• Tidak ada hasil yang ditemukan

Conclusion and perspectives

Dalam dokumen Self-assembled artificial cilia actuator (Halaman 72-85)

54

55

In Chapter 4, we manufactured a cilia actuator array under established self-assembly conditions. The assembled nanocilia and microcilia showed that magnetic particles ranging from nanometers to micrometers in size are applicable to the process. Moreover, this chapter shows that our self-assembly process has overcome the previous limitations of manufacturing nanoscale cilia actuators or high aspect ratio (>20) microcilia. Importantly, the cilia exhibited field-responsive actuation motions in a reversible and repeatable manner via rolling and sliding between assembled particles with the aid of oleic-acid bearings tethered to each particle. Additionally, each particle attracted each other through interparticle interactions;

thus, the assembled cilia structure was maintained without an additional binding agent. The cilia exhibited structural integrity even after being actuated more than 1800 times. In addition, the torque that the cilia exerted could be adjusted up to several thousands of times, depending on the number and size of the assembled particles. Therefore, customized cilia could be utilized for different applications, depending on the required torque.

This study is meaningful because a programmable nanocilia array was fabricated using the self-assembly approach for the first time. However, further research is needed on areas such as optimization, unknown phenomena, and applications. More specifically, under the developed system conditions, the height deviation of the self-assembled cilia is large. Further research is needed to reduce this, and one of the ways to solve this problem is an approach using an ultrasonic spray. We expect to use the ultrasonic spray to reduce the height deviation of self-assembled cilia by allowing particles to be well dispersed in the gas phase. In addition, regarding the rolling/sliding phenomena, it is unclear whether the actuating phenomenon of cilia is exactly rolling or sliding, and further research is required to clarify this. In addition, additional research is needed to investigate how rolling/sliding phenomena vary depending on the particle's shape element and the friction coefficient of the material coated on the particle. Lastly, additional research is required to apply the developed actuator to other fields.

More specifically, micro-robots or microfluidics, which have been actively researched in recent years, are suitable for applying the developed actuator. The developed cilia actuator has excellent driving performance, so it is advantageous to micro-robot and microfluidic control platforms. Such an application requires research to lift off the actuator with the desired shape and increase stability through a binder of particles to actuate in various harsh environments.

Cilia are observed on the surfaces of various living organisms; therefore, nano/micro actuators play a major role in various fields, such as laboratories on a chip, microfluids,

56

microrobots, microgrippers, cell activation, and sensing. Hence, we believe that the self- assembly approach and cilia actuator that we have developed can serve as the basis for next- generation research in the aforementioned fields and a new self-assembly system that can build desired shapes.

57

References

1. Sleigh, M. A., Adaptations of Ciliary Systems for the Propulsion of Water and Mucus. Comp.

Biochem. Physiol. A-Mol. Integr. Physiol. 1989, 94 (2), 359-364.

2. Foissner, W.; Wolf, K. W.; Yashchenko, V.; Stoeck, T., Description of Leptopharynx bromelicola n. sp and Characterization of the Genus Leptopharynx Mermod, 1914 (Protista, Ciliophora). J. Eukaryot. Microbiol. 2011, 58 (2), 134-151.

3. Hsu, K. S.; Chuang, J. Z.; Sung, C. H., The Biology of Ciliary Dynamics. Cold Spring Harb.

Perspect. Biol. 2017, 9 (4), a027904.

4. Brokaw, C. J., Direct Measurements of Sliding between Outer Doublet Microtubules in Swimming Sperm Flagella. Science 1989, 243 (4898), 1593-1596.

5. ul Islam, T.; Wang, Y.; Aggarwal, I.; Cui, Z. W.; Amirabadi, H. E.; Garg, H.; Kooi, R.;

Venkataramanachar, B. B.; Wang, T. S.; Zhang, S. Z.; Onck, P. R.; den Toonder, J. M. J., Microscopic artificial cilia - a review. Lab Chip 2022, 22 (9), 1650-1679.

6. Cao, Y.; Chen, M.; Dong, D.; Xie, S. B.; Liu, M., Environmental pollutants damage airway epithelial cell cilia: Implications for the prevention of obstructive lung diseases. Thorac. Cancer 2020, 11 (3), 505-510.

7. Yaghi, A.; Dolovich, M. B., Airway Epithelial Cell Cilia and Obstructive Lung Disease. Cells 2016, 5 (4), 1-11.

8. Lee, S. G.; Lee, S. N.; Baek, J.; Yoon, J. H.; Lee, H., Mechanical compression enhances ciliary beating through cytoskeleton remodeling in human nasal epithelial cells. Acta Biomater.

2021, 128, 346-356.

9. Breunig, J. J.; Arellano, J. I.; Rakic, P., Cilia in the brain: going with the flow. Nat. Neurosci.

2010, 13 (6), 654-655.

10. Conductier, G.; Brau, F.; Viola, A.; Langlet, F.; Ramkumar, N.; Dehouck, B.; Lemaire, T.; Chapot, R.; Lucas, L.; Rovere, C.; Maitre, P.; Hosseiny, S.; Petit-Paitel, A.;

Adamantidis, A.; Lakaye, B.; Risold, P. Y.; Prevot, V.; Meste, O.; Nahon, J. L.; Guyon, A., Melanin-concentrating hormone regulates beat frequency of ependymal cilia and ventricular volume. Nat. Neurosci. 2013, 16 (7), 845-847.

11. Essner, J. J.; Vogan, K. J.; Wagner, M. K.; Tabin, C. J.; Yost, H. J.; Brueckner, M., Conserved function for embryonic nodal cilia. Nature 2002, 418 (6893), 37-38.

12. Dai, C. S.; Zhang, Z. R.; Shan, G. Q.; Chu, L. T.; Huang, Z. J.; Moskovstev, S.; Librach, C.; Jarvi, K.; Sun, Y., Advances in sperm analysis: techniques, discoveries and applications. Nat.

Rev. Urol. 2021, 18 (8), 447-467.

13. Lin, J. F.; Nicastro, D., Asymmetric distribution and spatial switching of dynein activity generates ciliary motility. Science 2018, 360 (6387), eaar1968.

58

14. Kamat, A. M.; Pei, Y. T.; Kottapalli, A. G. P., Bioinspired Cilia Sensors with Graphene Sensing Elements Fabricated Using 3D Printing and Casting. J. Nanomater. 2019, 9 (7), 954.

15. Singla, V.; Reiter, J. F., The primary cilium as the cell's antenna: Signaling at a sensory organelle.

Science 2006, 313 (5787), 629-633.

16. McConney, M. E.; Schaber, C. F.; Julian, M. D.; Eberhardt, W. C.; Humphrey, J. A. C.;

Barth, F. G.; Tsukruk, V. V., Surface force spectroscopic point load measurements and viscoelastic modelling of the micromechanical properties of air flow sensitive hairs of a spider (Cupiennius salei). J. R. Soc. Interface 2009, 6 (37), 681-694.

17. Satir, P.; Christensen, S. T., Overview of structure and function of mammalian cilia. Annu. Rev.

Physiol. 2007, 69, 377-400.

18. Frolenkov, G. I.; Belyantseva, I. A.; Friedman, T. B.; Griffith, A. J., Genetic insights into the morphogenesis of inner ear hair cells. Nat. Rev. Genet. 2004, 5 (7), 489-498.

19. Rich, S. I.; Wood, R. J.; Majidi, C., Untethered soft robotics. Nat. Electron. 2018, 1 (2), 102-112.

20. Gorissen, B.; de Volder, M.; Reynaerts, D., Pneumatically-actuated artificial cilia array for biomimetic fluid propulsion. Lab Chip 2015, 15 (22), 4348-4355.

21. Milana, E.; Zhang, R. J.; Vetrano, M. R.; Peerlinck, S.; De Volder, M.; Onck, P. R.;

Reynaerts, D.; Gorissen, B., Metachronal patterns in artificial cilia for low Reynolds number fluid propulsion. Sci. Adv. 2020, 6 (49), eabd2508.

22. Paek, J.; Cho, I.; Kim, J., Microrobotic tentacles with spiral bending capability based on shape- engineered elastomeric microtubes (vol 5, 10768, 2015). Sci. Rep. 2015, 5, 1-11.

23. Siefert, E.; Reyssat, E.; Bico, J.; Roman, B., Bio-inspired pneumatic shape-morphing elastomers. Nat. Mater. 2019, 18 (1), 24-28.

24. Vasios, N.; Gross, A. J.; Soifer, S.; Overvelde, J. T. B.; Bertoldi, K., Harnessing Viscous Flow to Simplify the Actuation of Fluidic Soft Robots. Soft Robot 2020, 7 (1), 1-9.

25. Milana, E.; Gorissen, B.; Peerlinck, S.; De Volder, M.; Reynaerts, D., Artificial Soft Cilia with Asymmetric Beating Patterns for Biomimetic Low-Reynolds-Number Fluid Propulsion. Adv.

Funct. Mater. 2019, 29 (22), 1900462.

26. Maksimkin, A. V.; Dayyoub, T.; Telyshev, D. V.; Gerasimenko, A. Y., Electroactive Polymer- Based Composites for Artificial Muscle-like Actuators: A Review. J. Nanomater. 2022, 12 (13), 2272.

27. Kwon, G. H.; Park, J. Y.; Kim, J. Y.; Frisk, M. L.; Beebe, D. J.; Lee, S. H., Biomimetic Soft Multifunctional Miniature Aquabots. Small 2008, 4 (12), 2148-2153.

28. Dai, B.; Li, S. H.; Xu, T. L.; Wang, Y. F.; Zhang, F. L.; Gu, Z.; Wang, S. T., Artificial Asymmetric Cilia Array of Dielectric Elastomer for Cargo Transportation. ACS Appl. Mater.

Interfaces 2018, 10 (49), 42979-42984.

59

29. den Toonder, J.; Bos, F.; Broer, D.; Filippini, L.; Gillies, M.; de Goede, J.; Mol, T.;

Reijme, M.; Talen, W.; Wilderbeek, H.; Khatavkar, V.; Anderson, P., Artificial cilia for active micro-fluidic mixing. Lab Chip 2008, 8 (4), 533-541.

30. Miskin, M. Z.; Cortese, A. J.; Dorsey, K.; Esposito, E. P.; Reynolds, M. F.; Liu, Q. K.;

Cao, M. C.; Muller, D. A.; McEuen, P. L.; Cohen, I., Electronically integrated, mass- manufactured, microscopic robots. Nature 2020, 584 (7822), 557-561.

31. Wang, W.; Liu, Q. K.; Tanasijevic, I.; Reynolds, M. F.; Cortese, A. J.; Miskin, M. Z.;

Cao, M. C.; Muller, D. A.; Molnar, A. C.; Lauga, E.; McEuen, P. L.; Cohen, I., Cilia metasurfaces for electronically programmable microfluidic manipulation. Nature 2022, 605 (7911), 681-686.

32. Zhang, X. X.; Guo, J. H.; Fu, X.; Zhang, D. G.; Zhao, Y. J., Tailoring Flexible Arrays for Artificial Cilia Actuators. Adv. Intell. Syst. 2021, 3 (10), 2000225.

33. Kuenstler, A. S.; Kim, H.; Hayward, R. C., Liquid Crystal Elastomer Waveguide Actuators. Adv.

Mater. 2019, 31 (24), 1901216.

34. Shimoga, G.; Choi, D. S.; Kim, S. Y., Bio-Inspired Soft Robotics: Tunable Photo-Actuation Behavior of Azo Chromophore Containing Liquid Crystalline Elastomers. Appl. Sci. 2021, 11 (3), 1233.

35. van Oosten, C. L.; Bastiaansen, C. W. M.; Broer, D. J., Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat. Mater. 2009, 8 (8), 677-682.

36. Lu, X. L.; Zhang, H.; Fei, G. X.; Yu, B.; Tong, X.; Xia, H. S.; Zhao, Y., Liquid- Crystalline Dynamic Networks Doped with Gold Nanorods Showing Enhanced Photocontrol of Actuation. Adv. Mater. 2018, 30 (14), 1706597.

37. Yang, H.; Liu, J. J.; Wang, Z. F.; Guo, L. X.; Keller, P.; Lin, B. P.; Sun, Y.; Zhang, X.

Q., Near-infrared-responsive gold nanorod/liquid crystalline elastomer composites prepared by sequential thiol-click chemistry. Chem. Commun. 2015, 51 (60), 12126-12129.

38. Puza, F.; Lienkamp, K., 3D Printing of Polymer Hydrogels-From Basic Techniques to Programmable Actuation. Adv. Funct. Mater. 2022, 32 (39), 2205345.

39. Behl, M.; Kratz, K.; Zotzmann, J.; Nochel, U.; Lendlein, A., Reversible Bidirectional Shape- Memory Polymers. Adv. Mater. 2013, 25 (32), 4466-4469.

40. Yoon, C., Advances in biomimetic stimuli responsive soft grippers. Nano. Converg. 2019, 6, 1-14.

41. Wang, Y. S.; Huang, W. W.; Wang, Y.; Mu, X.; Ling, S. J.; Yu, H. P.; Chen, W. S.;

Guo, C. C.; Watson, M. C.; Yu, Y. J.; Black, L. D.; Li, M.; Omenetto, F. G.; Li, C. M.;

Kaplan, D. L., Stimuli-responsive composite biopolymer actuators with selective spatial deformation behavior. Proc. Natl. Acad. Sci. U.S.A. 2020, 117 (25), 14602-14608.

42. Gladman, A. S.; Matsumoto, E. A.; Nuzzo, R. G.; Mahadevan, L.; Lewis, J. A., Biomimetic 4D printing. Nat. Mater. 2016, 15 (4), 413-418.

60

43. Xiong, Z.; Zheng, M. L.; Dong, X. Z.; Chen, W. Q.; Jin, F.; Zhao, Z. S.; Duan, X. M., Asymmetric microstructure of hydrogel: two-photon microfabrication and stimuli-responsive behavior. Soft Matter 2011, 7 (21), 10353-10359.

44. den Toonder, J. M. J.; Onck, P. R., Microfluidic manipulation with artificial/bioinspired cilia.

Trends Biotechnol. 2013, 31 (2), 85-91.

45. Hanasoge, S.; Hesketh, P. J.; Alexeev, A., Metachronal motion of artificial magnetic cilia. Soft Matter 2018, 14 (19), 3689-3693.

46. Li, M.; Kim, T.; Guidetti, G.; Wang, Y.; Omenetto, F. G., Optomechanically Actuated Microcilia for Locally Reconfigurable Surfaces. Adv. Mater. 2020, 32 (40), 2004147.

47. Zhang, S. Z.; Zuo, P.; Wang, Y.; Onck, P.; den Toonder, J. M. J., Anti-Biofouling and Self- Cleaning Surfaces Featured with Magnetic Artificial Cilia. ACS Appl. Mater. Interfaces 2020, 12 (24), 27726-27736.

48. Kim, S.; Lee, S.; Lee, J.; Nelson, B. J.; Zhang, L.; Choi, H., Fabrication and Manipulation of Ciliary Microrobots with Non-reciprocal Magnetic Actuation. Sci. Rep. 2016, 6, 1-9.

49. Medina-Sanchez, M.; Schwarz, L.; Meyer, A. K.; Hebenstreit, F.; Schmidt, O. G., Cellular Cargo Delivery: Toward Assisted Fertilization by Sperm-Carrying Micromotors. Nano Lett. 2016, 16 (1), 555-561.

50. Hu, W. Q.; Lum, G. Z.; Mastrangeli, M.; Sitti, M., Small-scale soft-bodied robot with multimodal locomotion. Nature 2018, 554 (7690), 81-85.

51. Zhang, S. Z.; Cui, Z. W.; Wang, Y.; den Toonder, J., Metachronal mu-Cilia for On-Chip Integrated Pumps and Climbing Robots. ACS Appl. Mater. Interfaces 2021, 13 (17), 20845-20857.

52. Wang, Z. Z.; Wang, K.; Liang, D. S.; Yan, L. H.; Ni, K.; Huang, H. B.; Li, B.; Guo, Z. W.; Wang, J. S.; Ma, X. Q.; Tang, X. H.; Chen, L. Q., Hybrid magnetic micropillar arrays for programmable actuation. Adv. Mater. 2020, 32 (25), 2001879.

53. Kojima, T.; Husari, A.; Dieterle, M. P.; Fontaine, S.; Prucker, O.; Tomakidi, P.; Ruhe, J., PnBA/PDMAA-Based Iron-Loaded Micropillars Allow for Discrete Cell Adhesion and Analysis of Actuation-Related Molecular Responses. Adv. Mater. Interfaces 2020, 7 (7), 1901806.

54. Khademolhosseini, F.; Chiao, M., Fabrication and Patterning of Magnetic Polymer Micropillar Structures Using a Dry-Nanoparticle Embedding Technique. J. Microelectromech. Syst. 2013, 22 (1), 131-139.

55. Ben, S.; Yao, J. J.; Ning, Y. Z.; Zhao, Z. H.; Zha, J. L.; Tian, D. L.; Liu, K. S.; Jiang, L., A bioinspired magnetic responsive cilia array surface for microspheres underwater directional transport. Sci. China-Chem. 2020, 63 (3), 347-353.

56. Lin, Y. C.; Hu, Z. Y.; Zhang, M. X.; Xu, T.; Feng, S. L.; Jiang, L.; Zheng, Y. M., Magnetically Induced Low Adhesive Direction of Nano/Micropillar Arrays for Microdroplet Transport. Adv. Funct. Mater. 2018, 28 (49), 1800163.

61

57. Hu, Y. L.; Yuan, H. W.; Liu, S. L.; Ni, J. C.; Lao, Z. X.; Xin, C.; Pan, D.; Zhang, Y.

Y.; Zhu, W. L.; Li, J. W.; Wu, D.; Chu, J. R., Chiral Assemblies of Laser-Printed Micropillars Directed by Asymmetrical Capillary Force. Adv. Mater. 2020, 32 (31), 2002356.

58. Ul Islam, T.; Bellouard, Y.; den Toonder, J. M. J., Highly motile nanoscale magnetic artificial cilia. Proc. Natl. Acad. Sci. U.S.A. 2021, 118 (35), e2104930118.

59. Wang, Z. Z.; Wang, K.; Tang, X. H., Heterogeneous magnetic micropillars for regulated bending actuation. Extreme. Mech. Lett. 2020, 38, 100734.

60. Zhang, S. Z.; Cui, Z. W.; Wang, Y.; den Toonder, J. M. J., Metachronal actuation of microscopic magnetic artificial cilia generates strong microfluidic pumping. Lab Chip 2020, 20 (19), 3569- 3581.

61. Zhang, S. Z.; Zhang, R. J.; Wang, Y.; Onck, P. R.; den Toonder, J. M. J., Controlled Multidirectional Particle Transportation by Magnetic Artificial Cilia. ACS Nano 2020, 14 (8), 10313-10323.

62. Jeon, J.; Park, J. E.; Park, S. J.; Won, S.; Zhao, H. B.; Kim, S.; Shim, B. S.; Urbas, A.; Hart, A. J.; Ku, Z.; Wie, J. J., Shape-Programmed Fabrication and Actuation of Magnetically Active Micropost Arrays. ACS Appl. Mater. Interfaces 2020, 12 (14), 17113-17120.

63. Luo, Z. R.; Zhang, X. A.; Evans, B. A.; Chang, C. H., Active periodic magnetic nanostructures with high aspect ratio and ultrahigh pillar density. ACS Appl. Mater. Interfaces 2020, 12 (9), 11135- 11143.

64. Song, Y. G.; Jiang, S. J.; Li, G. Q.; Zhang, Y. C.; Wu, H.; Xue, C.; You, H. S.; Zhang, D. H.; Cai, Y.; Zhu, J. G.; Zhu, W. L.; Li, J. W.; Hu, Y. L.; Wu, D.; Chu, J. R., Cross- Species Bioinspired Anisotropic Surfaces for Active Droplet Transportation Driven by Unidirectional Microcolumn Waves. ACS Appl. Mater. Interfaces 2020, 12 (37), 42264-42273.

65. Chai, Z.; Liu, M.; Chen, L.; Peng, Z. L.; Chen, S. H., Controllable directional deformation of micro-pillars actuated by a magnetic field. Soft Matter 2019, 15 (43), 8879-8885.

66. Zhu, Y.; Antao, D. S.; Xiao, R.; Wang, E. N., Real-Time Manipulation with Magnetically Tunable Structures. Adv. Mater. 2014, 26 (37), 6442-6446.

67. Chattopadhyay, P.; Wang, L.; Eychmüller, A.; Simmchen, J., An Undergraduate Project on the Assembly of Langmuir–Blodgett Films of Colloidal Particles. J. Chem. Educ. 2022, 99 (2), 952- 956.

68. Henzie, J.; Grunwald, M.; Widmer-Cooper, A.; Geissler, P. L.; Yang, P. D., Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat. Mater.

2012, 11 (2), 131-137.

69. Asbahi, M.; Mehraeen, S.; Wang, F.; Yakovlev, N.; Chong, K. S.; Cao, J.; Tan, M. C.;

Yang, J. K., Large Area Directed Self-Assembly of Sub-10 nm Particles with Single Particle Positioning Resolution. Nano Lett. 2015, 15 (9), 6066-6070.

62

70. Udayabhaskararao, T.; Altantzis, T.; Houben, L.; Coronado-Puchau, M.; Langer, J.;

Popovitz-Biro, R.; Liz-Marzan, L. M.; Vukovic, L.; Kral, P.; Bals, S.; Klajn, R., Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices.

Science 2017, 358 (6362), 514-518.

71. Choi, S.; Stassi, S.; Pisano, A. P.; Zohdi, T. I., Coffee-ring effect-based three dimensional patterning of micro/nanoparticle assembly with a single droplet. Langmuir 2010, 26 (14), 11690- 8.

72. Wang, M.; He, L.; Yin, Y., Magnetic field guided colloidal assembly. Mater. Today 2013, 16 (4), 110-116.

73. Demirors, A. F.; Pillai, P. P.; Kowalczyk, B.; Grzybowski, B. A., Colloidal assembly directed by virtual magnetic moulds. Nature 2013, 503 (7474), 99-103.

74. Zhang, Q.; Janner, M.; He, L.; Wang, M. S.; Hu, Y. X.; Lu, Y.; Yin, Y. D., Photonic labyrinths: two-dimensional dynamic magnetic assembly and in situ solidification. Nano Lett.

2013, 13 (4), 1770-1775.

75. Singh, G.; Chan, H.; Baskin, A.; Gelman, E.; Repnin, N.; Kral, P.; Klajn, R., Self- assembly of magnetite nanocubes into helical superstructures. Science 2014, 345 (6201), 1149- 1153.

76. Demirors, A. F.; Courty, D.; Libanori, R.; Studart, A. R., Periodically microstructured composite films made by electric- and magnetic-directed colloidal assembly. Proc. Natl. Acad. Sci.

U.S.A. 2016, 113 (17), 4623-4628.

77. McGorty, R.; Fung, J.; Kaz, D.; Manoharan, V. N., Colloidal self-assembly at an interface.

Mater. Today 2010, 13 (6), 34-42.

78. Ku, J. Y.; Aruguete, D. M.; Alivisatos, A. P.; Geissler, P. L., Self-Assembly of Magnetic Nanoparticles in Evaporating Solution. J. Am. Chem. Soc. 2011, 133 (4), 838-848.

79. Hu, M. H.; Butt, H. J.; Landfester, K.; Bannwarth, M. B.; Wooh, S.; Therien-Aubin, H., Shaping the Assembly of Superparamagnetic Nanoparticles. ACS Nano 2019, 13 (3), 3015-3022.

80. Wang, H. J.; Zhang, Z. H.; Wang, Z. K.; Liang, Y. H.; Cui, Z. Q.; Zhao, J.; Li, X. J.;

Ren, L. Q., Multistimuli-Responsive Microstructured Superamphiphobic Surfaces with Large- Range, Reversible Switchable Wettability for Oil. ACS Appl. Mater. Interfaces 2019, 11 (31), 28478-28486.

81. Timonen, J. V. I.; Johans, C.; Kontturi, K.; Walther, A.; Ikkala, O.; Ras, R. H. A., A Facile Template-Free Approach to Magnetodriven, Multifunctional Artificial Cilia. ACS Appl. Mater.

Interfaces 2010, 2 (8), 2226-2230.

82. Cao, M. Y.; Ju, J.; Li, K.; Dou, S. X.; Liu, K. S.; Jiang, L., Facile and Large-Scale Fabrication of a Cactus-Inspired Continuous Fog Collector. Adv. Funct. Mater. 2014, 24 (21), 3235-3240.

63

83. Fan, Y. Y.; Li, S. Y.; Wei, D. S.; Fang, Z. P.; Han, Z. W.; Liu, Y., Bioinspired Superhydrophobic Cilia for Droplets Transportation and Microchemical Reaction. Adv. Mater.

Interfaces 2021, 8 (24), 2101408.

84. Cao, M. Y.; Jin, X.; Peng, Y.; Yu, C. M.; Li, K.; Liu, K. S.; Jiang, L., Unidirectional wetting properties on multi-bioinspired magnetocontrollable slippery microcilia. Adv. Mater. 2017, 29 (23), 1606869.

85. Kim, J. H.; Kang, S. M.; Lee, B. J.; Ko, H.; Bae, W. G.; Suh, K. Y.; Kwak, M. K.; Jeong, H. E., Remote manipulation of droplets on a flexible magnetically responsive film. Sci. Rep. 2015, 5, 1-10.

86. Liu, J. A. C.; Evans, B. A.; Tracy, J. B., Photothermally Reconfigurable Shape Memory Magnetic Cilia. Adv. Mater. Technol. 2020, 5 (7), 2000147.

87. Ekeroth, S.; Munger, E. P.; Boyd, R.; Ekspong, J.; Wagberg, T.; Edman, L.; Brenning, N.; Helmersson, U., Catalytic nanotruss structures realized by magnetic self-assembly in pulsed plasma. Nano Lett. 2018, 18 (5), 3132-3137.

88. Dreyfus, R.; Baudry, J.; Roper, M. L.; Fermigier, M.; Stone, H. A.; Bibette, J., Microscopic artificial swimmers. Nature 2005, 437 (7060), 862-865.

89. Lin, Q. Y.; Mason, J. A.; Li, Z. Y.; Zhou, W. J.; O'Brien, M. N.; Brown, K. A.; Jones, M. R.; Butun, S.; Lee, B.; Dravid, V. P.; Aydin, K.; Mirkin, C. A., Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly. Science 2018, 359 (6376), 669-672.

90. Lu, F.; Yager, K. G.; Zhang, Y. G.; Xin, H. L.; Gang, O., Superlattices assembled through shape-induced directional binding. Nat. Commun. 2015, 6, 1-10.

91. Huang, J. X.; Kim, F.; Tao, A. R.; Connor, S.; Yang, P. D., Spontaneous formation of nanoparticle stripe patterns through dewetting. Nat. Mater. 2005, 4 (12), 896-900.

92. Lee, Y. H.; Shi, W. X.; Lee, H. K.; Jiang, R. B.; Phang, I. Y.; Cui, Y.; Isa, L.; Yang, Y.

J.; Wang, J. F.; Li, S. Z.; Ling, X. Y., Nanoscale surface chemistry directs the tunable assembly of silver octahedra into three two-dimensional plasmonic superlattices. Nat. Commun. 2015, 6, 1- 7.

93. Yang, Y. J.; Lee, Y. H.; Phang, I. Y.; Jiang, R. B.; Sim, H. Y. F.; Wang, J. F.; Ling, X. Y., A chemical approach to break the planar configuration of Ag nanocubes into tunable two- dimensional metasurfaces. Nano Lett. 2016, 16 (6), 3872-3878.

94. Xing, X.; Man, Z. Q.; Bian, J.; Yin, Y. D.; Zhang, W. H.; Lu, Z. D., High-resolution combinatorial patterning of functional nanoparticles. Nat. Commun. 2020, 11 (1), 1-8.

95. Yu, Y. S.; Wang, M. C.; Huang, X. F., Evaporative deposition of polystyrene microparticles on PDMS surface. Sci. Rep. 2017, 7, 1-9.

64

96. Zheng, R. K.; Gu, H. W.; Xu, B.; Fung, K. K.; Zhang, X. X.; Ringer, S. P., Self-assembly and self-orientation of truncated octahedral magnetite nanocrystals. Adv. Mater. 2006, 18 (18), 2418-2421.

97. Li, Y. W.; Lin, H. X.; Zhou, W. J.; Sun, L.; Samanta, D.; Mirkin, C. A., Corner-, edge-, and facet-controlled growth of nanocrystals. Sci. Adv. 2021, 7 (3), eabf1410.

98. Kim, D.; Lee, N.; Park, M.; Kim, B. H.; An, K.; Hyeon, T., Synthesis of uniform ferrimagnetic magnetite nanocubes. J. Am. Chem. Soc. 2009, 131 (2), 454-455.

99. Wilson, D.; Langell, M. A., XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature. Appl. Surf. Sci. 2014, 303, 6-13.

100. Sahoo, Y.; Goodarzi, A.; Swihart, M. T.; Ohulchanskyy, T. Y.; Kaur, N.; Furlani, E. P.;

Prasad, P. N., Aqueous ferrofluid of magnetite nanoparticles: Fluorescence labeling and magnetophoretic control. J Phys Chem B 2005, 109 (9), 3879-3885.

101. Baharuddin, A. A.; Ang, B. C.; Abu Hussein, N. A.; Andriyana, A.; Wong, Y. H., Mechanisms of highly stabilized ex-situ oleic acid-modified iron oxide nanoparticles functionalized with 4-pentynoic acid. Mater. Chem. Phys. 2018, 203, 212-222.

102. Kang, M.; Seong, M.; Lee, D.; Kang, S. M.; Kwak, M. K.; Jeong, H. E., Self-Assembled Artificial Nanocilia Actuators. Adv. Mater. 2022, 34 (24), 2200185.

103. Long, T. W.; Cordova-Figueroa, U. M.; Kretzschmar, I., Measuring, Modeling, and Predicting the Magnetic Assembly Rate of 2D-Staggered Janus Particle Chains. Langmuir 2019, 35 (24), 8121-8130.

104. Jiang, X. Y.; Feng, J. G.; Huang, L.; Wu, Y. C.; Su, B.; Yang, W. S.; Mai, L. Q.; Jiang, L., Bioinspired 1D Superparamagnetic Magnetite Arrays with Magnetic Field Perception. Adv.

Mater. 2016, 28 (32), 6952-6958.

105. Wang, M. S.; He, L.; Yin, Y. D., Magnetic field guided colloidal assembly. Mater. Today 2013, 16 (4), 110-116.

106. Zhou, Z. H.; Liu, G. J.; Han, D. H., Coating and Structural Locking of Dipolar Chains of Cobalt Nanoparticles. ACS Nano 2009, 3 (1), 165-172.

107. Shah, P. S.; Holmes, J. D.; Johnston, K. P.; Korgel, B. A., Size-selective dispersion of dodecanethiol-coated nanocrystals in liquid and supercritical ethane by density tuning. J Phys Chem B 2002, 106 (10), 2545-2551.

108. Bishop, K. J. M.; Wilmer, C. E.; Soh, S.; Grzybowski, B. A., Nanoscale forces and their uses in self-assembly. Small 2009, 5 (14), 1600-1630.

109. Tadmor, R.; Rosensweig, R. E.; Frey, J.; Klein, J., Resolving the puzzle of ferrofluid dispersants. Langmuir 2000, 16 (24), 9117-9120.

110. Wu, L. H.; Willis, J. J.; McKay, I. S.; Diroll, B. T.; Qin, J.; Cargnello, M.; Tassone, C. J., High-temperature crystallization of nanocrystals into three-dimensional superlattices. Nature 2017, 548 (7666), 197-201.

65

111. Gyergyek, S.; Makovec, D.; Drofenik, M., Colloidal stability of oleic- and ricinoleic-acid-coated magnetic nanoparticles in organic solvents. J. Colloid Interface Sci. 2011, 354 (2), 498-505.

112. Kuwahara, T.; Romero, P. A.; Makowski, S.; Weihnacht, V.; Moras, G.; Moseler, M., Mechano-chemical decomposition of organic friction modifiers with multiple reactive centres induces superlubricity of ta-C. Nat. Commun. 2019, 10, 1-11.

113. Zhu, Y. Y.; Antao, D. S.; Xiao, R.; Wang, E. N., Real-Time Manipulation with Magnetically Tunable Structures. Adv. Mater. 2014, 26 (37), 6442-6446.

66

Acknowledgment

I would like to take this opportunity to express my deep gratitude to everyone who supported me during my Ph.D. course.

I would like to express my infinite gratitude and love to my family, Namsin Kang, Mira Kim, and Kyungtae Kang, who have given me support and deep trust in everything I do and have always helped and supported me in every way.

I would like to express my deep gratitude to my advisor, Prof Hoon Eui Jeong, who guided me during the degree course. He guided me to develop various skills and mindset of researcher. In particular, the professor taught me how to describe the results effectively and how to approach the goals effectively, and this guidance greatly affected my life. Once again, I would like to express my deep gratitude to the professor for providing valuable research opportunities and providing guidance during the degree process.

I am deeply grateful to the rest of the committee members: Prof. Young-Bin Park, Prof.

Joonbum Bae, Prof. Im Doo Jung, and Prof. Jiyun Kim. Committees gave valuable comments from various perspectives, that makes my research enriched and more organized.

I sincerely thank the MBM graduates who spent a lot of time together. Hoon Yi, Hyun-Ha Park, Hangil Ko, Minho Seong, Insol Hwang, and Sang-Hyeon Lee were good seniors, and they helped throughout the research, including the methodology for efficiently and accurately conducting experiments and their experimental know-how. In particular, I special thanks to Sang-Hyeon Lee, who is thoughtful and meticulous. He supported me as a reliable colleague who shared most of my laboratory life and worked together. Also, I would like to thank the laboratory members. Hyunwook Ko, Joosung Lee, Kahyun Sun, Geonjun Choi, Jaeil Kim, Seongin Park, Hyejin Jang, Donghyuk Lee, Chaebin Park, Somi Kim, Hyeonseok Song, Hyukjoo Kwon, Stalin Kondaveeti, Dong-Kawn Kang for having unforgettable years together. We dealt with a variety of tasks and shared constructive exchanges of opinions and knowledge in each field. These collaborations helped me expand my research field.

I special thanks to all my friends who have always believed in and supported me.

Dalam dokumen Self-assembled artificial cilia actuator (Halaman 72-85)

Dokumen terkait