• Tidak ada hasil yang ditemukan

Chapter 3. Attachment magnetic nanoparticles to edge-oxidized graphene

3.4 Conclusion

30

For the formation of FeCo/EOG composite, I just mixed Cl- capped FeCo and PEI-EOG in water. After stirring all night long, the FeCo/EOG composite are characterized by TEM. Figure 3.8 shows TEM images of FeCo/EOG composites. The FeCo nanoparticles were attached to the edge of the EOG, suggesting of the formation of the composites.

Fig. 3.8. TEM images of a) 13-nm FeCo and EOG composites and b) 5-nm FeCo and EOG composite.

31

References

1. Volokitin, Y.; Sinzig, J.; de Jongh, L. J.; Schmid, G.; Vargaftik, M. N.; Moiseevi, I. I., Quantum- size effects in the thermodynamic properties of metallic nanoparticles. Nature 1996, 384 (6610), 621-623.

2. Chin, S. F.; Iyer, K. S.; Raston, C. L.; Saunders, M., Size Selective Synthesis of Superparamagnetic Nanoparticles in Thin Fluids under Continuous Flow Conditions. Advanced Functional Materials 2008, 18 (6), 922-927.

3. Wang, F.; Dong, A.; Buhro, W. E., Solution-Liquid-Solid Synthesis, Properties, and Applications of One-Dimensional Colloidal Semiconductor Nanorods and Nanowires. Chem Rev 2016, 116 (18), 10888-933.

4. Taylor, R.; Coulombe, S.; Otanicar, T.; Phelan, P.; Gunawan, A.; Lv, W.; Rosengarten, G.;

Prasher, R.; Tyagi, H., Small particles, big impacts: A review of the diverse applications of nanofluids. Journal of Applied Physics 2013, 113 (1), 011301.

5. Hewakuruppu, Y. L.; Dombrovsky, L. A.; Chen, C.; Timchenko, V.; Jiang, X.; Baek, S.; Taylor, R. A., Plasmonic "pump-probe" method to study semi-transparent nanofluids. Appl Opt 2013, 52 (24), 6041-50.

6. Taylor, R. A.; Otanicar, T.; Rosengarten, G., Nanofluid-based optical filter optimization for PV/T systems. Light: Science & Applications 2012, 1 (10), e34.

7. Gittleman, J. I.; Abeles, B.; Bozowski, S., Superparamagnetism and relaxation effects in granular Ni-SiO2and Ni-Al2O3films. Physical Review B 1974, 9 (9), 3891-3897.

8. Lu, A. H.; Schmidt, W.; Matoussevitch, N.; Bonnemann, H.; Spliethoff, B.; Tesche, B.; Bill, E.;

Kiefer, W.; Schuth, F., Nanoengineering of a magnetically separable hydrogenation catalyst. Angew Chem Int Ed Engl 2004, 43 (33), 4303-6.

9. Ramaswamy, B.; Kulkarni, S. D.; Villar, P. S.; Smith, R. S.; Eberly, C.; Araneda, R. C.; Depireux, D. A.; Shapiro, B., Movement of magnetic nanoparticles in brain tissue: mechanisms and impact on normal neuronal function. Nanomedicine 2015, 11 (7), 1821-9.

10. Mornet, S.; Vasseur, S.; Grasset, F.; Veverka, P.; Goglio, G.; Demourgues, A.; Portier, J.; Pollert, E.; Duguet, E., Magnetic nanoparticle design for medical applications. Progress in Solid State Chemistry 2006, 34 (2-4), 237-247.

11. Hyeon, T., Chemical synthesis of magnetic nanoparticles. Chemical Communications 2003, (8), 927-934.

12. Chen, Y. J.; Gao, P.; Zhu, C. L.; Wang, R. X.; Wang, L. J.; Cao, M. S.; Fang, X. Y., Synthesis, magnetic and electromagnetic wave absorption properties of porous Fe3O4/Fe/SiO2 core/shell nanorods. Journal of Applied Physics 2009, 106 (5), 054303.

32

13. Arruebo, M.; Fernández-Pacheco, R.; Ibarra, M. R.; Santamaría, J., Magnetic nanoparticles for drug delivery. Nano Today 2007, 2 (3), 22-32.

14. Sun, S., Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. Science 2000, 287 (5460), 1989-1992.

15. Sun, S.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G., Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 2004, 126 (1), 273-9.

16. Gu, H.; Zheng, R.; Zhang, X.; Xu, B., Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc 2004, 126 (18), 5664-5.

17. Bulte, J. W.; Kraitchman, D. L., Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 2004, 17(7), 484-99.

18. Huber, D. L., Synthesis, properties, and applications of iron nanoparticles. Small 2005, 1 (5), 482-501.

19. Wu, L.; Li, Q.; Wu, C. H.; Zhu, H.; Mendoza-Garcia, A.; Shen, B.; Guo, J.; Sun, S., Stable Cobalt Nanoparticles and Their Monolayer Array as an Efficient Electrocatalyst for Oxygen Evolution Reaction. J Am Chem Soc 2015, 137 (22), 7071-4.

20. Han, M. J.; Ozaki, T.; Yu, J., Electronic structure and magnetic properties of small manganese oxide clusters. J Chem Phys 2005, 123 (3), 34306.

21. Assadi, M. H. N.; Hanaor, D. A. H., Theoretical study on copper's energetics and magnetism in TiO2 polymorphs. Journal of Applied Physics 2013, 113 (23), 233913.

22. Batlle, X.; Labarta, A., Finite-size effects in fine particles: magnetic and transport properties. Journal of Physics D: Applied Physics 2002, 35 (6), R15-R42.

23. Leslie-Pelecky, D. L.; Rieke, R. D., Magnetic Properties of Nanostructured Materials. Chemistry of Materials 1996, 8 (8), 1770-1783.

24. Iwaki, T.; Kakihara, Y.; Toda, T.; Abdullah, M.; Okuyama, K., Preparation of high coercivity magnetic FePt nanoparticles by liquid process. Journal of Applied Physics 2003, 94 (10), 6807- 6811.

25. Soumare, Y.; Garcia, C.; Maurer, T.; Chaboussant, G.; Ott, F.; Fiévet, F.; Piquemal, J.-Y.; Viau, G., Kinetically Controlled Synthesis of Hexagonally Close-Packed Cobalt Nanorods with High Magnetic Coercivity. Advanced Functional Materials 2009, 19 (12), 1971-1977.

26. Sun, S., Recent Advances in Chemical Synthesis, Self-Assembly, and Applications of FePt Nanoparticles. Advanced Materials 2006, 18 (4), 393-403.

27. Laughlin, D. E.; Srinivasan, K.; Tanase, M.; Wang, L., Crystallographic aspects of L10 magnetic materials. Scripta Materialia 2005, 53 (4), 383-388.

28. de la Pena O'Shea, V. A.; Moreira Ide, P.; Roldan, A.; Illas, F., Electronic and magnetic structure

33

of bulk cobalt: the alpha, beta, and epsilon-phases from density functional theory calculations. J Chem Phys 2010, 133 (2), 024701.

29. Respaud, M.; Broto, J. M.; Rakoto, H.; Fert, A. R.; Thomas, L.; Barbara, B.; Verelst, M.; Snoeck, E.; Lecante, P.; Mosset, A.; Osuna, J.; Ely, T. O.; Amiens, C.; Chaudret, B., Surface effects on the magnetic properties of ultrafine cobalt particles. Physical Review B 1998, 57 (5), 2925-2935.

30. Bodker, F.; Morup, S.; Linderoth, S., Surface effects in metallic iron nanoparticles. Phys Rev Lett 1994, 72 (2), 282-285.

31. Lee, J. H.; Huh, Y. M.; Jun, Y. W.; Seo, J. W.; Jang, J. T.; Song, H. T.; Kim, S.; Cho, E. J.; Yoon, H. G.; Suh, J. S.; Cheon, J., Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 2007, 13 (1), 95-9.

32. Shouheng, S.; Fullerton, E. E.; Weller, D.; Murray, C. B., Compositionally controlled FePt nanoparticle materials. IEEE Transactions on Magnetics 2001, 37 (4), 1239-1243.

33. Gutfleisch, O.; Lyubina, J.; Müller, K. H.; Schultz, L., FePt Hard Magnets. Advanced Engineering Materials 2005, 7 (4), 208-212.

34. LaMer, V. K.; Dinegar, R. H., Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. Journal of the American Chemical Society 1950, 72 (11), 4847-4854.

35. Erdemir, D.; Lee, A. Y.; Myerson, A. S., Nucleation of crystals from solution: classical and two- step models. Acc Chem Res 2009, 42 (5), 621-9.

36. Murray, C. B.; Norris, D. J.; Bawendi, M. G., Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society 1993, 115 (19), 8706-8715.

37. Peng, S.; Wang, C.; Xie, J.; Sun, S., Synthesis and stabilization of monodisperse Fe nanoparticles. J Am Chem Soc 2006,128 (33), 10676-7.

38. Lacroix, L. M.; Huls, N. F.; Ho, D.; Sun, X.; Cheng, K.; Sun, S., Stable single-crystalline body centered cubic Fe nanoparticles. Nano Lett 2011, 11 (4), 1641-5.

39. Puntes, V. F.; Zanchet, D.; Erdonmez, C. K.; Alivisatos, A. P., Synthesis of hcp-Co Nanodisks. Journal of the American Chemical Society 2002, 124 (43), 12874-12880.

40. Black, C. T., Spin-Dependent Tunneling in Self-Assembled Cobalt-Nanocrystal Superlattices. Science 2000, 290 (5494), 1131-1134.

41. Park, J.; Kang, E.; Son, S. U.; Park, H. M.; Lee, M. K.; Kim, J.; Kim, K. W.; Noh, H. J.; Park, J.

H.; Bae, C. J.; Park, J. G.; Hyeon, T., Monodisperse Nanoparticles of Ni and NiO: Synthesis, Characterization, Self-Assembled Superlattices, and Catalytic Applications in the Suzuki Coupling Reaction. Advanced Materials 2005, 17 (4), 429-434.

42. Sun, S.; Zeng, H., Size-Controlled Synthesis of Magnetite Nanoparticles. Journal of the American Chemical Society 2002,124 (28), 8204-8205.

34

43. Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T., Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 2004, 3 (12), 891-5.

44. Lopez-Lopez, M. T.; Duran, J. D.; Delgado, A. V.; Gonzalez-Caballero, F., Stability and magnetic characterization of oleate-covered magnetite ferrofluids in different nonpolar carriers. J Colloid Interface Sci 2005, 291 (1), 144-51.

45. Viota, J. L.; Durán, J. D. G.; González-Caballero, F.; Delgado, A. V., Magnetic properties of extremely bimodal magnetite suspensions. Journal of Magnetism and Magnetic Materials 2007, 314 (2), 80-86.

46. Massart, R., Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Transactions on Magnetics 1981,17 (2), 1247-1248.

47. Khollam, Y. B.; Dhage, S. R.; Potdar, H. S.; Deshpande, S. B.; Bakare, P. P.; Kulkarni, S. D.;

Date, S. K., Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders. Materials Letters 2002, 56 (4), 571-577.

48. Chen, F.; Gao, Q.; Hong, G.; Ni, J., Synthesis and characterization of magnetite dodecahedron nanostructure by hydrothermal method. Journal of Magnetism and Magnetic Materials 2008, 320 (11), 1775-1780.

49. Ge, S.; Shi, X.; Sun, K.; Li, C.; Baker, J. R.; Banaszak Holl, M. M.; Orr, B. G., A Facile Hydrothermal Synthesis of Iron Oxide Nanoparticles with Tunable Magnetic Properties. J Phys Chem C Nanomater Interfaces 2009, 113 (31), 13593-13599.

50. Jasieniak, J.; Bullen, C.; van Embden, J.; Mulvaney, P., Phosphine-free synthesis of CdSe nanocrystals. J Phys Chem B 2005,109 (44), 20665-8.

51. Liu, C.; Zou, B.; Rondinone, A. J.; Zhang, Z. J., Reverse Micelle Synthesis and Characterization of Superparamagnetic MnFe2O4Spinel Ferrite Nanocrystallites. The Journal of Physical Chemistry B 2000, 104 (6), 1141-1145.

52. Lu, A. H.; Salabas, E. L.; Schuth, F., Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 2007, 46 (8), 1222-44.

53. Yang, H.; Zhang, J.; Tian, Q.; Hu, H.; Fang, Y.; Wu, H.; Yang, S., One-pot synthesis of amphiphilic superparamagnetic FePt nanoparticles and magnetic resonance imaging in vitro.

Journal of Magnetism and Magnetic Materials 2010, 322 (8), 973-977.

54. Feng, Y.; Qiu, T., Preparation, characterization and microwave absorbing properties of FeNi alloy prepared by gas atomization method. Journal of Alloys and Compounds 2012, 513, 455- 459.

55. Rafique, M. Y.; Pan, L.; Zubair Iqbal, M.; Javed, Q.-u.-a.; Qiu, H.; Rafi ud, d.; Farooq, M. H.;

Guo, Z., 3-D flower like FeCo alloy nanostructures assembled with nanotriangular prism: Facile synthesis, magnetic properties, and effect of NaOH on its formation. Journal of Alloys and

35 Compounds 2013, 550, 423-430.

56. Lacroix, L. M.; Malaki, R. B.; Carrey, J.; Lachaize, S.; Respaud, M.; Goya, G. F.; Chaudret, B., Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: Evidences for Stoner–Wohlfarth behavior and large losses. Journal of Applied Physics 2009, 105 (2), 023911.

57. Kodama, D.; Shinoda, K.; Sato, K.; Konno, Y.; Joseyphus, R. J.; Motomiya, K.; Takahashi, H.;

Matsumoto, T.; Sato, Y.; Tohji, K.; Jeyadevan, B., Chemical Synthesis of Sub-micrometer- to Nanometer-Sized Magnetic FeCo Dice. Advanced Materials 2006, 18 (23), 3154-3159.

58. Chaubey, G. S.; Barcena, C.; Poudyal, N.; Rong, C.; Gao, J.; Sun, S.; Liu, J. P., Synthesis and stabilization of FeCo nanoparticles. J Am Chem Soc 2007, 129 (23), 7214-5.

59. Shin, S. J.; Kim, Y. H.; Kim, C. W.; Cha, H. G.; Kim, Y. J.; Kang, Y. S., Preparation of magnetic FeCo nanoparticles by coprecipitation route. Current Applied Physics 2007, 7 (4), 404-408.

60. Wei, X.-W.; Zhu, G.-X.; Liu, Y.-J.; Ni, Y.-H.; Song, Y.; Xu, Z., Large-Scale Controlled Synthesis of FeCo Nanocubes and Microcages by Wet Chemistry. Chemistry of Materials 2008, 20 (19), 6248-6253.

61. Poudyal, N.; Chaubey, G. S.; Rong, C. B.; Cui, J.; Liu, J. P., Synthesis of monodisperse FeCo nanoparticles by reductive salt-matrix annealing. Nanotechnology 2013, 24 (34), 345605.

62. Ung, D.; Tung, L. D.; Caruntu, G.; Delaportas, D.; Alexandrou, I.; Prior, I. A.; Thanh, N. T. K., Variant shape growth of nanoparticles of metallic Fe–Pt, Fe–Pd and Fe–Pt–Pd alloys.

CrystEngComm 2009, 11 (7), 1309.

63. Chen, M.; Kim, J.; Liu, J. P.; Fan, H.; Sun, S., Synthesis of FePt nanocubes and their oriented self-assembly. J Am Chem Soc 2006, 128 (22), 7132-3.

64. Zhang, J.; Fang, J., A general strategy for preparation of Pt 3d-transition metal (Co, Fe, Ni) nanocubes. J Am Chem Soc 2009, 131 (51), 18543-7.

65. Yang, H.; Ogawa, T.; Hasegawa, D.; Takahashi, M., Synthesis and magnetic properties of monodisperse magnetite nanocubes. Journal of Applied Physics 2008, 103 (7), 07D526.

66. Song, Q.; Zhang, Z. J., Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J Am Chem Soc 2004, 126 (19), 6164-8.

67. Davies, M. J.; Parker, S. C.; Watson, G. W., Atomistic simulation of the surface structure of spinel. Journal of Materials Chemistry 1994, 4 (6), 813.

68. Kim, D; Lee, N.; Park, M.; Kim, B. H.; An, K.; Hyeon, T., Synthesis of uniform ferrimagnetic magnetite nanocubes. J Am Chem Soc 2009, 131 (2), 454-5.

69. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-9.

70. Katsnelson, M. I., Graphene: carbon in two dimensions. Materials Today 2007, 10 (1-2), 20-27.

36

71. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 2009, 9 (1), 30-5.

72. Chen, J. H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S., Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 2008, 3 (4), 206-9.

73. Geim, A. K.; Kim, P., Carbon Wonderland. Scientific American 2008, 298 (4), 90-97.

74. Kuzmenko, A. B.; van Heumen, E.; Carbone, F.; van der Marel, D., Universal optical conductance of graphite. Phys Rev Lett 2008, 100 (11), 117401

75. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat Mater 2007, 6 (3), 183-91.

76. Jasuja, K.; Linn, J.; Melton, S.; Berry, V., Microwave-Reduced Uncapped Metal Nanoparticles on Graphene: Tuning Catalytic, Electrical, and Raman Properties. The Journal of Physical Chemistry Letters 2010, 1 (12), 1853-1860.

77. Si, Y.; Samulski, E. T., Exfoliated Graphene Separated by Platinum Nanoparticles. Chemistry of Materials 2008, 20 (21), 6792-6797.

78. Xu, C.; Wang, X.; Zhu, J., Graphene−Metal Particle Nanocomposites. The Journal of Physical Chemistry C 2008, 112 (50), 19841-19845.

79. Lim, H. N.; Huang, N. M.; Lim, S. S.; Harrison, I.; Chia, C. H., Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth. Int J Nanomedicine 2011, 6, 1817-23.

80. Kong, B. S.; Geng, J.; Jung, H. T., Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions. Chem Commun (Camb) 2009, (16), 2174-6.

81. Zhang, F.-J.; Liu, J.; Zhang, K.; Zhao, W.; Jang, W.-K.; Oh, W.-C., A novel and simple approach for the synthesis of Fe3O4-graphene composite. Korean Journal of Chemical Engineering 2012, 29 (8), 989-993.

82. Yang, X.; Zhang, X.; Ma, Y.; Huang, Y.; Wang, Y.; Chen, Y., Superparamagnetic graphene oxide–

Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. Journal of Materials Chemistry 2009, 19 (18), 2710.

83. Cong, H. P.; He, J. J.; Lu, Y.; Yu, S. H., Water-soluble magnetic-functionalized reduced graphene oxide sheets: in situ synthesis and magnetic resonance imaging applications. Small 2010, 6 (2), 169-73.

84. He, F.; Fan, J.; Ma, D.; Zhang, L.; Leung, C.; Chan, H. L., The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding. Carbon 2010, 48 (11), 3139-3144.

85. Shen, J.; Hu, Y.; Shi, M.; Li, N.; Ma, H.; Ye, M., One Step Synthesis of Graphene Oxide−Magnetic Nanoparticle Composite. The Journal of Physical Chemistry C 2010, 114 (3),

37 1498-1503.

86. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chem Soc Rev 2010, 39 (1), 228-40.

87. Szabo, T.; Bakandritsos, A.; Tzitzios, V.; Devlin, E.; Petridis, D.; Dekany, I., Magnetically modified single and turbostratic stacked graphenes from tris(2,2'-bipyridyl) iron(II) ion- exchanged graphite oxide. J Phys Chem B 2008, 112 (46), 14461-9.

88. Zhang, F.-J.; Liu, J.; Zhang, K.; Zhao, W.; Jang, W.-K.; Oh, W.-C., A novel and simple approach for the synthesis of Fe3O4-graphene composite. Korean Journal of Chemical Engineering 2012, 29 (8), 989-993.

89. Jeon, I. Y.; Shin, Y. R.; Sohn, G. J.; Choi, H. J.; Bae, S. Y.; Mahmood, J.; Jung, S. M.; Seo, J.

M.; Kim, M. J.; Wook Chang, D.; Dai, L.; Baek, J. B., Edge-carboxylated graphene nanosheets via ball milling. Proc Natl Acad Sci U S A 2012, 109 (15), 5588-93.

90. Yang, Q.; Pan, X.; Huang, F.; Li, K., Fabrication of High-Concentration and Stable Aqueous Suspensions of Graphene Nanosheets by Noncovalent Functionalization with Lignin and Cellulose Derivatives. The Journal of Physical Chemistry C 2010, 114 (9), 3811-3816.

91. Zhu, C.; Guo, S.; Fang, Y.; Dong, S., Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 2010, 4 (4), 2429-37.

92. Chen, W.; Yan, L.; Bangal, P. R., Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 2010, 48 (4), 1146-1152.

93. Carozzi, S.; Nasini, M. G.; Schelotto, C.; Caviglia, P. M.; Barocci, S.; Cantaluppi, A.; Salit, M., Peritoneal dialysis fluid (PDF) C++ and 1,25(OH)2D3 modulate peritoneal macrophage (PM0) antimicrobial activity in CAPD patients. Adv Perit Dial 1990, 6, 110-3.

94. Murray, C. B.; Norris, D. J.; Bawendi, M. G., Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society 1993, 115 (19), 8706-8715.

95. Shanker, G. S.; Swarnkar, A.; Chatterjee, A.; Chakraborty, S.; Phukan, M.; Parveen, N.; Biswas, K.; Nag, A., Electronic grade and flexible semiconductor film employing oriented attachment of colloidal ligand-free PbS and PbSe nanocrystals at room temperature. Nanoscale 2015, 7 (20), 9204-14.

96. Kadlag, K. P.; Rao, M. J.; Nag, A., Ligand-Free, Colloidal, and Luminescent Metal Sulfide Nanocrystals. J Phys Chem Lett 2013, 4 (10), 1676-81.

97. Nag, A.; Zhang, H.; Janke, E.; Talapin, D. V., Inorganic Surface Ligands for Colloidal Nanomaterials. Zeitschrift für Physikalische Chemie 2015, 229 (1-2).

98. Kovalenko, M. V.; Scheele, M.; Talapin, D. V., Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 2009, 324 (5933), 1417-20.

Dokumen terkait