In this thesis, two theoretical models for sawtooth oscillation followed by a sudden crash has been reviewed by comparing them with experimental observations. Kadomtsevโs full reconnection model describes that the hot region at the core is โkinkedโ toward the ๐ = 1 surface due to the internal kink instability, and a narrow resistive layer is formed. Then, collapse of the pressure and temperature suddenly occurs on the narrow layer in a very short time due to magnetic reconnection. On the other hand, Wessonโs model describes that a flat ๐ -profile is formed within ๐ = 1 surface which drives quasi-interchange instability due to very small or no magnetic shear in the flat ๐-profile region.
The 2-D images of the electron temperature fluctuation, observed at the core of the sawtoothing plasma, shows that the spatial structure of the hot region inside the ๐ = 1 surface is circular. This indicates that the actual physical phenomena resemble Kadomtsevโs model, rather than Wessonโs model.
A future study will be conducted to develop a new model which encompasses both theoretical models. Kadomtsevโs model is satisfied only if 1 โ ๐ > ๐ and Wessonโs model is satisfied only if 1 โ ๐ โช ๐. A new eigenvalue, ๐, has to be introduced when 1 โ ๐ ~ ๐. This thesis may lead to better explanations of the exact physical phenomena involved in sawtooth oscailltion. The instability will be analyzed by Fourier analysis ๐ ~ ๐๐(๐๐โ๐๐โ๐๐ก). By obtaining ๐, the plasma rotation speed will be expressed in terms of the real part of ๐, ๐๐, and the growth rate of magnetic perturbation will be expressed in terms of the imaginary part of ๐, ๐๐. Using the Fourier analysis, adding a time-dependent term to MHD equations, the instability will be understood. By coupling the ideal MHD equations combining ๐๐(๐๐โ๐๐โ๐๐ก) term, the plasma velocity distribution, ๐ฎ(๐ซ, ๐ก), will be obtained. The plasma current density, ๐ฃ(๐ซ, ๐ก), and magnetic field, ๐(๐ซ, ๐ก) will be also obtained. By obtaining these analytical solutions, the exact cause of instability will be revealed, and the instability can be controlled based on this theoretical background. Therefore, it is hoped that this study will contribute to the commercialization of nuclear fusion.
Appendix A. Plasma Parameters
The physical constants used in plasma physics are given in Table A.1.
Table A.1 Plasma parameters
Plasma Parameter Symbol Constant (SI unit)
Electron charge ๐ 1.60217662ร10โ19 C
Vacuum permeability ๐0 4๐ร10โ7 Tโm/A(H/A)
Speed of light ๐ 2.99792458ร108 m/s
Vacuum permittivity ๐0 1/(๐0๐2) F/m
Plankโs constant โ 6.62607004 ร10โ34 Jโs
โ โ/2๐
Boltzmannโs constant ๐๐ต 1.38063853ร10โ23 J/K
Electron mass ๐ 9.1095611ร10โ31 kg
Ion mass ๐ 1.66053904020ร10โ31 kg
Mass ratio ๐/๐ 1837
Electron volt 1 eV = 1. 6021766ร10โ19 J
Temperature at 1 eV 11,604.60602240 K
Appendix B. Vector relations
B.1 Vector formulas
๐ โ (๐ร๐) = ๐ โ (๐ร๐) = ๐ โ (๐ร๐) (B.1) ๐ร(๐ร๐) = ๐(๐ โ ๐) โ ๐(๐ โ ๐) (B.2) (๐ร๐) โ (๐ร๐) = (๐ โ ๐)(๐ โ ๐) โ (๐ โ ๐)(๐ โ ๐) (B.3) (๐ร๐)ร(๐ร๐) = (๐๐๐)๐ โ (๐๐๐)๐ = (๐๐๐)๐ โ (๐๐๐)๐ (B.4)
(๐ โ ๐)๐ = ๐ (๐
๐๐๐) โ ๐ร(๐ร๐) (B.5)
๐ร{(๐ โ ๐)๐} = (๐ โ ๐)(๐ร๐) + (๐ โ ๐)(๐ร๐) โ {(๐ร๐) โ ๐}๐ (B.6)
๐ โ (๐๐) = ๐๐ โ ๐ + ๐ โ (๐๐) (B.7)
๐ร(๐๐) = ๐๐ร๐ + (๐๐)ร๐ (B.8)
๐ โ (๐ร๐) = ๐ โ ๐ร๐ โ ๐ โ ๐ร๐ (B.9)
๐(๐ โ ๐) = ๐ร(๐ร๐) + (๐ โ ๐)๐ + ๐ร(๐ร๐) + (๐ โ ๐)๐ (B.10)
๐ โ (๐ร๐) = ๐ โ (๐ร๐) โ ๐ โ (๐ร๐) (B.11)
๐ร(๐ร๐) = ๐(๐ โ ๐) โ ๐(๐ โ ๐) โ (๐ โ ๐)๐ + (๐ โ ๐)๐ (B.12)
๐ร(๐ร๐) = ๐(๐ โ ๐) โ โ2๐ (B.13)
๐ร(๐๐) = 0 (B.14)
๐ โ (๐ร๐) = 0 (B.15)
B.2 Applications to the cylindrical coordinates (๐, ๐ฝ, ๐)
โ2๐ =1 ๐
๐
๐๐(๐๐๐
๐๐) +1 ๐
๐2๐
๐๐2+๐2๐
๐๐ง2 (B.16)
๐ โ ๐ =1 ๐
๐
๐๐(๐๐ด๐) +1 ๐
๐๐ด๐
๐๐ +๐๐ด๐ง
๐๐ง (B.17)
๐ร๐ = (1 ๐
๐๐ด๐ง
๐๐ โ๐๐ด๐
๐๐ง ) ๐ซฬ + (๐๐ด๐
๐๐ง โ๐๐ด๐ง
๐๐) ๐ฬ + (1 ๐
๐
๐๐(๐๐ด๐) โ1 ๐
๐๐ด๐
๐๐) ๐ณฬ (B.18)
โ2๐ = {โ2๐ด๐โ 1
๐2(๐ด๐ + 2๐๐ด๐
๐๐)} ๐ซฬ + {โ2๐ด๐โ 1
๐2(๐ด๐+ 2๐๐ด๐
๐๐)} ๐ฬ + โ2๐ด๐ง๐ณฬ (B.19) (๐ โ ๐)๐ = (๐ด๐๐๐ต๐
๐๐ + ๐ด๐1 ๐
๐๐ต๐
๐๐ + ๐ด๐ง๐๐ต๐
๐๐ง โ1
๐๐ด๐๐ต๐) ๐ซฬ
+ (๐ด๐๐๐ต๐
๐๐ + ๐ด๐1 ๐
๐๐ต๐
๐๐ + ๐ด๐ง๐๐ต๐
๐๐ง โ1
๐๐ด๐๐ต๐) ๐ฬ + (๐ด๐๐๐ต๐ง
๐๐ + ๐ด๐1 ๐
๐๐ต๐ง
๐๐ + ๐ด๐ง๐๐ต๐ง
๐๐) ๐ณฬ
(B.20)
Appendix C. Detail derivations
C.1 Integration of trigonometric function in section 2.1.4 To show
๐ด = โซ d๐ก ๐ + ๐ cos ๐ก
2๐ 0
= 2๐
โ๐2โ ๐2 where ๐ > ๐ > 0, substitution integral is useful.
First, let ๐ฅ = tan2๐ก , then cos ๐ก = (1 โ ๐ฅ2)/(1 + ๐ฅ2) and d๐ฅ =12sec2 ๐ก2d๐ก =12(1 + ๐ฅ2)d๐ก , then d๐ก = 2d๐ฅ
1+๐ฅ2 . And ๐ฅ โ 0 as ๐ก โ 0 , ๐ฅ โ 0 as ๐ก โ 2๐ . Since inside of integral term is symmetry by ๐ก = ๐ and ๐ฅ โ โ as ๐ก โ ๐,
๐ด = โซ d๐ก ๐ + ๐ cos ๐ก
2๐ 0
= โซ d๐ก
๐ + ๐ cos ๐ก
๐ 0
+ โซ d๐ก
๐ + ๐ cos ๐ก
2๐ ๐
= 2 โซ d๐ก ๐ + ๐ cos ๐ก
๐ 0
= 2 โซ 2d๐ฅ/(1 + ๐ฅ2) ๐ + ๐(1 โ ๐ฅ2)/(1 + ๐ฅ2)
โ 0
= โซ 4d๐ฅ
๐ + ๐ + (๐ โ ๐)๐ฅ2
โ 0
.
Let ๐ฅ = โ๐+๐
๐โ๐tan ๐ฆ, d๐ฅ = โ๐+๐
๐โ๐sec2๐ฆ d๐ฆ, ๐ฆ โ 0 as ๐ฅ โ 0 and ๐ฆ โ๐
2 as ๐ฅ โ โ,
๐ด = โซ 4d๐ฅ
๐ + ๐ + (๐ โ ๐)๐ฅ2
โ 0
= 4 โซ
โ๐ + ๐
๐ โ ๐sec2๐ฆ d๐ฆ ๐ + ๐ + (๐ โ ๐) (โ๐ + ๐
๐ โ ๐tan ๐ฆ)
2 ๐
2 0
= 4 โซ
โ๐ + ๐
๐ โ ๐sec2๐ฆ d๐ฆ ๐ + ๐ + (๐ + ๐) tan2๐ฆ
๐/2 0
= 4 โซ d๐ฆ
โ(๐ + ๐)(๐ โ ๐)
๐/2 0
= 4
โ(๐ + ๐)(๐ โ ๐) โซ d๐ฆ
๐/2 0
= 4
โ(๐ + ๐)(๐ โ ๐) ๐
2= 2๐
โ(๐ + ๐)(๐ โ ๐).
โด The Integration of trigonometric function is derived as
C.2 Kadomtsevโs collapse time calculation process
1. Calculation of resistivity, ๐ The resistive is given as
๐ = 0.51 ๐๐
๐๐๐2๐๐ (C.1)
where ๐๐ is the electron collision time, given as
๐๐ = 3(2๐)3/2๐02๐๐1/2๐๐3/2
๐๐๐2๐4ln ฮ (C.2)
where ๐ is charge of ions, and for electron-electron collision, ln ฮ โ 17. Then, the electron collapse time is calculated as Table C.1.
Table C.1 Calculated electron collision time
๐ ๐
100 eV 1 keV 10 keV
1019mโ3 2.0199 ๐s 63.874 ๐s 2.0199 ms
1020mโ3 201.99 ns 6.3874 ๐s 201.99 ๐s
Based on Table C.1, the electron resistivity is calculated as Table C.2.
Table C.2 Calculated resistivity
๐ ๐
100 eV 1 keV 10 keV
1019mโ3 1.7569ร10โ6 5.5558ร10โ8 1.7569ร10โ6
1020mโ3 1.7569ร10โ6 5.5558ร10โ8 1.7569ร10โ6
2. Calculation of mass density, ๐ The mass density is given as
๐ = ๐๐๐๐+ ๐๐๐๐ (C.3)
and known as ๐๐ โซ ๐๐, and using quasi-neutrality of plasma,
๐ = ๐๐๐ (C.4)
3. Alfveฬnic time
The Alfveฬnic time is given as
๐๐ด= ๐1 ๐ตโ/โ๐๐0
where ๐ตโ= ๐ต๐(1 โ ๐), and ๐1 is the radius of ๐ = 1 surface. At ๐ = 1, ๐ =๐1๐ต๐0
๐ 0๐ต๐
= 1 Then, Alfveฬnic time is expressed in terms of ๐ต๐0 as
๐๐ด= ๐ 0โ๐๐0
๐ต๐0(1 โ ๐). (C.5)
4. Resistive diffusion time
Resistive diffusion time is given as
๐๐ =๐0
๐ ๐12. (C.6)
5. Kadomtsevโs collapse time
Finally, Kadomtsevโs collapse time is given as
๐๐พ ~ (๐๐ด๐๐ )1/2 (C.7)
or
๐๐พ ~ โ ๐ 0๐๐03/๐
๐ต๐0(1 โ ๐)๐1. (C.8)
REFERENCES
1. United Nations, โWorld Population Prospects: The 2015 Revision, Key Finding and Advanced Tablesโ, United Nations, New York (2015)
2. Garry McCracken and Peter Stott, โFusion, the energy of the universeโ (2nd edition), Burlington:
Elsevier Science (2012)
3. ์ฐจ๋ํ ์ธ 18๋ช , โ๋ฆฌ๋๋ค์ด ๊ผญ ์์์ผ ํ ์๋์ง ๊ธฐ์ : ์๋์ง ์๊ธฐ์ ์๋โ,
์์ธ
:์ง์ค๋ถ
(2015)4. OECD; IEA; International Energy Agency, โWorld Energy Outlook 2016โ, Paris, France: IEA Publication (2016)
5. KEEI, โ2015 KEEI Annual Reportโ, Korea Energy Economics Institute (2015)
6. Vyacheslav P. Smirov, โTokamak foundation in USSR/Russia 1950-1990โ, Nuclear Fusion, Volume 50, Number 1 (2009)
7. Christian Ngo, and Joseph B. Natowitz, โOur Energy Future: Resources, Alternatives and the Environmentโ, Hoboken, N.J.: Wiley (2009)
8. IAEA, โSummary of the ITER final design reportโ International Atomic Energy Agency, Vienna (2001)
9. Weston M. Stacey, โThe Quest for a Fusion Energy Reactor: An Insiderโs Account of the INTOR Workshopโ, New York: Oxford University Press (2010)
10. W. Patrick Mccray, โโGlobalization with hardwareโ: ITERโs fusion of technology, policy, and politicsโ, History and Technology Volume 26, Number 4 (2010)
11. Giuseppe Ciullo, et al., โNuclear Fusion with Polarized Fuelโ, Cham: Springer International Publishing: Imprint: Springer (2016)
12. Hartmut Zhom, โMagnetohydrodynamics Stability of Tokamaksโ, Wiley-VCH (2015)
13. S. Von Goeler, et al., โStudies of Internal Disruptions and ๐ = 1 Oscillations in Tokamak Discharges with Soft-X-Ray Techniquesโ, Physical Review Letters, Volume 33, Number 20 (1974)
15. ITER Physics Expert Group on Disruption, Plasma Control, and MHD and ITER Physics Editors
โITER Physics Basisโ, Nuclear fusion, Volume 39, Number 12 (1999)
16. Vitaly D. Shafranov, โHydromagnetic Stability of a Current-Carrying Pinch in a Strong Longitudinal Magnetic Fieldโ, Zhurnal Teknicheskoi Fiziki, Volume 4, Number 2 (1970)
17. M. N. Busac, R. Pellat, D. Edery and J. L. Soule, โInternal Kink Mode in Toroidal Plasmas with Circular Cross Sectionโ, Physical Review Letter, Volume 35, Number 24 (1975)
18. Boris B. Kadomtsev, โDisruptive instability in tokamaksโ, Fizika Plasmy, Volume 1, p. 710-175 (1975)
19. John A. Wesson, โSawtooth Oscillationโ, Plasma Physics and Controlled Fusion, Volume 28, Number 1A (1986)
20. Francis F. Chen, โIntroduction to Plasma Physics and Controlled Fusion; Volume 1: Plasma Physicsโ
(2nd edition), New York and London: Plenum Press (1974)
21. Paul M. Bellan, โFundamentals of Plasma Physicsโ, Cambridge: Cambridge University Press (2006) 22. David K. Cheng, โFundamentals of Engineering Electromagneticsโ, Pearson Education Limited
(2014)
23. Jearl Walker, David Halliday, Robert Robert, โPrinciples of Physicsโ (10th edition), John Wiley &
Sons Singapore Pte. Ltd (2014)
24. Kenro Miyamoto, โFundamentals of Plasma Physics and Controlled Fusionโ (2nd edition), NIFS- PROC-48 (2000)
25. John Wesson, โTokamakโ (3rd edition), Oxford University Press (2005)
26. Nishikawa and Masahiro Wakatani, โPlasma Physics: Basic Theory with Fusion Applicationโ (3rd edition), Berlin, Heidelberg: Springer Berlin Heidelberg: Imprint Springer (2000)
27. Alan Jeffrey, Hui H. Dai, โHandbook of Mathematical Formulas and Integralsโ (4th edition), Burlington, MA: Academic Press/Elsevier (2008)
28. Thomas, George B., โThomasโ Calculus: early transcendentalsโ (12th edition), United States:
Pearson Education (2010)
31. Y. Nam, โValidation of ๐-profile variation for the sawtoothing KSTAR plasmas by comparative study of measurement and simulationโ, (doctoral dissertation) Pohang University of Science and Technology (2016)
32. A. Sykes and John A. Wesson, โRelaxation Instability in Tokamakโ, Physical Review Letter, Volume 37, Number 3 (1976)
33. G. Lee et al., โDesign and construction of the KSTAR tokamakโ, Nuclear Fusion, Volume 41, Number 10 (2001)
34. O. Neubauer, et al., โDesign Features of the Tokamak TEXTORโ, Fusion Science and Technoloigy, Volume 47, Number 2 (2005)
35. C. Ryu, et al., โObservation and Analysis of a High Frequency MHD Activity during Sawteeth in KSTAR Tokamakโ, 23rd IAEA Fusion Energy Conference, EXW/P2-09 (2010)
36. H. Liu, et al., โOperational region and sawteeth oscillation in the EAST tokamakโ, Plasma Physics and Controlled Fusion, Volume 49, Number 7 (2007)
37. D. Campbell, et al., โStabilization of Sawteeth with Additional Heating in the JET Tokamakโ, Physical Review Letter, Volume 60, Number 21 (1988)
38. V. Beyakov, et al., โThe T-15 Tokamak. Basic Characteristics and Research Programโ, Physical Review Letter Volume 52, Number 2 (1982)
39. H. Park, โComparison Study of 2D Images of Temperature Fluctuation during Sawtooth Oscillation with Theoretical Modelsโ, Physical Review Letters, Volume 96, Issue 19, 195004 (2006)
40. A. W. Edwards, et al., โRapid Collapse of a Plasma Sawtooth Oscillation in the JET Tokamakโ, Soviet Atomic Energy, Volume 57, Number 2, (1986)
41. Rybicki, Geroge B. Lightman, Alan P, โRadiative processes in astrophysicsโ, Weinheim: Wiley- VCH (2004)
42. I. H. Hutchinson Author, โPrinciples of Plasma Diagnosticsโ (2nd edition), Cambridge: Cambridge University Press (2002)
43. Marc L. Kutner, โAstronomy: A Physical Perspectiveโ (2nd edition), Cambridge: Cambridge University Press (2003)
of Scientific Instruments Volume 85, Number 11 (2014)
46. Y. Oh et al., โCompletion of the KSTAR construction and its role as ITER pilot deviceโ, Fusion Engineering and Design, Volume 83, Number 7 (2008)
47. C. Choe, โDynamics of multiple flux tubes in sawtoothing KSTAR plasmas heated by electron cyclotron waves: 1. Experimental analysis of the tube structureโ Nuclear fusion, Volume 55, Number 1 (2015)
Acknowledgements
This work was supported by NRF of Korea under contract no. NRF-2014M1A7A1A03029865.
์์ฌ๊ณผ์ ๋์ ๋ง์ ์ผ๋ค๊ณผ ๋ง์ ๋ณํ๋ค์ด ์์์ต๋๋ค. ๊ทธ ๋์ ์ ๊ฐ ๊ณต๋ถํ ๋ ๋ฐฉํฅ ์ ์ ์ํด์ฃผ์๊ณ ์๋ด๊ณผ ์กฐ์ธ์ ํด์ฃผ์๊ณ ์ง๋ํด์ฃผ์ ๋ฐํ๊ฑฐ ๊ต์๋๊ป ๋จธ๋ฆฌ ์์ฌ ๊ฐ์ฌ๋ ๋ฆฝ๋๋ค. ์ด ๋ถ์กฑํ ์ ์๊ฐ ๊ต์๋์ผ๋ก๋ถํฐ ๋ฐ์ ์ํ๋ฅผ ํ์ ์์ง ์๊ฒ ์ต๋๋ค. ์์ผ๋ก ๋ฐ ์ฌ๊ณผ์ ์ ํ๊ณ ๋ฐ์ฌ ํ ์ง๋ก๋ฅผ ๋ฐ๋๋ฐ ์ง๊ธ ์์ฌ์กธ์ ์ด ๋์ด ์๋๋ผ ์์์ธ ์ค ์๊ณ ๋ ์ฑ ํฅ์๋๊ณ ๋ฐ์ ๋ ๋ชจ์ต์ผ๋ก ๋์๊ฐ๊ฒ ์ต๋๋ค.
๋ํ ์๊ฐ์ ๋ด์ด์ฃผ์ ์ ๋ ผ๋ฌธ์ฌ์ฌ๋ฅผ ํด์ฃผ์๋ ๊ณฝ๊ท์ง ๊ต์๋, ํ๋ฏผ์ญ ๊ต์๋๊ป ๊ฐ์ฌ ๋๋ฆฝ๋๋ค. ํน๋ณํ ์ธ์์ ์ ๋ฐฐ๋ก์จ ์กฐ์ธ์ ๊ฐ๋์ฉ ํด์ฃผ์ ๊ณฝ๊ท์ง ๊ต์๋๊ป ๊ฐ์ฌ๋๋ฆฝ๋๋ค.
๋ฉ์ํ์ ํ๋ฉด์ ์ ๊ฐ ์ฐ๊ตฌํ๋๋ฐ ๋์ ์ฃผ์๊ณ ์กฐ์ธ์ ํด ์ฃผ์ ๋ฐ์ฌ๋๋ค๊ป ๊ฐ์ฌ์ ๊ธ์ ์ฌ๋ ค๋๋ฆฝ๋๋ค.
๋ฉ์ ์ด๋์ด ๊ฐ์๋ฉฐ ๋ฉ์๋ค์๊ฒ ํ์ฌ๋, ํ์ฌ๋ ์ ๊ฒฝ์ ์จ ์ฃผ์ ๊น๋ฏผ์ฐ ๋ฐ์ฌ๋๊ป ๊ฐ ์ฌ๋๋ฆฝ๋๋ค. ๋ํ ์ฐ๊ตฌ๋ถ์ผ๋ฅผ ์ง์ ์ง๋๋ฅผ ํด ์ฃผ์ ๋จ์ค๋ฒ ๋ฐ์ฌ๋๊ป ๊ฐ์ฌ ๋๋ฆฝ๋๋ค. ๋ํ ์ ๊ฐ ๋ฌผ์ด๋ณผ ๋ ์น์ ํ๊ฒ ๋ตํด์ฃผ์ ์ด์ฌํ ๋ฐ์ฌ๋๊ป ๊ฐ์ฌ ๋๋ฆฝ๋๋ค. I am grateful to Dr.
Pravesh Dhayani, for helpful discussions and advises about the researches. ๋ํ ํ์ ์ผ์ ํ๋ค๊ณ ์๊ณ ํ์๋ ์ ์ ์ง ์ ์๋๊ป ๊ฐ์ฌ ๋๋ฆฝ๋๋ค. ์ด ์ธ์๋ ITER School์ ๊ฐ์ ์ฐ์๊ฒฝํ์ ๊ฐ์ด ํ๊ฒ ๋ ์์ธ๋์ ์์ฌ๋ฏผ ํ์์๊ฒ ๊ณ ๋ง๋ค๋ ๋ง์ ์ ํฉ๋๋ค. ๋ํ ์์๋ ฅ๊ณผ์ ์์ ๋ ํ๋ค ๋ ๊ฐ์ด ์ผ์ด๊ธฐ๋ฅผ ๋๋๊ณ ์ด๋ ค์ธ ๋ ์๋ด์ ํด์ฃผ์ ๋ํ์ดํ, ์์ผ์ดํ๊ป ๊ฐ์ฌ
์์ฌ๊ณผ์ ์ 2๋ ๋ฐ ํ๋ฉด์ ๋ง์ฝ ์ ์์ํ์ ํ์ง ์์์ผ๋ฉด ๋ฌด๋์ก์ ๋ฒํ๋ฐ ์ ์ ์ ์์ํ์ด ์ ์ ์๋์ง๋ฅผ ๊ณต๊ธํ๋๋ฐ ์๋๋ ฅ์ด ๋์์ต๋๋ค.
๋จผ์ ๋ํ์ ์ ํํ ๋๋ถํฐ 2015๋ 11์๊น์ง ์ ์์ํ์ ํ์๋ ๋น์ ๊ตํ! ๊ตํ ์ฌ ์ ์ผ๋ก ๊ตํ๋ฅผ ์๋ก ์ฎ๊ฒผ์ง๋ง ๋ชฉ์ฌ๋์ ์ฌ์ ํ ๊ธฐ์ตํฉ๋๋ค. ๋น์ ๊ตํ์ ์์ ๋ ์ ๋ง ํ๋ค ๋๋ง๋ค ๋จน์ ๊ฑธ ์ฃผ์๊ณ ๊ฒฉ๋ ค๋ฅผ ํด ์ฃผ์ ์ ๊ดํธ ๋ชฉ์ฌ๋๊ป ๊ฐ์ฌ ๋๋ฆฝ๋๋ค.
๋ํ ์ ๋ณต๊ตํ์ ์ ์์ํ ํ๋ฉด์ ๋์์ ์ฃผ์๊ณ ์์์ ํ์ ํ ๋ถ ํ ๋ถ๊ป ๊ฐ์ฌ ๋ ๋ฆฝ๋๋ค. ํญ์ ๋ง์์ ์ ํ์๋ ๊น๊ท์ญ ๋ชฉ์ฌ๋, ์ฃผ์ฌ๊ฐ ๋ชฉ์ฌ๋, ๋ฐ๊ทํ ๋ชฉ์ฌ๋๊ป ๊ฐ์ฌ ๋ ๋ฆฝ๋๋ค. ํญ์ ๋ฐ๋ฏํ๊ฒ ๋ง์ ์ฃผ์๊ณ ์ฑ๊ฒจ ์ฃผ์๋ ์ฌ๋ชจ๋๊ป ๊ฐ์ฌ ๋๋ฆฝ๋๋ค. ํน๋ณ ์๋ฒฝ๊ธฐ๋ ๋ ์๋ฒฝ ์ผ์ฐ ํ๊ต์ ์ค์ ์ ๊ตํ๊น์ง ์ฐจ๋ฅผ ํ์ ์ฃผ์ ๋ฐ์ ํฌ ์ง์ฌ๋, ์ฒญ์๋ ๋ถ ๊ฐ์ ๋ฐ ํ๋ฉด์ ๋ง์๋ ๊ฐ์์ ์ฃผ์๋ ๊ฐ์์ ์ง์ฌ๋, 3์ ๋ฌ ํ๋์ค ๊ฐ ๋ ์ฉ๋ ์ฃผ์๊ณ ๊ธฐ๋๋ก ์์ํด์ฃผ์ ๊ถ์ฌ๋, ์ง์ฌ๋๋ค, ํ ์ด ๋์์ด์ง๋ง ์น๊ตฌ ๊ฐ์ ์ ์ฉ์ด, ๊ฑด๋ฏผ์ด, ์ด์ ๊ณง ํ ๊ฒฐํผ์ค๋น๋ฅผ ์ํ์ฌ ์ธ๋ชจ๋ฅผ ๋ณ์ ์ํค๋๋ก ๋์์ค ํ๋๋๊ป์ ๋ณด๋ด์ ๋ ์ฒ์ฌ ์์ง์ด, ์ ์ด, ๊ทธ ์ธ์๋ ์ ๋ฅผ ์ํ์ฌ ๊ธฐ๋ํ์ ์ ๋ณต๊ตํ ์ฑ๋๋๋ค๊ป ๊ฐ์ฌ ๋๋ฆฝ๋๋ค. ์ ๋ณต๊ตํ์์ ๊ฐ์ฌํ๋ ๋ถ๋ค ํ ๋ถ, ํ ๋ถ ๋ค ๋ฃ๊ณ ์ถ์ง๋ง ๋ค ๋ฃ์ผ๋ฉด ๋ช ํ์ด์ง ๋ ๊ฒ ๊ฐ์์ ๋ํํ ๋ ๋ช ์ฌ๋๋ง ์ฌ๋ ธ์ต๋๋ค. ํน์ ์ญ์ญํ๋ค๊ณ ์ ์๊ฒ ๋ง์ํ์๋ฉด ๋ง์๋ ๊ฑฐ ์ฌ๋๋ฆด๊ฒ์.
๋ํ์ ์ํํ๋ฉด์ ๋นผ๋์ ์ ์๋ ๋ถ! ๋ถ๋ชจ๋๊ป ๊ฐ์ฌ๋๋ฆฝ๋๋ค. ๋ถ๋ชจ๋์ ์ํ๋ฅผ ํต ํ์ฌ ํ๋๋์ ์ํ๋ฅผ ๋๋๋๋ค. ๋น๋ก ๋ฉ๋ฆฌ ๋จ์ด์ก์ง๋ง ์ฐ๋ฝ์ ํ๋ฉด์ ๋๊ณ ๋๋ฝ ํ์๋ฉด ์ ์ ๋ณด๋ค ์ ๋ฅผ ๋ ๊ฑฑ์ ํ์ ๋ถ๋ชจ๋, ๋ถ๋ชจ๋์ ์ํ๋ ํ์ ๊ฐ์๋ ๋ชป ๊ฐ์ ๊ฒ๋๋ค. ๋ถ๋ชจ ๋๊ป์ ๋ฐ๋ผ์๋ ๋๋ก ํ๋๋์๊ฒ์ ํฌ๊ฒ ์ฐ์์ ๋ฐ๋ ํ๋๋์ ์ฌ๋์ด ๋๊ฒ ์ต๋๋ค. ๋ถ