong, D. S. Ha, A. Erturk, and D. J. Inman, Journal of Intelligent Material Systems and Structures, 2010, 21, 1293–1302.

[45] K. A. Cook-Chennault, N. Thambi, and A. M. Sastry, Smart Materials and Structures, 2008, 17, 043001.

[46] H. A. Sodano, D. J. Inman, and G. Park, Shock and Vibration Digest, 2004, 36, 197–205.

[47] S. R. Anton and H. A. Sodano, Smart Materials and Structures, 2007, 16, R1–R21.

[48] S. Priya, Journal of Electroceramics, 2007, 19, 167–184.

[49] S. Matsusaka, H. Maruyama, T. Matsuyama, M. Ghadiri, Chemical Engineering Science, 2010, 65, 5781–5807

[50] F.-R. Fan, Z.-Q. Tian and Z. L. Wang, Nano Energy, 2012, 1, 328–334.

[51] G. Zhu, C. F. Pan, W. X. Guo, C. Y. Chen, Y. S. Zhou, R. M. Yu, Z. L. Wang, Nano Lett.

2012, 12, 4960–4965.

[52] http://www.trifield.com/content/tribo-electric-series/.

[53] A. F. Diaz, R. M. Felix-Navarro, J. Electrostat. 2004, 62, 277–290.

[54] L. Lin, Y. Hu, C. Xu, Y. Zhang, R. Zhang, X. Wen, Z. L. Wang, Nano Energy 2013, 2, 75-81.

[55] K.-I. Park, M. Lee, Y. Liu, S. Moon, G.-T. Hwang, G. Zhu, J. E. Kim, S. O. Kim, D. K.

Kim, Z. L. Wang, K. J. Lee, Adv. Mater. 2012, 24, 2999–3004.

[56] J. H. Jung, C.-Y. Chen, B. K. Yun, N. Lee, Y. Zhou, W. Jo, L.-J. Chou, Z. L. Wang, Nanotechnology 2012, 23, 375401.

[57] K. Y. Lee, D. Kim, J.-H. Lee, T. Y. Kim, M. K. Gupta, S.-W. Kim, Adv. Funct. Mater.

2014, 24, 37–43.

[58] C. K. Jeong, I. Kim, K.-I. Park, M. H. Oh, H. Paik, G.-T. Hwang, K. No, Y. S. Nam, K.

J. Lee, ACS Nano 2013, 7, 11016-11025.

[59] J. H. Jung, M. Lee, J.-I. Hong, Y. Ding, C.-Y. Chen, L.-J. Chou, Z. L. Wang, ACS Nano 2011, 5, 10041-10046.

[60] P. Bai, G. Zhu, Y. S. Zhou, S. Wang, J. Ma, G. Zhang, Z. L. Wang, Nano Research, 2014, 7, 990.

[61] Y. S. Zhou, S. Wang, Y. Yang, G. Zhu, S. Niu, Z.-H. Lin, Y. Liu, and Z. L. Wang, Nano Lett., 2014, 14, 1567–1572.

[61] H. I. Lin, D. S. Wuu, K. C. Shen and R. H. Horng, ECS J. Solid State Sci. Technol., 2013, 2, P400–P404.

[62] K. I. Park, S. B. Bae, S. H. Yang, H. I. Lee, K. Lee and S. J. Lee, Nanoscale, 2014, 6,

8962–8968.

[63] Y. C. Mao, P. Zhao, G. McConohy, H. Yang, Y. X. Tong and X. D. Wang, Adv. Energy Mater., 2014, 4, 1301624.

[64] K. Y. Lee, J. Chun, J.-H. Lee, K. N. Kim, N.-R. Kang, J.-Y. Kim, M. H. Kim, K.-S. Shin, M. K. Gupta, J. M. Baik and S.-W. Kim, Adv. Mater., 2014, 26, 5037–5042.

CURRICULUM VITAE

I. PROFESSIONAL AFFILIATION AND CONTACT INFORMATION

Office Address:

School of Materials Science and Engineering,

Ulsan National Institute of Science and Technology (UNIST), Korea UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan, Republic of Korea, 689-798 Tel: +82-52-217-2391, Fax: +82-52-217-2309

E-mail: [email protected]/ [email protected] Homepage: jbaiklab.blogspot.kr

II. SUMMARY OF QUALIFICATIONS

1. Three years experience modeling device designing, testing and optimizing nanogenerators 2. Two years experience modeling, calculations, and parameter fitting in molecular dynamics

simulations and first-principle calculations

3. Proven ability to work on teams, communicate effectively and manage projects

III. EDUCATION

B.Sc., 2010, Kyung Hee University, Department of Mechanical Engineering M.Sc., 2012, Kyung Hee University, Department of Mechanical Engineering

Major: Material theory (Molecular dynamics simulations, First-principle calculations) Ph. D., 2012~, Ulsan National Institute of Science and Technology (UNIST), Materials Science and Engineering

Major: Material science and engineering Supervisor: Professor, Jeong Min Baik

IV. WORKING EXPERIENCES

Researcher, Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Sep. 2014 ~ Nov. 2014

• Output enhancing mechanism in flexible piezoelectric nanogenerators

• Theoretical study based on COMSOL multi-physics

Operator, XRS, Pohang Accelerator Laboratory (PAL), 10 Dec. 2013 ~ 11 Dec. 2013

• In-situ synchrotron radiation diffraction of self-guided growth in vanadium oxide nanowires Operator, XRS KIST-PAL, Pohang Accelerator Laboratory (PAL), 9 Apr. 2012 ~ 10 Apr. 2012

• Crystallinity variation of piezoelectric hemispheres under tensile stress

Researcher, Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Fab. 2012 ~ Aug. 2012

• Design and fabrication of piezoelectric nanogenerators

• Mechanically stable flexible nanogenerators based on neutral-axis theory

V. SKILLS

1. Equipment: Sputter, E-beam evaporator, 6×2” Showerhead-type MOCVD, CVD, RIE, Asher, HR-XRD, SEM, XRS (Pohang Accelerator Laboratory), Photolithographic Aligner, Oscilloscope, Nanovoltmeter, Picoammeter, Electrometer, Sourcemeter, Switch/multimeter

2. Programming: Matlab, C/C++, JavaScript, Linux

3. Technical: COMSOL multi-physics, ANSYS, LAMMPS, Auto CAD, 3D MAX

VI. HONORS:

2014 Best Poster Award, International Conference on Nanogenerators and Piezotronics (NGPT) 2014

2013 Best Poster Award, International Conference on Advanced Electromaterials (ICAE) 2013

2013 Best Paper Award, Korean journal of metals and materials (KIM) 2013

VII. PUBLICATION LIST:

1. Jinsung Chun, Byeong Uk Ye, Kyeong Nam Kim, Hyojin Kang, Changduk Yang, Jeong Min Baik, “PVDF-Graft based Triboelectric Nanogenerator as Effective Dielectrics”, In preparation (2015)

2. Jinsung Chun, Byeong Uk Ye, Dukhyun Choi, Sang-Woo Kim, Jeong Min Baik, “Toward Practical Triboelectric Nanogenerator with Sequential Contact Configuration”, In preparation (2015)

3. Jinsung Chun, Jin Woong Kim, Woo-suk Jung, Chong-Yun Kang, Sang-Woo Kim,Zhong Lin Wang, Jeong Min Baik, “Mesoporous Pores Impregnated with Au Nanoparticles as Effective Dielectrics for Enhancing Triboelectric Nanogenerator Performance under Harsh Environment”, Energy & Environmental Science, 2015, 8, 3006-3012. IF = 20.523 4. Ji-hyun Kim, Jinsung Chun, Hye Jin Lee, Won Jun Choi, Jeong Min Baik, “Self-powered

Room Temperature Electronic Nose based on Triboelectrification and Heterogeneous Catalytic Reaction”, Adv. Funct. Mater. 2015, 25, 7049-7055. IF = 11.805

5. Kyeong Nam Kim, Jinsung Chun, Jin Woong Kim, Keun Young Lee, Sang-Woo Kim, Zhong Lin Wang, Jeong Min Baik, “Highly Stretchable Fabric-structured Triboelectric Nanogenerator for Powering to Wearable Devices”, ACS Nano, 2015, 9, 6394-6400. IF = 12.881

6. Kyeong Nam Kim, Jinsung Chun, Song A. Chae, Chang Won Ahn, Ill Won Kim, Sang- Woo Kim, Zhong Lin Wang, Jeong Min Baik, “Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles”, Nano Energy, 2015, 14, 87-94. IF = 10.325

7. “Wearable self-powered motion sensor”, Materials Today, 5 January 2015. (Article) 8. Jinsung Chun, Na-Ri Kang, Ju-Young Kim, Myoung-Sub Noh, Chong-Yun Kang,

Dukhyun Choi, Sang-Woo Kim, Zhong Lin Wang, Jeong Min Baik, “Highly anisotropic power generation in piezoelectric hemispheres composed stretchable composite film for self-powered motion sensor”, Nano Energy, 2015, 11, 1. IF = 10.325

9. Keun Young Lee*, Jinsung Chun*, Ju-Hyuck Lee, Kyeong Nam Kim, Na-Ri Kang, Ju-

Young Kim, Myung Hwa Kim, Kyung-Sik Shin, Manoj Kumar Gupta, Jeong Min Baik, Sang-Woo Kim, “Hydrophobic Sponge Structure-Based Triboelectric Nanogenerator”, Adv. Mater. 2014, 26, 5037. IF = 17.493(Selected as a Front Cover paper) * Equal contribution

10. Jinsung Chun*, Keun Young Lee*, Chong-Yun Kang, Myung Wha Kim, Sang-Woo Kim, Jeong Min Baik, “Embossed Hollow Hemisphere-Based Piezoelectric Nanogenerator and Highly Responsive Pressure Sensor”, Adv. Funct. Mater. 2014, 24, 2038. IF = 11.805 * Equal contribution

11. Jinsung Chun, Byeongchan Lee, “Atomistic calculations of mechanical properties of Ni- Ti-C metallic glass systems”, J. Mech. Sci. Technol. 2013, 27, 775. IF = 0.838

VIII. PATENTS

1. Jinsung Chun et al, Self-powered Nondestructive Inspection for Crack Detection, 10- 2015-0091345 (2015)

2. Jinsung Chun et al, Self-Powered Room Temperature Electronic Nose based on Triboelectrification, 10-2015-0086296 (2015)

3. Jinsung Chun et al, Three-dimensional polygon nanogenerator with built-in polymer- spheres and their fabrication, 10-2015-0067487 (2015)

4. Jinsung Chun et al, Touch Sensor with Metal Impregnated Mesoporous Structure and Their Fabrication, 10-2015-0054703 (2015)

5. Jinsung Chun et al, Charge-pump based flexible artificial lightning generator for Energy Harvesting, 10-2014-0156070 (2014) *PCT patent

6. Jinsung Chun et al, Triboelectric Cable-type Generator and Its Fabrications for Energy Harvesting, 10-2014-0057855 (2014)

7. Jinsung Chun et al, Sponge structure based Generators and Their Fabrications for Energy Harvesting, 10-2014-0008973 (2014)

8. Jinsung Chun et al, Fabrication of Hollow-Hemisphere Thin Films and Its Piezoelectric Nanogenerator for Energy Harvesting, 10-2013-0037611, 10-1443135 (2013)

Dalam dokumen CHAPTER 1. INTRODUCTION (Halaman 96-110)

Dokumen terkait