• Tidak ada hasil yang ditemukan

In this thesis, two theoretical models for sawtooth oscillation followed by a sudden crash has been reviewed by comparing them with experimental observations. Kadomtsevโ€™s full reconnection model describes that the hot region at the core is โ€œkinkedโ€ toward the ๐‘ž = 1 surface due to the internal kink instability, and a narrow resistive layer is formed. Then, collapse of the pressure and temperature suddenly occurs on the narrow layer in a very short time due to magnetic reconnection. On the other hand, Wessonโ€™s model describes that a flat ๐‘ž -profile is formed within ๐‘ž = 1 surface which drives quasi-interchange instability due to very small or no magnetic shear in the flat ๐‘ž-profile region.

The 2-D images of the electron temperature fluctuation, observed at the core of the sawtoothing plasma, shows that the spatial structure of the hot region inside the ๐‘ž = 1 surface is circular. This indicates that the actual physical phenomena resemble Kadomtsevโ€™s model, rather than Wessonโ€™s model.

A future study will be conducted to develop a new model which encompasses both theoretical models. Kadomtsevโ€™s model is satisfied only if 1 โˆ’ ๐‘ž > ๐œ€ and Wessonโ€™s model is satisfied only if 1 โˆ’ ๐‘ž โ‰ช ๐œ€. A new eigenvalue, ๐›, has to be introduced when 1 โˆ’ ๐‘ž ~ ๐œ€. This thesis may lead to better explanations of the exact physical phenomena involved in sawtooth oscailltion. The instability will be analyzed by Fourier analysis ๐› ~ ๐‘’๐‘–(๐‘š๐œƒโˆ’๐‘›๐œ™โˆ’๐œ”๐‘ก). By obtaining ๐œ”, the plasma rotation speed will be expressed in terms of the real part of ๐œ”, ๐œ”๐‘Ÿ, and the growth rate of magnetic perturbation will be expressed in terms of the imaginary part of ๐œ”, ๐œ”๐‘–. Using the Fourier analysis, adding a time-dependent term to MHD equations, the instability will be understood. By coupling the ideal MHD equations combining ๐‘’๐‘–(๐‘š๐œƒโˆ’๐‘›๐œ™โˆ’๐œ”๐‘ก) term, the plasma velocity distribution, ๐ฎ(๐ซ, ๐‘ก), will be obtained. The plasma current density, ๐ฃ(๐ซ, ๐‘ก), and magnetic field, ๐(๐ซ, ๐‘ก) will be also obtained. By obtaining these analytical solutions, the exact cause of instability will be revealed, and the instability can be controlled based on this theoretical background. Therefore, it is hoped that this study will contribute to the commercialization of nuclear fusion.

Appendix A. Plasma Parameters

The physical constants used in plasma physics are given in Table A.1.

Table A.1 Plasma parameters

Plasma Parameter Symbol Constant (SI unit)

Electron charge ๐‘’ 1.60217662ร—10โˆ’19 C

Vacuum permeability ๐œ‡0 4๐œ‹ร—10โˆ’7 Tโˆ™m/A(H/A)

Speed of light ๐‘ 2.99792458ร—108 m/s

Vacuum permittivity ๐œ€0 1/(๐œ‡0๐‘2) F/m

Plankโ€™s constant โ„Ž 6.62607004 ร—10โˆ’34 Jโˆ™s

โ„ โ„Ž/2๐œ‹

Boltzmannโ€™s constant ๐‘˜๐ต 1.38063853ร—10โˆ’23 J/K

Electron mass ๐‘š 9.1095611ร—10โˆ’31 kg

Ion mass ๐‘€ 1.66053904020ร—10โˆ’31 kg

Mass ratio ๐‘€/๐‘š 1837

Electron volt 1 eV = 1. 6021766ร—10โˆ’19 J

Temperature at 1 eV 11,604.60602240 K

Appendix B. Vector relations

B.1 Vector formulas

๐€ โˆ™ (๐ร—๐‚) = ๐ โˆ™ (๐‚ร—๐€) = ๐‚ โˆ™ (๐€ร—๐) (B.1) ๐€ร—(๐ร—๐‚) = ๐(๐€ โˆ™ ๐‚) โˆ’ ๐‚(๐€ โˆ™ ๐) (B.2) (๐€ร—๐) โˆ™ (๐‚ร—๐ƒ) = (๐€ โˆ™ ๐)(๐‚ โˆ™ ๐ƒ) โˆ’ (๐€ โˆ™ ๐ƒ)(๐ โˆ™ ๐‚) (B.3) (๐€ร—๐)ร—(๐‚ร—๐ƒ) = (๐€๐๐ƒ)๐‚ โˆ’ (๐€๐๐‚)๐ƒ = (๐€๐‚๐ƒ)๐ โˆ’ (๐๐‚๐ƒ)๐€ (B.4)

(๐€ โˆ™ ๐›)๐€ = ๐› (๐Ÿ

๐Ÿ๐€๐Ÿ) โˆ’ ๐€ร—(๐›ร—๐€) (B.5)

๐›ร—{(๐€ โˆ™ ๐›)๐€} = (๐€ โˆ™ ๐›)(๐›ร—๐€) + (๐› โˆ™ ๐€)(๐›ร—๐€) โˆ’ {(๐›ร—๐€) โˆ™ ๐›}๐€ (B.6)

๐› โˆ™ (๐œ™๐€) = ๐œ™๐› โˆ™ ๐€ + ๐€ โˆ™ (๐›๐œ™) (B.7)

๐›ร—(๐œ™๐€) = ๐œ™๐›ร—๐€ + (๐›๐œ™)ร—๐€ (B.8)

๐› โˆ™ (๐€ร—๐) = ๐ โˆ™ ๐›ร—๐€ โˆ’ ๐€ โˆ™ ๐›ร—๐ (B.9)

๐›(๐€ โˆ™ ๐) = ๐€ร—(๐›ร—๐) + (๐› โˆ™ ๐€)๐ + ๐ร—(๐›ร—๐€) + (๐ โˆ™ ๐›)๐€ (B.10)

๐› โˆ™ (๐€ร—๐) = ๐ โˆ™ (๐›ร—๐€) โˆ’ ๐€ โˆ™ (๐›ร—๐) (B.11)

๐›ร—(๐€ร—๐) = ๐€(๐› โˆ™ ๐) โˆ’ ๐(๐› โˆ™ ๐€) โˆ’ (๐€ โˆ™ ๐›)๐ + (๐ โˆ™ ๐›)๐€ (B.12)

๐›ร—(๐›ร—๐€) = ๐›(๐› โˆ™ ๐€) โˆ’ โˆ‡2๐€ (B.13)

๐›ร—(๐›๐œ™) = 0 (B.14)

๐› โˆ™ (๐›ร—๐€) = 0 (B.15)

B.2 Applications to the cylindrical coordinates (๐’“, ๐œฝ, ๐’›)

โˆ‡2๐œ™ =1 ๐‘Ÿ

๐œ•

๐œ•๐‘Ÿ(๐‘Ÿ๐œ•๐œ™

๐œ•๐‘Ÿ) +1 ๐‘Ÿ

๐œ•2๐œ™

๐œ•๐œƒ2+๐œ•2๐œ™

๐œ•๐‘ง2 (B.16)

๐› โˆ™ ๐€ =1 ๐‘Ÿ

๐œ•

๐œ•๐‘Ÿ(๐‘Ÿ๐ด๐‘Ÿ) +1 ๐‘Ÿ

๐œ•๐ด๐œƒ

๐œ•๐œƒ +๐œ•๐ด๐‘ง

๐œ•๐‘ง (B.17)

๐›ร—๐€ = (1 ๐‘Ÿ

๐œ•๐ด๐‘ง

๐œ•๐œƒ โˆ’๐œ•๐ด๐œƒ

๐œ•๐‘ง ) ๐ซฬ‚ + (๐œ•๐ด๐‘Ÿ

๐œ•๐‘ง โˆ’๐œ•๐ด๐‘ง

๐œ•๐‘Ÿ) ๐›‰ฬ‚ + (1 ๐‘Ÿ

๐œ•

๐œ•๐‘Ÿ(๐‘Ÿ๐ด๐œƒ) โˆ’1 ๐‘Ÿ

๐œ•๐ด๐‘Ÿ

๐œ•๐œƒ) ๐ณฬ‚ (B.18)

โˆ‡2๐€ = {โˆ‡2๐ด๐‘Ÿโˆ’ 1

๐‘Ÿ2(๐ด๐‘Ÿ + 2๐œ•๐ด๐œƒ

๐œ•๐œƒ)} ๐ซฬ‚ + {โˆ‡2๐ด๐œƒโˆ’ 1

๐‘Ÿ2(๐ด๐œƒ+ 2๐œ•๐ด๐‘Ÿ

๐œ•๐œƒ)} ๐›‰ฬ‚ + โˆ‡2๐ด๐‘ง๐ณฬ‚ (B.19) (๐€ โˆ™ ๐›)๐ = (๐ด๐‘Ÿ๐œ•๐ต๐‘Ÿ

๐œ•๐‘Ÿ + ๐ด๐œƒ1 ๐‘Ÿ

๐œ•๐ต๐‘Ÿ

๐œ•๐œƒ + ๐ด๐‘ง๐œ•๐ต๐‘Ÿ

๐œ•๐‘ง โˆ’1

๐‘Ÿ๐ด๐œƒ๐ต๐œƒ) ๐ซฬ‚

+ (๐ด๐‘Ÿ๐œ•๐ต๐œƒ

๐œ•๐‘Ÿ + ๐ด๐œƒ1 ๐‘Ÿ

๐œ•๐ต๐œƒ

๐œ•๐œƒ + ๐ด๐‘ง๐œ•๐ต๐œƒ

๐œ•๐‘ง โˆ’1

๐‘Ÿ๐ด๐œƒ๐ต๐‘Ÿ) ๐›‰ฬ‚ + (๐ด๐‘Ÿ๐œ•๐ต๐‘ง

๐œ•๐‘Ÿ + ๐ด๐œƒ1 ๐‘Ÿ

๐œ•๐ต๐‘ง

๐œ•๐œƒ + ๐ด๐‘ง๐œ•๐ต๐‘ง

๐œ•๐‘Ÿ) ๐ณฬ‚

(B.20)

Appendix C. Detail derivations

C.1 Integration of trigonometric function in section 2.1.4 To show

๐ด = โˆซ d๐‘ก ๐‘Ž + ๐‘ cos ๐‘ก

2๐œ‹ 0

= 2๐œ‹

โˆš๐‘Ž2โˆ’ ๐‘2 where ๐‘Ž > ๐‘ > 0, substitution integral is useful.

First, let ๐‘ฅ = tan2๐‘ก , then cos ๐‘ก = (1 โˆ’ ๐‘ฅ2)/(1 + ๐‘ฅ2) and d๐‘ฅ =12sec2 ๐‘ก2d๐‘ก =12(1 + ๐‘ฅ2)d๐‘ก , then d๐‘ก = 2d๐‘ฅ

1+๐‘ฅ2 . And ๐‘ฅ โ†’ 0 as ๐‘ก โ†’ 0 , ๐‘ฅ โ†’ 0 as ๐‘ก โ†’ 2๐œ‹ . Since inside of integral term is symmetry by ๐‘ก = ๐œ‹ and ๐‘ฅ โ†’ โˆž as ๐‘ก โ†’ ๐œ‹,

๐ด = โˆซ d๐‘ก ๐‘Ž + ๐‘ cos ๐‘ก

2๐œ‹ 0

= โˆซ d๐‘ก

๐‘Ž + ๐‘ cos ๐‘ก

๐œ‹ 0

+ โˆซ d๐‘ก

๐‘Ž + ๐‘ cos ๐‘ก

2๐œ‹ ๐œ‹

= 2 โˆซ d๐‘ก ๐‘Ž + ๐‘ cos ๐‘ก

๐œ‹ 0

= 2 โˆซ 2d๐‘ฅ/(1 + ๐‘ฅ2) ๐‘Ž + ๐‘(1 โˆ’ ๐‘ฅ2)/(1 + ๐‘ฅ2)

โˆž 0

= โˆซ 4d๐‘ฅ

๐‘Ž + ๐‘ + (๐‘Ž โˆ’ ๐‘)๐‘ฅ2

โˆž 0

.

Let ๐‘ฅ = โˆš๐‘Ž+๐‘

๐‘Žโˆ’๐‘tan ๐‘ฆ, d๐‘ฅ = โˆš๐‘Ž+๐‘

๐‘Žโˆ’๐‘sec2๐‘ฆ d๐‘ฆ, ๐‘ฆ โ†’ 0 as ๐‘ฅ โ†’ 0 and ๐‘ฆ โ†’๐œ‹

2 as ๐‘ฅ โ†’ โˆž,

๐ด = โˆซ 4d๐‘ฅ

๐‘Ž + ๐‘ + (๐‘Ž โˆ’ ๐‘)๐‘ฅ2

โˆž 0

= 4 โˆซ

โˆš๐‘Ž + ๐‘

๐‘Ž โˆ’ ๐‘sec2๐‘ฆ d๐‘ฆ ๐‘Ž + ๐‘ + (๐‘Ž โˆ’ ๐‘) (โˆš๐‘Ž + ๐‘

๐‘Ž โˆ’ ๐‘tan ๐‘ฆ)

2 ๐œ‹

2 0

= 4 โˆซ

โˆš๐‘Ž + ๐‘

๐‘Ž โˆ’ ๐‘sec2๐‘ฆ d๐‘ฆ ๐‘Ž + ๐‘ + (๐‘Ž + ๐‘) tan2๐‘ฆ

๐œ‹/2 0

= 4 โˆซ d๐‘ฆ

โˆš(๐‘Ž + ๐‘)(๐‘Ž โˆ’ ๐‘)

๐œ‹/2 0

= 4

โˆš(๐‘Ž + ๐‘)(๐‘Ž โˆ’ ๐‘) โˆซ d๐‘ฆ

๐œ‹/2 0

= 4

โˆš(๐‘Ž + ๐‘)(๐‘Ž โˆ’ ๐‘) ๐œ‹

2= 2๐œ‹

โˆš(๐‘Ž + ๐‘)(๐‘Ž โˆ’ ๐‘).

โˆด The Integration of trigonometric function is derived as

C.2 Kadomtsevโ€™s collapse time calculation process

1. Calculation of resistivity, ๐œ‚ The resistive is given as

๐œ‚ = 0.51 ๐‘š๐‘’

๐‘›๐‘’๐‘’2๐œ๐‘’ (C.1)

where ๐œ๐‘’ is the electron collision time, given as

๐œ๐‘’ = 3(2๐œ‹)3/2๐œ€02๐‘š๐‘’1/2๐‘‡๐‘’3/2

๐‘›๐‘–๐‘2๐‘’4ln ฮ› (C.2)

where ๐‘ is charge of ions, and for electron-electron collision, ln ฮ› โ‰ˆ 17. Then, the electron collapse time is calculated as Table C.1.

Table C.1 Calculated electron collision time

๐‘› ๐‘‡

100 eV 1 keV 10 keV

1019mโˆ’3 2.0199 ๐œ‡s 63.874 ๐œ‡s 2.0199 ms

1020mโˆ’3 201.99 ns 6.3874 ๐œ‡s 201.99 ๐œ‡s

Based on Table C.1, the electron resistivity is calculated as Table C.2.

Table C.2 Calculated resistivity

๐‘› ๐‘‡

100 eV 1 keV 10 keV

1019mโˆ’3 1.7569ร—10โˆ’6 5.5558ร—10โˆ’8 1.7569ร—10โˆ’6

1020mโˆ’3 1.7569ร—10โˆ’6 5.5558ร—10โˆ’8 1.7569ร—10โˆ’6

2. Calculation of mass density, ๐œŒ The mass density is given as

๐œŒ = ๐‘š๐‘–๐‘›๐‘–+ ๐‘š๐‘’๐‘›๐‘’ (C.3)

and known as ๐‘š๐‘– โ‰ซ ๐‘›๐‘–, and using quasi-neutrality of plasma,

๐œŒ = ๐‘š๐‘–๐‘› (C.4)

3. Alfveฬnic time

The Alfveฬnic time is given as

๐œ๐ด= ๐‘Ÿ1 ๐ตโˆ—/โˆš๐œŒ๐œ‡0

where ๐ตโˆ—= ๐ต๐œƒ(1 โˆ’ ๐‘ž), and ๐‘Ÿ1 is the radius of ๐‘ž = 1 surface. At ๐‘ž = 1, ๐‘ž =๐‘Ÿ1๐ต๐œ™0

๐‘…0๐ต๐œƒ

= 1 Then, Alfveฬnic time is expressed in terms of ๐ต๐œ™0 as

๐œ๐ด= ๐‘…0โˆš๐œŒ๐œ‡0

๐ต๐œ™0(1 โˆ’ ๐‘ž). (C.5)

4. Resistive diffusion time

Resistive diffusion time is given as

๐œ๐‘…=๐œ‡0

๐œ‚ ๐‘Ÿ12. (C.6)

5. Kadomtsevโ€™s collapse time

Finally, Kadomtsevโ€™s collapse time is given as

๐œ๐พ ~ (๐œ๐ด๐œ๐‘…)1/2 (C.7)

or

๐œ๐พ ~ โˆš ๐‘…0๐œŒ๐œ‡03/๐œ‚

๐ต๐œ™0(1 โˆ’ ๐‘ž)๐‘Ÿ1. (C.8)

REFERENCES

1. United Nations, โ€˜World Population Prospects: The 2015 Revision, Key Finding and Advanced Tablesโ€™, United Nations, New York (2015)

2. Garry McCracken and Peter Stott, โ€˜Fusion, the energy of the universeโ€™ (2nd edition), Burlington:

Elsevier Science (2012)

3. ์ฐจ๋™ํ˜• ์™ธ 18๋ช…, โ€˜๋ฆฌ๋”๋“ค์ด ๊ผญ ์•Œ์•„์•ผ ํ•  ์—๋„ˆ์ง€ ๊ธฐ์ˆ : ์—๋„ˆ์ง€ ์œ„๊ธฐ์˜ ์‹œ๋Œ€โ€™,

์„œ์šธ

:

์ง€์˜ค๋ถ

(2015)

4. OECD; IEA; International Energy Agency, โ€˜World Energy Outlook 2016โ€™, Paris, France: IEA Publication (2016)

5. KEEI, โ€˜2015 KEEI Annual Reportโ€™, Korea Energy Economics Institute (2015)

6. Vyacheslav P. Smirov, โ€˜Tokamak foundation in USSR/Russia 1950-1990โ€™, Nuclear Fusion, Volume 50, Number 1 (2009)

7. Christian Ngo, and Joseph B. Natowitz, โ€˜Our Energy Future: Resources, Alternatives and the Environmentโ€™, Hoboken, N.J.: Wiley (2009)

8. IAEA, โ€˜Summary of the ITER final design reportโ€™ International Atomic Energy Agency, Vienna (2001)

9. Weston M. Stacey, โ€˜The Quest for a Fusion Energy Reactor: An Insiderโ€™s Account of the INTOR Workshopโ€™, New York: Oxford University Press (2010)

10. W. Patrick Mccray, โ€˜โ€˜Globalization with hardwareโ€™: ITERโ€™s fusion of technology, policy, and politicsโ€™, History and Technology Volume 26, Number 4 (2010)

11. Giuseppe Ciullo, et al., โ€˜Nuclear Fusion with Polarized Fuelโ€™, Cham: Springer International Publishing: Imprint: Springer (2016)

12. Hartmut Zhom, โ€˜Magnetohydrodynamics Stability of Tokamaksโ€™, Wiley-VCH (2015)

13. S. Von Goeler, et al., โ€˜Studies of Internal Disruptions and ๐‘š = 1 Oscillations in Tokamak Discharges with Soft-X-Ray Techniquesโ€™, Physical Review Letters, Volume 33, Number 20 (1974)

15. ITER Physics Expert Group on Disruption, Plasma Control, and MHD and ITER Physics Editors

โ€˜ITER Physics Basisโ€™, Nuclear fusion, Volume 39, Number 12 (1999)

16. Vitaly D. Shafranov, โ€˜Hydromagnetic Stability of a Current-Carrying Pinch in a Strong Longitudinal Magnetic Fieldโ€™, Zhurnal Teknicheskoi Fiziki, Volume 4, Number 2 (1970)

17. M. N. Busac, R. Pellat, D. Edery and J. L. Soule, โ€˜Internal Kink Mode in Toroidal Plasmas with Circular Cross Sectionโ€™, Physical Review Letter, Volume 35, Number 24 (1975)

18. Boris B. Kadomtsev, โ€˜Disruptive instability in tokamaksโ€™, Fizika Plasmy, Volume 1, p. 710-175 (1975)

19. John A. Wesson, โ€˜Sawtooth Oscillationโ€™, Plasma Physics and Controlled Fusion, Volume 28, Number 1A (1986)

20. Francis F. Chen, โ€˜Introduction to Plasma Physics and Controlled Fusion; Volume 1: Plasma Physicsโ€™

(2nd edition), New York and London: Plenum Press (1974)

21. Paul M. Bellan, โ€˜Fundamentals of Plasma Physicsโ€™, Cambridge: Cambridge University Press (2006) 22. David K. Cheng, โ€˜Fundamentals of Engineering Electromagneticsโ€™, Pearson Education Limited

(2014)

23. Jearl Walker, David Halliday, Robert Robert, โ€˜Principles of Physicsโ€™ (10th edition), John Wiley &

Sons Singapore Pte. Ltd (2014)

24. Kenro Miyamoto, โ€˜Fundamentals of Plasma Physics and Controlled Fusionโ€™ (2nd edition), NIFS- PROC-48 (2000)

25. John Wesson, โ€˜Tokamakโ€™ (3rd edition), Oxford University Press (2005)

26. Nishikawa and Masahiro Wakatani, โ€˜Plasma Physics: Basic Theory with Fusion Applicationโ€™ (3rd edition), Berlin, Heidelberg: Springer Berlin Heidelberg: Imprint Springer (2000)

27. Alan Jeffrey, Hui H. Dai, โ€˜Handbook of Mathematical Formulas and Integralsโ€™ (4th edition), Burlington, MA: Academic Press/Elsevier (2008)

28. Thomas, George B., โ€˜Thomasโ€™ Calculus: early transcendentalsโ€™ (12th edition), United States:

Pearson Education (2010)

31. Y. Nam, โ€˜Validation of ๐‘ž-profile variation for the sawtoothing KSTAR plasmas by comparative study of measurement and simulationโ€™, (doctoral dissertation) Pohang University of Science and Technology (2016)

32. A. Sykes and John A. Wesson, โ€˜Relaxation Instability in Tokamakโ€™, Physical Review Letter, Volume 37, Number 3 (1976)

33. G. Lee et al., โ€˜Design and construction of the KSTAR tokamakโ€™, Nuclear Fusion, Volume 41, Number 10 (2001)

34. O. Neubauer, et al., โ€˜Design Features of the Tokamak TEXTORโ€™, Fusion Science and Technoloigy, Volume 47, Number 2 (2005)

35. C. Ryu, et al., โ€˜Observation and Analysis of a High Frequency MHD Activity during Sawteeth in KSTAR Tokamakโ€™, 23rd IAEA Fusion Energy Conference, EXW/P2-09 (2010)

36. H. Liu, et al., โ€˜Operational region and sawteeth oscillation in the EAST tokamakโ€™, Plasma Physics and Controlled Fusion, Volume 49, Number 7 (2007)

37. D. Campbell, et al., โ€˜Stabilization of Sawteeth with Additional Heating in the JET Tokamakโ€™, Physical Review Letter, Volume 60, Number 21 (1988)

38. V. Beyakov, et al., โ€˜The T-15 Tokamak. Basic Characteristics and Research Programโ€™, Physical Review Letter Volume 52, Number 2 (1982)

39. H. Park, โ€˜Comparison Study of 2D Images of Temperature Fluctuation during Sawtooth Oscillation with Theoretical Modelsโ€™, Physical Review Letters, Volume 96, Issue 19, 195004 (2006)

40. A. W. Edwards, et al., โ€˜Rapid Collapse of a Plasma Sawtooth Oscillation in the JET Tokamakโ€™, Soviet Atomic Energy, Volume 57, Number 2, (1986)

41. Rybicki, Geroge B. Lightman, Alan P, โ€˜Radiative processes in astrophysicsโ€™, Weinheim: Wiley- VCH (2004)

42. I. H. Hutchinson Author, โ€˜Principles of Plasma Diagnosticsโ€™ (2nd edition), Cambridge: Cambridge University Press (2002)

43. Marc L. Kutner, โ€˜Astronomy: A Physical Perspectiveโ€™ (2nd edition), Cambridge: Cambridge University Press (2003)

of Scientific Instruments Volume 85, Number 11 (2014)

46. Y. Oh et al., โ€˜Completion of the KSTAR construction and its role as ITER pilot deviceโ€™, Fusion Engineering and Design, Volume 83, Number 7 (2008)

47. C. Choe, โ€˜Dynamics of multiple flux tubes in sawtoothing KSTAR plasmas heated by electron cyclotron waves: 1. Experimental analysis of the tube structureโ€™ Nuclear fusion, Volume 55, Number 1 (2015)

Acknowledgements

This work was supported by NRF of Korea under contract no. NRF-2014M1A7A1A03029865.

์„์‚ฌ๊ณผ์ • ๋™์•ˆ ๋งŽ์€ ์ผ๋“ค๊ณผ ๋งŽ์€ ๋ณ€ํ™”๋“ค์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ ๋™์•ˆ ์ œ๊ฐ€ ๊ณต๋ถ€ํ•  ๋•Œ ๋ฐฉํ–ฅ ์„ ์ œ์‹œํ•ด์ฃผ์‹œ๊ณ  ์ƒ๋‹ด๊ณผ ์กฐ์–ธ์„ ํ•ด์ฃผ์‹œ๊ณ  ์ง€๋„ํ•ด์ฃผ์‹  ๋ฐ•ํ˜„๊ฑฐ ๊ต์ˆ˜๋‹˜๊ป˜ ๋จธ๋ฆฌ ์ˆ™์—ฌ ๊ฐ์‚ฌ๋“œ ๋ฆฝ๋‹ˆ๋‹ค. ์ด ๋ถ€์กฑํ•œ ์ œ์ž๊ฐ€ ๊ต์ˆ˜๋‹˜์œผ๋กœ๋ถ€ํ„ฐ ๋ฐ›์€ ์€ํ˜œ๋ฅผ ํ‰์ƒ ์žŠ์ง€ ์•Š๊ฒ ์Šต๋‹ˆ๋‹ค. ์•ž์œผ๋กœ ๋ฐ• ์‚ฌ๊ณผ์ •์„ ํ•˜๊ณ  ๋ฐ•์‚ฌ ํ›„ ์ง„๋กœ๋ฅผ ๋ฐŸ๋Š”๋ฐ ์ง€๊ธˆ ์„์‚ฌ์กธ์—…์ด ๋์ด ์•„๋‹ˆ๋ผ ์‹œ์ž‘์ธ ์ค„ ์•Œ๊ณ  ๋” ์šฑ ํ–ฅ์ƒ๋˜๊ณ  ๋ฐœ์ „๋œ ๋ชจ์Šต์œผ๋กœ ๋‚˜์•„๊ฐ€๊ฒ ์Šต๋‹ˆ๋‹ค.

๋˜ํ•œ ์‹œ๊ฐ„์„ ๋‚ด์–ด์ฃผ์…”์„œ ๋…ผ๋ฌธ์‹ฌ์‚ฌ๋ฅผ ํ•ด์ฃผ์‹œ๋Š” ๊ณฝ๊ทœ์ง„ ๊ต์ˆ˜๋‹˜, ํ—ˆ๋ฏผ์„ญ ๊ต์ˆ˜๋‹˜๊ป˜ ๊ฐ์‚ฌ ๋“œ๋ฆฝ๋‹ˆ๋‹ค. ํŠน๋ณ„ํžˆ ์ธ์ƒ์˜ ์„ ๋ฐฐ๋กœ์จ ์กฐ์–ธ์„ ๊ฐ€๋”์”ฉ ํ•ด์ฃผ์‹  ๊ณฝ๊ทœ์ง„ ๊ต์ˆ˜๋‹˜๊ป˜ ๊ฐ์‚ฌ๋“œ๋ฆฝ๋‹ˆ๋‹ค.

๋žฉ์ƒํ™œ์„ ํ•˜๋ฉด์„œ ์ œ๊ฐ€ ์—ฐ๊ตฌํ•˜๋Š”๋ฐ ๋„์™€ ์ฃผ์‹œ๊ณ  ์กฐ์–ธ์„ ํ•ด ์ฃผ์‹  ๋ฐ•์‚ฌ๋‹˜๋“ค๊ป˜ ๊ฐ์‚ฌ์˜ ๊ธ€์„ ์˜ฌ๋ ค๋“œ๋ฆฝ๋‹ˆ๋‹ค.

๋žฉ์„ ์ด๋Œ์–ด ๊ฐ€์‹œ๋ฉฐ ๋žฉ์›๋“ค์—๊ฒŒ ํ•œ์‚ฌ๋žŒ, ํ•œ์‚ฌ๋žŒ ์‹ ๊ฒฝ์„ ์จ ์ฃผ์‹  ๊น€๋ฏผ์šฐ ๋ฐ•์‚ฌ๋‹˜๊ป˜ ๊ฐ ์‚ฌ๋“œ๋ฆฝ๋‹ˆ๋‹ค. ๋˜ํ•œ ์—ฐ๊ตฌ๋ถ„์•ผ๋ฅผ ์ง์ ‘ ์ง€๋„๋ฅผ ํ•ด ์ฃผ์‹  ๋‚จ์œค๋ฒ” ๋ฐ•์‚ฌ๋‹˜๊ป˜ ๊ฐ์‚ฌ ๋“œ๋ฆฝ๋‹ˆ๋‹ค. ๋˜ํ•œ ์ œ๊ฐ€ ๋ฌผ์–ด๋ณผ ๋•Œ ์นœ์ ˆํ•˜๊ฒŒ ๋‹ตํ•ด์ฃผ์‹  ์ด์žฌํ˜„ ๋ฐ•์‚ฌ๋‹˜๊ป˜ ๊ฐ์‚ฌ ๋“œ๋ฆฝ๋‹ˆ๋‹ค. I am grateful to Dr.

Pravesh Dhayani, for helpful discussions and advises about the researches. ๋˜ํ•œ ํ–‰์ •์ผ์„ ํ•œ๋‹ค๊ณ  ์ˆ˜๊ณ ํ•˜์‹œ๋Š” ์ •์œ ์ง„ ์„ ์ƒ๋‹˜๊ป˜ ๊ฐ์‚ฌ ๋“œ๋ฆฝ๋‹ˆ๋‹ค. ์ด ์™ธ์—๋„ ITER School์„ ๊ฐ€์„œ ์—ฐ์ˆ˜๊ฒฝํ—˜์„ ๊ฐ™์ด ํ•˜๊ฒŒ ๋œ ์„œ์šธ๋Œ€์ƒ ์„œ์žฌ๋ฏผ ํ•™์ƒ์—๊ฒŒ ๊ณ ๋ง™๋‹ค๋Š” ๋ง์„ ์ „ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ ์›์ž๋ ฅ๊ณผ์— ์žˆ์„ ๋•Œ ํž˜๋“ค ๋•Œ ๊ฐ™์ด ์•ผ์ด๊ธฐ๋ฅผ ๋‚˜๋ˆ„๊ณ  ์–ด๋ ค์šธ ๋•Œ ์ƒ๋‹ด์„ ํ•ด์ฃผ์‹  ๋™ํ•œ์ดํ˜•, ์ƒ์ผ์ดํ˜•๊ป˜ ๊ฐ์‚ฌ

์„์‚ฌ๊ณผ์ •์„ 2๋…„ ๋ฐ˜ ํ•˜๋ฉด์„œ ๋งŒ์•ฝ ์‹ ์•™์ƒํ™œ์„ ํ•˜์ง€ ์•Š์•˜์œผ๋ฉด ๋ฌด๋„ˆ์กŒ์„ ๋ฒ•ํ•œ๋ฐ ์ €์˜ ์‹  ์•™์ƒํ™œ์ด ์ €์˜ ์—๋„ˆ์ง€๋ฅผ ๊ณต๊ธ‰ํ•˜๋Š”๋ฐ ์›๋™๋ ฅ์ด ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

๋จผ์ € ๋Œ€ํ•™์› ์ž…ํ•™ํ•  ๋•Œ๋ถ€ํ„ฐ 2015๋…„ 11์›”๊นŒ์ง€ ์‹ ์•™์ƒํ™œ์„ ํ•˜์˜€๋˜ ๋น›์˜ ๊ตํšŒ! ๊ตํšŒ ์‚ฌ ์ •์œผ๋กœ ๊ตํšŒ๋ฅผ ์ƒˆ๋กœ ์˜ฎ๊ฒผ์ง€๋งŒ ๋ชฉ์‚ฌ๋‹˜์€ ์—ฌ์ „ํžˆ ๊ธฐ์–ตํ•ฉ๋‹ˆ๋‹ค. ๋น›์˜ ๊ตํšŒ์— ์žˆ์„ ๋•Œ ์ •๋ง ํž˜๋“ค ๋•Œ๋งˆ๋‹ค ๋จน์„ ๊ฑธ ์ฃผ์‹œ๊ณ  ๊ฒฉ๋ ค๋ฅผ ํ•ด ์ฃผ์‹  ์‹ ๊ด‘ํ˜ธ ๋ชฉ์‚ฌ๋‹˜๊ป˜ ๊ฐ์‚ฌ ๋“œ๋ฆฝ๋‹ˆ๋‹ค.

๋˜ํ•œ ์‹ ๋ณต๊ตํšŒ์— ์‹ ์•™์ƒํ™œ ํ•˜๋ฉด์„œ ๋„์›€์„ ์ฃผ์‹œ๊ณ  ์‘์›์„ ํ•˜์‹  ํ•œ ๋ถ„ ํ•œ ๋ถ„๊ป˜ ๊ฐ์‚ฌ ๋“œ ๋ฆฝ๋‹ˆ๋‹ค. ํ•ญ์ƒ ๋ง์”€์„ ์ „ํ•˜์‹œ๋Š” ๊น€๊ทœ์„ญ ๋ชฉ์‚ฌ๋‹˜, ์ฃผ์žฌ๊ฐ• ๋ชฉ์‚ฌ๋‹˜, ๋ฐ•๊ทœํƒœ ๋ชฉ์‚ฌ๋‹˜๊ป˜ ๊ฐ์‚ฌ ๋“œ ๋ฆฝ๋‹ˆ๋‹ค. ํ•ญ์ƒ ๋”ฐ๋“ฏํ•˜๊ฒŒ ๋งž์•„ ์ฃผ์‹œ๊ณ  ์ฑ™๊ฒจ ์ฃผ์‹œ๋Š” ์‚ฌ๋ชจ๋‹˜๊ป˜ ๊ฐ์‚ฌ ๋“œ๋ฆฝ๋‹ˆ๋‹ค. ํŠน๋ณ„ ์ƒˆ๋ฒฝ๊ธฐ๋„ ๋•Œ ์ƒˆ๋ฒฝ ์ผ์ฐ ํ•™๊ต์— ์˜ค์…”์„œ ๊ตํšŒ๊นŒ์ง€ ์ฐจ๋ฅผ ํƒœ์›Œ ์ฃผ์‹  ๋ฐ•์ •ํฌ ์ง‘์‚ฌ๋‹˜, ์ฒญ์†Œ๋…„๋ถ€ ๊ฐ™์€ ๋ฐ˜ ํ•˜๋ฉด์„œ ๋ง›์žˆ๋Š” ๊ฐ„์‹์„ ์ฃผ์‹œ๋Š” ๊ฐ•์ˆ˜์ • ์ง‘์‚ฌ๋‹˜, 3์›” ๋‹ฌ ํ”„๋ž‘์Šค ๊ฐˆ ๋•Œ ์šฉ๋ˆ ์ฃผ์‹œ๊ณ  ๊ธฐ๋„๋กœ ์‘์›ํ•ด์ฃผ์‹  ๊ถŒ์‚ฌ๋‹˜, ์ง‘์‚ฌ๋‹˜๋“ค, ํ•œ ์‚ด ๋™์ƒ์ด์ง€๋งŒ ์นœ๊ตฌ ๊ฐ™์€ ์‹ ์šฉ์ด, ๊ฑด๋ฏผ์ด, ์ด์ œ ๊ณง ํ•  ๊ฒฐํ˜ผ์ค€๋น„๋ฅผ ์œ„ํ•˜์—ฌ ์™ธ๋ชจ๋ฅผ ๋ณ€์‹ ์‹œํ‚ค๋„๋ก ๋„์™€์ค€ ํ•˜๋‚˜๋‹˜๊ป˜์„œ ๋ณด๋‚ด์‹  ๋‘ ์ฒœ์‚ฌ ์˜ˆ์ง„์ด, ์†Œ ์ด, ๊ทธ ์™ธ์—๋„ ์ €๋ฅผ ์œ„ํ•˜์—ฌ ๊ธฐ๋„ํ•˜์‹  ์‹ ๋ณต๊ตํšŒ ์„ฑ๋„๋‹˜๋“ค๊ป˜ ๊ฐ์‚ฌ ๋“œ๋ฆฝ๋‹ˆ๋‹ค. ์‹ ๋ณต๊ตํšŒ์—์„œ ๊ฐ์‚ฌํ•˜๋Š” ๋ถ„๋“ค ํ•œ ๋ถ„, ํ•œ ๋ถ„ ๋‹ค ๋„ฃ๊ณ  ์‹ถ์ง€๋งŒ ๋‹ค ๋„ฃ์œผ๋ฉด ๋ช‡ ํŽ˜์ด์ง€ ๋  ๊ฒƒ ๊ฐ™์•„์„œ ๋Œ€ํ‘œํ•˜ ๋Š” ๋ช‡ ์‚ฌ๋žŒ๋งŒ ์˜ฌ๋ ธ์Šต๋‹ˆ๋‹ค. ํ˜น์‹œ ์„ญ์„ญํ•˜๋‹ค๊ณ  ์ €์—๊ฒŒ ๋ง์”€ํ•˜์‹œ๋ฉด ๋ง›์žˆ๋Š” ๊ฑฐ ์‚ฌ๋“œ๋ฆด๊ฒŒ์š”.

๋Œ€ํ•™์› ์ƒํ™œํ•˜๋ฉด์„œ ๋นผ๋†“์„ ์ˆ˜ ์—†๋Š” ๋ถ„! ๋ถ€๋ชจ๋‹˜๊ป˜ ๊ฐ์‚ฌ๋“œ๋ฆฝ๋‹ˆ๋‹ค. ๋ถ€๋ชจ๋‹˜์˜ ์€ํ˜œ๋ฅผ ํ†ต ํ•˜์—ฌ ํ•˜๋‚˜๋‹˜์˜ ์€ํ˜œ๋ฅผ ๋А๋‚๋‹ˆ๋‹ค. ๋น„๋ก ๋ฉ€๋ฆฌ ๋–จ์–ด์กŒ์ง€๋งŒ ์—ฐ๋ฝ์„ ํ•˜๋ฉด์„œ ๋™๊ณ ๋™๋ฝ ํ•˜์‹œ๋ฉด ์„œ ์ €๋ณด๋‹ค ์ €๋ฅผ ๋” ๊ฑฑ์ •ํ•˜์‹  ๋ถ€๋ชจ๋‹˜, ๋ถ€๋ชจ๋‹˜์˜ ์€ํ˜œ๋Š” ํ‰์ƒ ๊ฐš์•„๋„ ๋ชป ๊ฐš์„ ๊ฒ๋‹ˆ๋‹ค. ๋ถ€๋ชจ ๋‹˜๊ป˜์„œ ๋ฐ”๋ผ์‹œ๋Š” ๋Œ€๋กœ ํ•˜๋‚˜๋‹˜์—๊ฒŒ์„œ ํฌ๊ฒŒ ์“ฐ์ž„์„ ๋ฐ›๋Š” ํ•˜๋‚˜๋‹˜์˜ ์‚ฌ๋žŒ์ด ๋˜๊ฒ ์Šต๋‹ˆ๋‹ค. ๋ถ€

Dokumen terkait