• Tidak ada hasil yang ditemukan

II. Theoretical & Mathematical Development

2.1 MHD Physics Review in Tokamak

2.1.7 Properties of large aspect ratio in tokamak

In tokamak, the aspect ratio, ๐‘…0/๐‘Ž, is assumed to be large. Introducing a small number, ๐œ€, as an inverse large aspect ratio of tokamak, ๐œ€ โ‰ก ๐‘Ž/๐‘… โ‰ช 1 in tokamak.

The safety factor, ๐‘ž is the order of 1 as ๐‘ž = ๐‘Ÿ๐ต๐œ™0

๐‘…0๐ต๐œƒ ~ ๐œ€๐ต๐œ™0 ๐ต๐œƒ ~ 1.

So, ๐ต๐œƒ is the order of

๐ต๐œƒ ~ ๐œ€๐ต๐œ™. (2.36)

For the equilibrium equation, โˆ‡๐‘ = ๐ฃร—๐, each term of Eq. (2.26) is equivalent as d๐‘

d๐‘Ÿ ~ 1 ๐œ‡0{1

๐‘Ÿ

๐œ•

๐œ•๐‘Ÿ(๐‘Ÿ๐ต๐œƒ)} ๐ต๐œƒ (2.37)

and

d๐‘ d๐‘Ÿ ~ 1

๐œ‡0

๐œ•๐ต๐œ™

๐œ•๐‘Ÿ ๐ต๐œ™. (2.38)

From Eq. (2.37), ๐‘ is the order of

๐‘ ~ ๐ต๐œƒ2

๐œ‡0. (2.39)

So, poloidal beta, ๐›ฝ๐‘, is the order of 1 as

๐›ฝ๐‘ ~ 1 (2.40)

and toroidal beta, ๐›ฝ๐‘ก, is the order equivalent as

๐›ฝ๐‘ก = ๐ต๐œƒ๐‘Ž2

๐ต๐œ™๐‘Ž2 ๐›ฝ๐‘ ~ ๐œ€2 (2.41)

and beta, ๐›ฝ, is the order equivalant as

๐ต๐œƒ๐‘Ž2 ๐ต๐œƒ๐‘Ž2 2

(2.42)

From Eq. (2.38), ๐œ•๐ต๐œ™/๐œ•๐‘Ÿ is the order of

๐œ•๐ต๐œ™

๐œ•๐‘Ÿ ~ ๐œ‡0 1 ๐ต๐œ™

d๐‘

d๐‘Ÿ ~ ๐œ‡0 1 ๐ต๐œ™

๐ต๐œƒ2 ๐œ‡0

1 ๐‘Ž ~ 1

๐ต๐œ™(๐œ€2๐ต๐œ™2)1 ๐‘Ž ~ 1

๐ต๐œ™(๐œ€2๐ต๐œ™2)1

๐‘Ž ~ ๐œ€2๐ต๐œ™ ๐‘Ž .

From Ampereโ€™s law, ๐ฃ = 1/๐œ‡0(โˆ‡ร—๐) each componenets of current, ๐ฃ in Eq. (2.28) are equivalent as ๐‘—๐œƒ = 1

๐œ‡0

๐œ•๐ต๐œ™

๐œ•๐‘Ÿ ~ ๐œ€2 ๐ต๐œ™

๐œ‡0๐‘Ž ~ ๐œ€2 ๐ต

๐œ‡0๐‘Ž, (2.43)

๐‘—๐œ™= 1 ๐œ‡0{1

๐‘Ÿ

๐œ•

๐œ•๐‘Ÿ(๐‘Ÿ๐ต๐œƒ)} ~ ๐ต๐œƒ

๐œ‡0๐‘Ž ~ ๐œ€ ๐ต๐œ™

๐œ‡0๐‘Ž ~ ๐œ€ ๐ต

๐œ‡0๐‘Ž. (2.44)

So, ๐‘—๐œƒ is the order of

๐‘—๐œƒ ~ ๐œ€๐‘—๐œ™. (2.45)

Summarizing section 2.1.7, leading order relation is shown in Table 2.2.

Table 2.2 Leading order relations in large aspect ratio tokamak.

Safety factor ๐‘ž ~ 1

Magnetic field ๐ต๐œƒ ~ ๐œ€๐ต๐œ™

Pressure ๐‘ ~ ๐ต๐œƒ2

๐œ‡0

Beta, ๐›ฝ

๐›ฝ๐‘ ~ 1 ๐›ฝ๐‘ก ~ ๐œ€2 ๐›ฝ ~ ๐œ€2

Current density

๐‘—๐œƒ ~ ๐œ€2 ๐ต ๐œ‡0๐‘Ž ๐‘—๐œ™ ~ ๐œ€ ๐ต

๐œ‡0๐‘Ž

These properties are used to approximate the equations. The MHD equations can be solved more simply by the approximation of large aspect ratio in tokamak.

This concludes the basic physical concept review of tokamak. In this section, the principle of magnetic fields induced by currents was reviewed. Based on the magnetic fields, the concept and the role of the safety factor and beta value were also reviewed. The properties of large aspect ratio in tokamak was also reviewed. Based on this knowledge, MHD instability in the tokamak will be reviewed to study the sawtooth instability.

2.2 Review of MHD instability in tokamak

In this section, the basics of MHD instability will be reviewed.

2.2.1 Basic idea of MHD stability

Whether the equilibrium is stable or unstable depends on whether a small perturbation is growing or is damping [28]. When the perturbation is growing, the plasma is in an unstable condition whereas when the perturbation is damping, the plasma is in a stable condition. Sawtooth oscillation is the result of instability, which shows periodic behavior.

The basic idea about stability is shown in Figure 2.4.

(a) (b)

Figure 2.4 The basic idea of MHD stability. (a) Stable equilibrium, (b) unstable equilibrium.

This can be illustrated by thinking about a ball, as shown in Figure 2.4. The ball tends to move in the direction which gives the potential energy to the outer system. In Figure 2.4 (a), the ball is perturbed and potential energy increases (๐›ฟ๐‘Š > 0). As time goes by, the ball will return to its original point. The ball is determined as stable. In Figure 2.4 (b), the ball is perturbed and potential energy deceases (๐›ฟ๐‘Š <

0). As time goes by, the ball will roll away.

Stable Equilibrium

๐‘ฅ0 ๐‘ฅ0+ ๐œ‰

Unstable Equilibrium

๐‘ฅ0 ๐‘ฅ0+ ๐œ‰

2.2.2 Energy principle

Based on the perturbation introduced in section 2.2.1, the energy principle is introduced here. The energy principle is used to determine stability by the sign of change of potential energy, ๐›ฟ๐‘Š. By energy conservation, the summation of the potential energy change and the kinetic energy change is zero. The change of kinetic energy from the perturbation is

๐›ฟ๐พ =1

2โˆซ ๐› โˆ™ ๐Ÿ1(๐›)d๐‘‰

where ๐Ÿ1 is the first order perturbation of force density. According to the law of energy conservation, the potential energy comes from the result of the plasma displacement, ๐› as

๐›ฟ๐‘Š = โˆ’1

2โˆซ ๐› โˆ™ ๐Ÿ1(๐›)d๐‘‰. (2.46) The change of potential energy, ๐›ฟ๐‘Š is derived from ideal MHD equations and small displacement, ๐› . Using the perturbation theory, but neglecting the second order term and putting the equilibrium velocity to zero, u0(r) = 0, since the plasma is in static equilibrium. Thus

๐ฎ(๐ซ, ๐‘ก) = ๐ฎ1(๐ซ, ๐‘ก), (2.47)

๐œŒ(๐ซ, ๐‘ก) = ๐œŒ0(๐ซ) + ๐œŒ1(๐ซ, ๐‘ก), (2.48) ๐‘(๐ซ, ๐‘ก) = ๐‘0(๐ซ) + ๐‘1(๐ซ, ๐‘ก), (2.49) ๐(๐ซ, ๐‘ก) = ๐0(๐ซ) + ๐1(๐ซ, ๐‘ก), (2.50)

The mass conservation, separating equilibrium term and first order perturbation term, is given as

๐œ•๐œŒ0

๐œ•๐‘ก +๐œ•๐œŒ1

๐œ•๐‘ก + (๐ฎ1โˆ™ ๐›)๐œŒ0= โˆ’๐œŒ0๐› โˆ™ ๐ฎ1 The equilibrium term for mass conservation is

๐œ•๐œŒ0

๐œ•๐‘ก = 0,

For momentum conservation, the plasma is assumed to be in laminar flow, then (๐ฎ โˆ™ ๐›)๐ฎ = 0 and separating equilibrium term and first order perturbation term, the momentum conservation is expressed as

๐œŒ0๐œ•๐ฎ1

๐œ•๐‘ก = ๐ฃ0ร—๐0+ ๐ฃ0ร—๐1+ ๐ฃ1ร—๐0โˆ’ ๐›๐‘0โˆ’ ๐›๐‘1 The equilibrium term for momentum conservation is

๐›๐‘0= ๐ฃ0ร—๐0

and the first order perturbation term of momentum conservation is ๐œŒ0๐œ•๐ฎ1

๐œ•๐‘ก = ๐ฃ0ร—๐1+ ๐ฃ1ร—๐0โˆ’ ๐›๐‘1. (2.52)

The adiabatic equation, separating equilibrium term and first order perturbation term neglecting second order perturbation term is

๐œ•๐‘0

๐œ•๐‘ก +๐œ•๐‘1

๐œ•๐‘ก + (๐ฎ1โˆ™ ๐›)๐‘0= โˆ’๐›พ๐‘0๐› โˆ™ ๐ฎ1. The equilibrium term for the adiabatic equation is

๐œ•๐‘0

๐œ•๐‘ก = 0

and the first order perturbation term of the adiabatic equation is

๐œ•๐‘1

๐œ•๐‘ก = โˆ’๐ฎ1โˆ™ ๐›๐‘ โˆ’ ๐›พ๐‘๐› โˆ™ ๐ฎ1. (2.53)

Combining Faradayโ€™s law and Ohmโ€™s law,

๐œ•๐

๐œ•๐‘ก = โˆ’๐›ร—(โˆ’๐ฎร—๐) = ๐›ร—(๐ฎร—๐).

Separating equilibrium term and first order perturbation term and neglecting second order perturbation term, the equation is

๐œ•๐0

๐œ•๐‘ก +๐œ•๐1

๐œ•๐‘ก = ๐›ร—(๐ฎ1ร—๐0).

and the first order perturbation term of the equation is

๐œ•๐1

๐œ•๐‘ก = ๐›ร—(๐ฎ1ร—๐0). (2.54)

The first order perturbation of ideal MHD equations are as below.

๐œ•๐œŒ1

๐œ•๐‘ก = โˆ’๐ฎ1โˆ™ ๐›๐œŒ0โˆ’ ๐œŒ0๐› โˆ™ ๐ฎ1 (2.51) ๐œŒ0๐œ•๐ฎ1

๐œ•๐‘ก = ๐ฃ0ร—๐1+ ๐ฃ1ร—๐0โˆ’ ๐›๐‘1 (2.52)

๐œ•๐‘1

๐œ•๐‘ก = โˆ’๐ฎ1โˆ™ ๐›๐‘ โˆ’ ๐›พ๐‘๐› โˆ™ ๐ฎ1 (2.53)

๐œ•๐1

๐œ•๐‘ก = ๐›ร—(๐ฎ1ร—๐0) (2.54)

The displacement vector, ๐› is the integration of velocity perturbation as ๐›(๐ซ, ๐‘ก) = โˆซ ๐ฎ1(๐ซ, ๐‘ก)๐‘‘๐‘กโ€ฒ

๐‘ก 0

. (2.55)

From now on, ๐› is used instead of ๐ฎ1. Integrating Eq. (2.13), Eq. (2.15) and Eq. (2.16) using Eq. (2.55), the Eqs. (2.51) โ€“ (2.54) are expressed as

๐œŒ1(๐ซ, ๐‘ก) = โˆ’๐›(๐ซ, ๐‘ก) โˆ™ ๐›๐œŒ0โˆ’ ๐œŒ0๐› โˆ™ ๐›(๐ซ, ๐‘ก) (2.56) ๐œŒ0๐œ•2๐›

๐œ•๐‘ก2= 1 ๐œ‡0

(๐›ร—๐0)ร—๐1+ 1 ๐œ‡0

(๐›ร—๐1)ร—๐0โˆ’ ๐›๐‘1 (2.57)

๐‘1(๐ซ, ๐‘ก) = โˆ’๐›(๐ซ, ๐‘ก) โˆ™ ๐›๐‘0โˆ’ ๐›พ๐‘0๐› โˆ™ ๐›(๐ซ, ๐‘ก) (2.58) ๐1(๐ซ, ๐‘ก) = ๐›ร—{๐›(๐ซ, ๐‘ก)ร—๐0(๐ซ)} (2.59) Substituting Eq. (2.58) and Eq. (2.59) into Eq. (2.57),

๐œŒ0๐œ•2๐›

๐œ•๐‘ก2= ๐ฃ0ร—{๐›ร—(๐›ร—๐0)} + 1

๐œ‡0[๐›ร—{๐›ร—(๐›ร—๐0)}]ร—๐0+ ๐›(๐› โˆ™ ๐›๐‘0+ ๐›พ๐‘0๐› โˆ™ ๐›)

Substituting Eq. (2.60) into Eq. (2.46), the change of potential energy, ๐›ฟ๐‘Š, is obtained as ๐›ฟ๐‘Š = โˆ’1

2โˆซ [๐› โˆ™ (๐ฃ0ร—๐1) + 1

๐œ‡0๐› โˆ™ [(๐›ร—๐1)ร—๐0] โˆ’ ๐› โˆ™ ๐›(๐›พ๐‘0๐› โˆ™ ๐› โˆ’ ๐› โˆ™ ๐›๐‘0)] d๐‘‰. (2.61)

Using the vector relations Eq. (B.2), Eq. (B.7) and Eq. (B.10) to Eq. (2.61), ๐›ฟ๐‘Š, is obtained as ๐›ฟ๐‘Š = โˆ’1

2โˆซ [๐› โˆ™ {(1

๐œ‡0๐0โˆ™ ๐1) ๐›} + 1

๐œ‡0๐1โˆ™ {๐›ร—(๐›ร—๐0)} + ๐ฃ0โˆ™ (๐1ร—๐›) + ๐› โˆ™ (๐‘1๐›) + ๐‘1(๐› โˆ™ ๐›)] d๐‘‰.

Using divergence theorem, ๐›ฟ๐‘Š =1

2โˆซ (1

๐œ‡0๐0โˆ™ ๐1+ ๐‘1) ๐› โˆ™ d๐€ +1 2โˆซ {1

๐œ‡0๐ต12โˆ’ ๐ฃ0โˆ™ (๐1ร—๐›) โˆ’ ๐‘1(๐› โˆ™ ๐›)} d๐‘‰. (2.62) The potential energy change, ๐›ฟ๐‘Š, can be distinguished by three different regions: plasma region (0 < ๐‘Ÿ < ๐‘Ž), ๐›ฟ๐‘Š๐‘, plasma surface region (๐‘Ÿ = ๐‘Ž), ๐›ฟ๐‘Š๐‘† and vacuum region (๐‘Ž < ๐‘Ÿ โ‰ค ๐‘), ๐›ฟ๐‘Š๐‘ฃ. At the vacuum region, there is no displacement. So, the Eq. (2.52) is divided as

๐›ฟ๐‘Š =1

2โˆซ {1

๐œ‡0๐ต1๐‘2 โˆ’ ๐ฃ0โˆ™ (๐1ร—๐›) โˆ’ ๐‘1(๐› โˆ™ ๐›)} d๐‘‰

plasma

+1

2โˆซ (1

๐œ‡0๐0โˆ™ ๐1+ ๐‘1) ๐› โˆ™ d๐€

surface

+ 1

2๐œ‡0โˆซ ๐ต1๐‘ฃ2 d๐‘‰

vacuum

.

(2.63)

where ๐1๐‘ฃ is perturbed magnetic field at vacuum and ๐ฃ1๐‘ฃ= 1

๐œ‡0(โˆ‡ร—๐1๐‘ฃ) = 0. (2.64)

is satisfied. Each term ๐›ฟ๐‘Š๐‘, ๐›ฟ๐‘Š๐‘  and ๐›ฟ๐‘Š๐‘ฃ is

๐›ฟ๐‘Š๐‘=1

2โˆซ {1

๐œ‡0๐ต1๐‘2 โˆ’ ๐ฃ0โˆ™ (๐1ร—๐›) โˆ’ ๐‘1(๐› โˆ™ ๐›)} d๐‘‰

plasma

, (2.65)

๐›ฟ๐‘Š๐‘  =1

2โˆซ (1

๐œ‡0๐0โˆ™ ๐1+ ๐‘1) ๐› โˆ™ d๐€

surface

, (2.66)

๐›ฟ๐‘Š = 1

2๐œ‡0โˆซ ๐ต1๐‘ฃ2 d๐‘‰

vacuum

. (2.67)

For steady state, the continuity equation, Eq. (2.1) is

โˆ‡ โˆ™ ๐ฎ1= 0. (2.68)

Integrating Eq. (2.68) by ๐‘ก

โˆ‡ โˆ™ ๐› = 0. (2.69)

The volume integral in tokamak is

โˆซ d๐‘‰ = โˆซ ๐‘Ÿd๐‘Ÿd๐œƒd๐‘ง = โˆซ ๐‘Ÿd๐‘Ÿd๐œƒ๐‘…0d๐œ™ = ๐‘…0โˆซ ๐‘Ÿd๐‘Ÿd๐œƒd๐œ™

Substituting Eq. (2.69) into Eq. (2.63), the surface term is removed by taking volume integral, and assuming ๐œ‰๐‘Ÿ ~ ๐œ‰๐œƒโ‰ซ ๐œ‰๐œ™ and ๐ต๐‘Ÿ1 ~ ๐ต๐œƒ1โ‰ซ ๐ต๐œ™1,

๐›ฟ๐‘Š =1 2โˆซ {1

๐œ‡0๐ต1๐‘2 โˆ’ ๐ฃ0โˆ™ (๐1๐‘ร—๐›)} ๐‘Ÿd๐‘Ÿd๐œƒd๐‘ง + 1

2๐œ‡0โˆซ ๐ต1๐‘ฃ2 ๐‘Ÿd๐‘Ÿd๐œƒd๐‘ง =1

2โˆซ โˆซ โˆซ {1

๐œ‡0๐ต1๐‘2 โˆ’ ๐ฃ0โˆ™ (๐1๐‘ร—๐›)} ๐‘Ÿd๐‘Ÿ

๐‘Ž 0

d๐œƒ

2๐œ‹ 0

๐‘…0d๐œ™

2๐œ‹ 0

+ 1

2๐œ‡0โˆซ โˆซ โˆซ ๐ต1๐‘ฃ2 ๐‘Ÿd๐‘Ÿ

๐‘ ๐‘Ž

d๐œƒ

2๐œ‹ 0

๐‘…0d๐œ™

2๐œ‹ 0

= 2๐œ‹2๐‘…0โˆซ {1

๐œ‡0๐ต1๐‘2 โˆ’ ๐ฃ0โˆ™ (๐1๐‘ร—๐›)} ๐‘Ÿd๐‘Ÿ

๐‘Ž 0

+2๐œ‹2๐‘…0

๐œ‡0 โˆซ ๐ต1๐‘ฃ2 ๐‘Ÿd๐‘Ÿ

๐‘ ๐‘Ž

= 2๐œ‹2๐‘…0โˆซ {๐ต1๐‘,๐‘Ÿ2 + ๐ต1๐‘,๐œƒ2

๐œ‡0 โˆ’ ๐‘—๐œ™โˆ™ (๐ต๐‘Ÿ1๐œ‰๐œƒโˆ’ ๐ต๐œƒ1๐œ‰๐‘Ÿ)} ๐‘Ÿd๐‘Ÿ

๐‘Ž 0

+2๐œ‹2๐‘…0

๐œ‡0 โˆซ (๐ต1๐‘ฃ,๐‘Ÿ2 + ๐ต1๐‘ฃ,๐œƒ2 )๐‘Ÿd๐‘Ÿ

๐‘ ๐‘Ž

So, the change of potential energy, ๐›ฟ๐‘Š, is

๐›ฟ๐‘Š = 2๐œ‹2๐‘… โˆซ {๐ต1๐‘,๐‘Ÿ2 + ๐ต1๐‘,๐œƒ2

๐œ‡0 โˆ’ ๐‘—๐œ™โˆ™ (๐ต1๐‘,๐‘Ÿ๐œ‰๐œƒโˆ’ ๐ต1๐‘,๐œƒ๐œ‰๐‘Ÿ)} ๐‘Ÿd๐‘Ÿ

๐‘Ž 0

+2๐œ‹2๐‘…0

๐œ‡0 โˆซ (๐ต1๐‘ฃ,๐‘Ÿ2 + ๐ต1๐‘ฃ,๐œƒ2 )๐‘Ÿd๐‘Ÿ

๐‘ ๐‘Ž

.

(2.70)

where the first term is plasma term and the second term is vacuum term.

The plasma term, ๐›ฟ๐‘Š๐‘ which is the first term of Eq. (2.70), is first calculated. The displacement, ๐›, analyzed by Fourier analysis as ๐› ~ ๐‘’๐‘–(๐‘š๐œƒโˆ’๐‘›๐œ™), is given as

๐› = ๐›0๐‘’๐‘–(๐‘š๐œƒโˆ’๐‘›๐œ™)= (๐œ‰๐‘Ÿ๐‘Ÿฬ‚ + ๐œ‰๐œƒ๐œƒฬ‚)๐‘’๐‘–(๐‘š๐œƒโˆ’๐‘›๐œ™). (2.71)

Then, the relation between ๐œ‰๐‘Ÿ and ๐œ‰๐œƒ is

๐œ‰๐œƒ= โˆ’ ๐‘– ๐‘š

d

d๐‘Ÿ(๐‘Ÿ๐œ‰๐‘Ÿ). (2.72)

Substituting Eq. (2.72) into Eq. (2.59) and using Eq. (B.18), ๐1๐‘= [โˆ’๐‘–๐‘š๐ต๐œ™0

๐‘…0 (๐‘› ๐‘šโˆ’1

๐‘ž) ๐œ‰๐‘Ÿ๐‘Ÿฬ‚ +๐ต๐œ™0 ๐‘…0 [๐œ•

๐œ•๐‘Ÿ{(๐‘› ๐‘šโˆ’1

๐‘ž) ๐‘Ÿ๐œ‰๐‘Ÿ}] ๐œƒฬ‚] ๐‘’๐‘–(๐‘š๐œƒโˆ’๐‘›๐œ™) where the safety factor, ๐‘ž is

๐‘ž = ๐‘Ÿ๐ต๐œ™0 ๐‘…0๐ต๐œƒ.

then, the components of perturbed magnetic field at plasma region are ๐ต1๐‘,๐‘Ÿ = โˆ’๐‘–๐‘š๐ต๐œ™0

๐‘…0 (๐‘› ๐‘šโˆ’1

๐‘ž) ๐œ‰๐‘Ÿ, (2.73)

๐ต1๐‘,๐œƒ=๐ต๐œ™0 ๐‘…0 [๐œ•

๐œ•๐‘Ÿ{(๐‘› ๐‘šโˆ’1

๐‘ž) ๐‘Ÿ๐œ‰๐‘Ÿ}]. (2.74)

Substituting Eq. (2.72), Eq. (2.73) and Eq. (2.74) into the first term of Eq. (2.70), the plasma term, ๐›ฟ๐‘Š๐‘ is obtained as

๐›ฟ๐‘Š๐‘= โˆซ [

2๐œ‹2๐‘Ÿ2๐ต๐œ™02 ๐œ‡0๐‘…0

(๐‘› ๐‘š โˆ’

1 ๐‘ž)

2

1 + ๐‘›2๐‘Ÿ2 ๐‘š2๐‘…02

(d๐œ‰๐‘Ÿ d๐‘Ÿ)

๐‘Ž 2 0

+ {2๐œ‹2๐ต๐œ™02 ๐œ‡0๐‘…02 (๐‘›

๐‘šโˆ’1 ๐‘ž)

2

+4๐œ‹2๐‘Ÿ๐‘โ€ฒ ๐‘…0 (๐‘›

๐‘š)

2 1

1 + ( ๐‘›๐‘Ÿ ๐‘š๐‘…0)2

} ๐œ‰๐‘Ÿ2

] ๐‘Ÿ๐‘‘๐‘Ÿ

+2๐œ‹2๐ต๐œ™02 ๐œ‡0๐‘…0

(๐‘›2 ๐‘š2โˆ’ 1

๐‘ž2) 1 + ( ๐‘›๐‘Ÿ

๐‘š๐‘…0)2 ๐‘Ž2๐œ‰๐‘Ž2.

(2.75)

where ๐œ‰๐‘Ž is the radial displacement, ๐œ‰๐‘Ÿ, at ๐‘Ÿ = ๐‘Ž.

Subsequently, the vacuum term, ๐‘Š๐‘ฃ which is the second term of Eq. (2.70) is calculated. As in Eq.

(2.64), โˆ‡ร—๐1๐‘ฃ= 0, and the flux function, ๐›™ satisfies ๐1๐‘ฃ = โˆ‡ร—๐›™. Then

โˆ‡ร—(โˆ‡ร—๐›™) = โˆ‡(โˆ‡ โˆ™ ๐›™) โˆ’ โˆ‡2๐›™ = 0 or

โˆ‡2๐›™ = 0 or

1 ๐‘Ÿ

๐œ•

๐œ•๐‘Ÿ(๐‘Ÿ๐œ•๐œ“

๐œ•๐‘Ÿ) + 1 ๐‘Ÿ2

๐œ•2๐œ“

๐œ•๐œƒ2 + ๐œ•๐œ“

๐œ•๐‘ง2= 0.

Then flux function ๐œ“ can be expressed as ๐œ“0๐‘’๐‘–(๐‘š๐œƒโˆ’๐‘›๐œ™), and ๐œ“ satisfies Besselโ€™s equation as 1

๐‘Ÿ ๐‘‘ ๐‘‘๐‘Ÿ(๐‘Ÿ๐‘‘๐œ“

๐‘‘๐‘Ÿ) โˆ’ (๐‘›2 ๐‘…02+๐‘š2

๐‘Ÿ2) ๐œ“ = 0, (2.76)

and the magnetic field components in the vacuum are expressed in terms of ๐œ“ as ๐ต1๐‘ฃ,๐‘Ÿ= โˆ’1

๐‘Ÿ

๐œ•๐œ“

๐œ•๐œƒ = โˆ’๐‘–๐‘š

๐‘Ÿ ๐œ“, (2.77)

๐ต1๐‘ฃ,๐‘Ÿ =๐œ•๐œ“

๐œ•๐‘Ÿ. (2.78)

The solution of ๐œ“ is

๐œ“ = ๐ถ1๐ผ๐‘š(๐‘›

๐‘…0๐‘Ÿ) + ๐ถ2๐พ๐‘š(๐‘›

๐‘…0๐‘Ÿ). (2.79)

At ๐‘Ÿ = ๐‘Ž, ๐ต1,๐‘Ÿ is continuous, so

๐ต1๐‘ฃ,๐‘Ÿ(๐‘Ž) = ๐ต1๐‘,๐‘Ÿ(๐‘Ž) =๐‘–๐‘š

๐‘Ž ๐œ“๐‘Ž =๐‘–๐‘š๐ต๐œ™0 ๐‘…0 (๐‘›

๐‘šโˆ’ 1 ๐‘ž๐‘Ž) ๐œ‰๐‘Ž Then ๐œ“(๐‘Ž) is

๐œ“(๐‘Ž) =๐‘Ž๐ต๐œ™0 ๐‘…0 (๐‘›

๐‘šโˆ’ 1

๐‘ž๐‘Ž) ๐œ‰๐‘Ž=๐‘Ž๐ต๐œ™0 ๐‘…0 (๐‘›

๐‘šโˆ’ 1 ๐‘ž๐‘Ž) ๐œ‰๐‘Ž At ๐‘Ÿ = ๐‘, ๐œ“(๐‘) = 0, then the solution of ๐œ“(๐‘Ÿ) is

Substituting Eq. (2.77) and Eq. (2.78) into the second term of Eq. (2.70), the vacuum term is calculated as

๐›ฟ๐‘Š๐‘ฃ=2๐œ‹2๐‘…0

๐œ‡0 โˆซ (๐ต1๐‘ฃ,๐‘Ÿ2 + ๐ต1๐‘ฃ,๐œƒ2 )๐‘Ÿd๐‘Ÿ

๐‘ ๐‘Ž

=2๐œ‹2๐‘…0

๐œ‡0 โˆซ {(๐‘š ๐‘Ÿ ๐œ“)

2

+ (d๐œ“ d๐‘Ÿ)

2

} ๐‘Ÿd๐‘Ÿ

๐‘ ๐‘Ž

=2๐œ‹2๐‘…0

๐œ‡0 โˆซ (๐‘Ÿ๐‘š2

๐‘Ÿ2 ๐œ“2+ ๐‘Ÿd๐œ“ d๐‘Ÿ

d๐œ“ d๐‘Ÿ) d๐‘Ÿ

๐‘ ๐‘Ž

=2๐œ‹2๐‘…0

๐œ‡0 โˆซ (๐‘Ÿ๐‘š2

๐‘Ÿ2 ๐œ“2) d๐‘Ÿ

๐‘ ๐‘Ž

+2๐œ‹2๐‘…0

๐œ‡0 {[๐œ“๐‘Ÿd๐œ“ d๐‘Ÿ]

๐‘Ž ๐‘

โˆ’ โˆซ ๐œ“ d d๐‘Ÿ(๐‘Ÿd๐œ“

d๐‘Ÿ) d๐‘Ÿ

๐‘ ๐‘Ž

}

=2๐œ‹2๐‘…0

๐œ‡0 โˆซ {๐‘Ÿ๐‘š2

๐‘Ÿ2 ๐œ“2โˆ’ ๐œ“ d d๐‘Ÿ(๐‘Ÿd๐œ“

d๐‘Ÿ) d๐‘Ÿ} d๐‘Ÿ

๐‘ ๐‘Ž

+2๐œ‹2๐‘…0

๐œ‡0 [๐œ“๐‘Ÿd๐œ“ d๐‘Ÿ]

๐‘Ž ๐‘

Then,

๐›ฟ๐‘Š๐‘ฃโ‰ˆ2๐œ‹2๐‘…0

๐œ‡0 โˆซ ๐œ“ (๐‘š2 ๐‘Ÿ2 ๐œ“ โˆ’1

๐‘Ÿ d d๐‘Ÿ(๐‘Ÿd๐œ“

d๐‘Ÿ) d๐‘Ÿ) ๐‘Ÿd๐‘Ÿ

๐‘ ๐‘Ž

+2๐œ‹2๐‘…0

๐œ‡0 [๐œ“๐‘Ÿd๐œ“ d๐‘Ÿ]

๐‘Ž ๐‘

. (2.81)

Substituting Eq. (2.76) into Eq. (2.81),

๐›ฟ๐‘Š๐‘ฃ= โˆ’2๐œ‹2๐‘…0 ๐œ‡0

๐‘Ž๐œ“(๐‘Ž)๐œ“โ€ฒ(๐‘Ž). (2.82)

Substituting Eq. (2.80) into Eq. (2.82), the vacuum term is calculated as

๐›ฟ๐‘Š๐‘ฃ= โˆ’2๐œ‹2๐‘›๐ต๐œ™02 ๐œ‡0๐‘…02

๐พ๐‘šโ€ฒ (๐‘›๐‘Ž

๐‘…0) ๐ผ๐‘š(๐‘›๐‘

๐‘…0) โˆ’ ๐ผ๐‘šโ€ฒ (๐‘›๐‘Ž

๐‘…0) ๐พ๐‘š(๐‘›๐‘Ž ๐‘…0) ๐พ๐‘š(๐‘›๐‘Ž

๐‘…0) ๐ผ๐‘š(๐‘›๐‘

๐‘…0) โˆ’ ๐ผ๐‘š(๐‘›๐‘Ž

๐‘…0) ๐พ๐‘š(๐‘›๐‘ ๐‘…0)

(๐‘› ๐‘šโˆ’ 1

๐‘ž๐‘Ž)

2

๐‘Ž3๐œ‰๐‘Ž2. (2.83)

The properties of modified Bessel function given as d

d๐‘ฅ{๐ผ๐œˆ(๐‘ฅ)} =๐œˆ

๐‘ฅ๐ผ๐œˆ(๐‘ฅ) + ๐ผ๐œˆ+1(๐‘ฅ), (2.84) d

d๐‘ฅ{๐พ๐‘›(๐‘ฅ)} =๐‘›

๐‘ฅ๐พ๐‘›(๐‘ฅ) โˆ’ ๐พ๐‘›+1(๐‘ฅ). (2.85)

Using these properties, ๐›ฟ๐‘Š๐‘ฃ in Eq. (2.83) is calculated as ๐›ฟ๐‘Š๐‘ฃ

= โˆ’2๐œ‹2๐‘›๐ต๐œ™02 ๐œ‡0๐‘…02

{๐‘š ๐‘›

๐‘…0

๐‘Ž ๐พ๐‘š(๐‘›๐‘Ž

๐‘…0) โˆ’ ๐พ๐‘š+1(๐‘›๐‘Ž

๐‘…0)} ๐ผ๐‘š(๐‘›๐‘ ๐‘…0) โˆ’ {๐‘š

๐‘› ๐‘…0

๐‘Ž ๐ผ๐‘š(๐‘›๐‘Ž

๐‘…0) + ๐ผ๐‘š+1(๐‘›๐‘Ž

๐‘…0)} ๐พ๐‘š(๐‘›๐‘Ž ๐‘…0) ๐พ๐‘š(๐‘›๐‘Ž

๐‘…0) ๐ผ๐‘š(๐‘›๐‘

๐‘…0) โˆ’ ๐ผ๐‘š(๐‘›๐‘Ž

๐‘…0) ๐พ๐‘š(๐‘›๐‘ ๐‘…0)

(๐‘› ๐‘š

โˆ’ 1 ๐‘ž๐‘Ž)

2

๐‘Ž3๐œ‰๐‘Ž2 = โˆ’2๐œ‹2๐ต๐œ™02

๐œ‡0๐‘…0 ๐‘š (๐‘› ๐‘šโˆ’ 1

๐‘ž๐‘Ž)

2

๐‘Ž2๐œ‰๐‘Ž2

+2๐œ‹2๐‘›๐ต๐œ™02 ๐œ‡0๐‘…02

๐พ๐‘š+1(๐‘›๐‘Ž

๐‘…0) ๐ผ๐‘š(๐‘›๐‘

๐‘…0) + ๐ผ๐‘š+1(๐‘›๐‘Ž

๐‘…0) ๐พ๐‘š(๐‘›๐‘Ž ๐‘…0) ๐พ๐‘š(๐‘›๐‘Ž

๐‘…0) ๐ผ๐‘š(๐‘›๐‘

๐‘…0) โˆ’ ๐ผ๐‘š(๐‘›๐‘Ž

๐‘…0) ๐พ๐‘š(๐‘›๐‘ ๐‘…0)

(๐‘› ๐‘šโˆ’ 1

๐‘ž๐‘Ž)

2

๐‘Ž3๐œ‰๐‘Ž2

=2๐œ‹2๐ต๐œ™02 ๐œ‡0๐‘…0 ๐‘š (๐‘›

๐‘šโˆ’ 1 ๐‘ž๐‘Ž)

2

{ ๐‘›๐‘Ž ๐‘š๐‘…0

๐พ๐‘š+1(๐‘›๐‘Ž

๐‘…0) ๐ผ๐‘š(๐‘›๐‘

๐‘…0) + ๐ผ๐‘š+1(๐‘›๐‘Ž

๐‘…0) ๐พ๐‘š(๐‘›๐‘Ž ๐‘…0) ๐พ๐‘š(๐‘›๐‘Ž

๐‘…0) ๐ผ๐‘š(๐‘›๐‘

๐‘…0) โˆ’ ๐ผ๐‘š(๐‘›๐‘Ž

๐‘…0) ๐พ๐‘š(๐‘›๐‘ ๐‘…0)

โˆ’ 1} ๐‘Ž2๐œ‰๐‘Ž2

Then, the vacuum term, ๐›ฟ๐‘Š๐‘ฃ is obtained as

๐›ฟ๐‘Š๐‘ฃ=2๐œ‹2๐ต๐œ™02 ๐œ‡0๐‘…0 ๐‘š

{

๐‘›๐‘Ž๐พ๐‘š+1(๐‘›๐‘Ž ๐‘…0) ๐‘š๐‘…0๐พ๐‘š(๐‘›๐‘Ž

๐‘…0) 1 +

๐ผ๐‘š+1(๐‘›๐‘Ž ๐‘…0) ๐ผ๐‘š(๐‘›๐‘

๐‘…0)

๐พ๐‘š(๐‘›๐‘Ž ๐‘…0) ๐พ๐‘š+1(๐‘›๐‘Ž ๐‘…0) 1 โˆ’

๐ผ๐‘š(๐‘›๐‘Ž ๐‘…0) ๐ผ๐‘š(๐‘›๐‘

๐‘…0)

๐พ๐‘š(๐‘›๐‘ ๐‘…0) ๐พ๐‘š(๐‘›๐‘Ž

๐‘…0)

โˆ’ 1

} (๐‘›

๐‘šโˆ’ 1 ๐‘ž๐‘Ž)

2

๐‘Ž2๐œ‰๐‘Ž2.

(2.86)

Finally, summing Eq. (2.75) and Eq. (2.86), the total change of potential energy is derived as [8]

๐›ฟ๐‘Š = โˆซ (๐‘“๐œ‰โ€ฒ2+ ๐‘”๐œ‰2)๐‘Ÿ๐‘‘๐‘Ÿ

๐‘Ž 0

+2๐œ‹2๐ต๐œ™02 ๐œ‡0๐‘…0

๐‘Ž2๐œ‰๐‘Ž2 {

๐‘›2 ๐‘š2โˆ’ 1

๐‘ž๐‘Ž2 1 + ( ๐‘›๐‘Ÿ

๐‘š๐‘…0)2

+ ๐‘š๐›ฌ (๐‘› ๐‘šโˆ’ 1

๐‘ž๐‘Ž

)

2

}

. (2.87) where

๐‘“ =2๐œ‹2๐‘Ÿ2๐ต๐œ™02 ๐œ‡0๐‘…0

(๐‘› ๐‘š โˆ’

1 ๐‘ž)

2

1 + ๐‘›2๐‘Ÿ2 ๐‘š2๐‘…02

=2๐œ‹2๐‘Ÿ2๐ต๐œ™02 ๐œ‡0๐‘…0 (๐‘›

๐‘šโˆ’1 ๐‘ž)

2{1 + ( ๐‘›๐‘Ÿ

๐‘š๐‘…0)2} โˆ’ ( ๐‘›๐‘Ÿ ๐‘š๐‘…0)2 1 + ( ๐‘›๐‘Ÿ

๐‘š๐‘…0)2

=2๐œ‹2๐‘Ÿ2๐ต๐œ™02 ๐œ‡0๐‘…0

(๐‘› ๐‘šโˆ’1

๐‘ž)

2

{1 โˆ’ ( ๐‘›๐‘Ÿ

๐‘š๐‘…0)2 1 + ( ๐‘›๐‘Ÿ

๐‘š๐‘…0)2

} =2๐œ‹2๐‘Ÿ2๐ต๐œ™02 ๐œ‡0๐‘…0

(๐‘› ๐‘šโˆ’1

๐‘ž)

2

{1 โˆ’ (๐‘Ÿ ๐‘…0

)

2

(๐‘› ๐‘š)

2

}

and

๐‘” =4๐œ‹2๐‘Ÿ๐‘โ€ฒ ๐‘…0 (๐‘›

๐‘š)

2 1

1 + ( ๐‘›๐‘Ÿ ๐‘š๐‘…0)2

+2๐œ‹2๐ต๐œ™02 ๐œ‡0๐‘…02 (๐‘›

๐‘šโˆ’1 ๐‘ž)

2

{๐‘š2โˆ’ 1 1 + ( ๐‘›๐‘Ÿ

๐‘š๐‘…0)2 }

+4๐œ‹2๐ต๐œ™2 ๐‘…0 (๐‘›

๐‘š)

2

(๐‘Ÿ ๐‘…0)

2

(๐‘›2 ๐‘š2โˆ’ 1

๐‘ž2) 1 {1 + ( ๐‘›๐‘Ÿ

๐‘š๐‘…0)2}

2

=4๐œ‹2๐‘Ÿ๐‘โ€ฒ ๐‘…0 (๐‘›

๐‘š)

2{1 + ( ๐‘›๐‘Ÿ

๐‘š๐‘…0)2} โˆ’ ( ๐‘›๐‘Ÿ ๐‘š๐‘…0)2 1 + ( ๐‘›๐‘Ÿ

๐‘š๐‘…0)2

+2๐œ‹2๐ต๐œ™02 ๐œ‡0๐‘…0 (๐‘›

๐‘šโˆ’1 ๐‘ž)

2

{๐‘š2โˆ’

{1 + ( ๐‘›๐‘Ÿ

๐‘š๐‘…0)2} โˆ’ ( ๐‘›๐‘Ÿ ๐‘š๐‘…0)2 1 + ( ๐‘›๐‘Ÿ

๐‘š๐‘…0)2

}

+4๐œ‹2๐ต๐œ™02 ๐œ‡0๐‘…0 (๐‘›

๐‘š)

2

(๐‘Ÿ ๐‘…0)

2

(๐‘›2 ๐‘š2โˆ’ 1

๐‘ž2)

{1 + ( ๐‘›๐‘Ÿ

๐‘š๐‘…0)2} โˆ’ ( ๐‘›๐‘Ÿ ๐‘š๐‘…0)2 {1 + ( ๐‘›๐‘Ÿ

๐‘š๐‘…0)2}

2 and

๐›ฌ =

๐‘›๐‘Ž๐พ๐‘š+1(๐‘›๐‘Ž ๐‘…0) ๐‘š๐‘…0๐พ๐‘š(๐‘›๐‘Ž

๐‘…0) 1 +

๐ผ๐‘š+1(๐‘›๐‘Ž ๐‘…0) ๐ผ๐‘š(๐‘›๐‘

๐‘…0)

๐พ๐‘š(๐‘›๐‘Ž ๐‘…0) ๐พ๐‘š+1(๐‘›๐‘Ž ๐‘…0) 1 โˆ’

๐ผ๐‘š(๐‘›๐‘Ž ๐‘…0) ๐ผ๐‘š(๐‘›๐‘

๐‘…0)

๐พ๐‘š(๐‘›๐‘ ๐‘…0) ๐พ๐‘š(๐‘›๐‘Ž

๐‘…0)

โˆ’ 1.

The change of potential, ๐›ฟ๐‘Š consists of plasma term, ๐›ฟ๐‘Š๐‘, and the vacuum term, ๐›ฟ๐‘Š๐‘ฃ, as

๐›ฟ๐‘Š๐‘= โˆซ (๐‘“๐œ‰โ€ฒ2+ ๐‘”๐œ‰2)๐‘Ÿ๐‘‘๐‘Ÿ

๐‘Ž 0

+2๐œ‹2๐ต๐œ™02 ๐œ‡0๐‘…0 ๐‘Ž2๐œ‰๐‘Ž2

๐‘›2 ๐‘š2โˆ’ 1

๐‘ž2 1 + ( ๐‘›๐‘Ÿ

๐‘š๐‘…0)2 ,

๐›ฟ๐‘Š๐‘ฃ =2๐œ‹2๐ต๐œ™02

๐œ‡0๐‘…0 ๐‘Ž2๐œ‰๐‘Ž2๐‘š๐›ฌ (๐‘› ๐‘šโˆ’1

๐‘ž )

2

.

Applying large aspect ratio assumption, ๐‘Ÿ/๐‘… โ‰ช 1, functions ๐‘“ and ๐‘” are approximated as

๐‘“ โ‰ˆ2๐œ‹2๐‘Ÿ2๐ต๐œ™02 ๐œ‡0๐‘…0 (๐‘›

๐‘šโˆ’1 ๐‘ž)

2

,

๐‘” โ‰ˆ2๐œ‹2๐ต๐œ™02 ๐œ‡0๐‘…0 (๐‘›

๐‘šโˆ’1 ๐‘ž)

2

(๐‘š2โˆ’ 1) +2๐œ‹2 ๐‘…0 (๐‘›

๐‘š)

2

{2๐‘Ÿ๐‘โ€ฒ+๐ต๐œ™02 ๐œ‡0 (๐‘Ÿ

๐‘…0)

2

(๐‘› ๐‘šโˆ’1

๐‘ž) (3๐‘› ๐‘š +1

๐‘ž)}.

The beta values are equivalent to ๐›ฝ ~ ๐›ฝ๐‘ก ~ ๐œ€2 and ๐›ฝ๐‘ ~ 1. Then, the change of potential can be divided into second order and fourth order terms as

๐›ฟ๐‘Š2=2๐œ‹2๐ต๐œ™02

๐œ‡0๐‘…0 โˆซ {(๐‘Ÿ๐‘‘๐œ‰ ๐‘‘๐‘Ÿ)

2

+ (๐‘š2โˆ’ 1)๐œ‰2} (๐‘› ๐‘šโˆ’1

๐‘ž)

2

๐‘Ÿ๐‘‘๐‘Ÿ

๐‘Ž 0

+2๐œ‹2๐ต๐œ™2 ๐œ‡0๐‘… ๐œ‰๐‘Ž2๐‘š2

{ ๐‘›2 ๐‘š2โˆ’ 1

๐‘ž2 ๐‘›2 ๐‘…02+๐‘š2

๐‘Ž2 +๐‘Ž2

๐‘š๐›ฌ (1 ๐‘žโˆ’ ๐‘›

๐‘š )

2

} ,

๐›ฟ๐‘Š4=2๐œ‹2 ๐‘…0 (๐‘›

๐‘š)

2

โˆซ {2๐‘Ÿ๐‘โ€ฒ+๐ต๐œ™02 ๐œ‡0 (๐‘›

๐‘šโˆ’1 ๐‘ž) (3๐‘›

๐‘š +1

๐‘ž)} ๐œ‰2๐‘Ÿ๐‘‘๐‘Ÿ

๐‘Ž 0

and

๐›ฟ๐‘Š2 ~ 2๐œ‹2๐‘…0๐ต๐œ™02 ๐œ‡0

๐œ‰2๐‘‚ (๐‘Ÿ ๐‘…0

)

2

,

๐›ฟ๐‘Š4 ~ 2๐œ‹2๐‘…0๐ต๐œ™02

๐œ‡0 ๐œ‰2๐‘‚ (๐‘Ÿ ๐‘…0)

4

This is the whole derivation process for change of potential energy, ๐›ฟ๐‘Š, in tokamak using the

2.3 Theories of sawtooth instability

2.3.1 Internal kink, ๐‘š/๐‘› = 1/1 mode

As mentioned in section 1.3, sawtooth oscillation is a type of โ€˜๐‘š = 1 internal kink modeโ€™ [9]. In the internal mode, plasma surface displacement is zero (๐œ‰๐‘Ž= 0) whereas the external kink mode is nonzero (๐œ‰๐‘Žโ‰  0). For the external mode, stability is effected by both the integral term and the other term of Eq.

(2.87). So, the external kink mode both has ๐‘š = 1 mode and ๐‘š โ‰ฅ 2 mode. For the internal kink mode, with ๐œ‰๐‘Ž= 0, Eq. (2.87) becomes

๐›ฟ๐‘Š =2๐œ‹2๐ต๐œ™2

๐œ‡0๐‘…0 โˆซ {(๐‘Ÿ๐‘‘๐œ‰ ๐‘‘๐‘Ÿ)

2

+ (๐‘š2โˆ’ 1)๐œ‰2} (๐‘› ๐‘šโˆ’1

๐‘ž)

2

๐‘Ÿ๐‘‘๐‘Ÿ

๐‘Ž 0

+2๐œ‹2 ๐‘…0 (๐‘›

๐‘š)

2

โˆซ {2๐‘Ÿ๐‘โ€ฒ+๐ต๐œ™2 ๐œ‡0 (๐‘›

๐‘šโˆ’1 ๐‘ž) (3๐‘›

๐‘š +1

๐‘ž)} ๐œ‰2๐‘Ÿ๐‘‘๐‘Ÿ

๐‘Ž 0

.

(2.88)

with

๐›ฟ๐‘Š2=2๐œ‹2๐ต๐œ™2

๐œ‡0๐‘…0 โˆซ {(๐‘Ÿ๐‘‘๐œ‰ ๐‘‘๐‘Ÿ)

2

+ (๐‘š2โˆ’ 1)๐œ‰2} (๐‘› ๐‘šโˆ’1

๐‘ž)

2

๐‘Ÿ๐‘‘๐‘Ÿ

๐‘Ž 0

,

๐›ฟ๐‘Š4=2๐œ‹2 ๐‘…0 (๐‘›

๐‘š)

2

โˆซ {2๐‘Ÿ๐‘โ€ฒ+๐ต๐œ™2 ๐œ‡0 (๐‘›

๐‘šโˆ’1 ๐‘ž) (3๐‘›

๐‘š +1

๐‘ž)} ๐œ‰2๐‘Ÿ๐‘‘๐‘Ÿ

๐‘Ž 0

.

Instability occurs when ๐›ฟ๐‘Š < 0, thus the plasma is likely to be unstable, when ๐›ฟ๐‘Š2 is minimized.

Then, the poloidal number, ๐‘š, is always ๐‘š = 1 for internal kink mode. So,

๐›ฟ๐‘Š =2๐œ‹2๐ต๐œ™2

๐œ‡0๐‘…0 โˆซ (๐‘Ÿ๐‘‘๐œ‰ ๐‘‘๐‘Ÿ)

2

(๐‘› โˆ’1 ๐‘ž)

2

๐‘Ÿ๐‘‘๐‘Ÿ

๐‘Ž 0

+2๐œ‹2๐‘›2

๐‘…0 โˆซ {2๐‘Ÿ๐‘โ€ฒ+๐ต๐œ™2

๐œ‡0 (๐‘› โˆ’1

๐‘ž) (3๐‘› +1

๐‘ž)} ๐œ‰2๐‘Ÿ๐‘‘๐‘Ÿ

๐‘Ž 0

.

(2.89)

with

๐›ฟ๐‘Š2=2๐œ‹2๐ต๐œ™2

๐œ‡0๐‘… โˆซ (๐‘Ÿ๐‘‘๐œ‰ ๐‘‘๐‘Ÿ)

2

(๐‘› โˆ’1 ๐‘ž)

2

๐‘Ÿ๐‘‘๐‘Ÿ

๐‘Ž 0

,

๐›ฟ๐‘Š4=2๐œ‹2๐‘›2

๐‘…0 โˆซ {2๐‘Ÿ๐‘โ€ฒ+๐ต๐œ™2

๐œ‡0 (๐‘› โˆ’1

๐‘ž) (3๐‘› +1

๐‘ž)} ๐œ‰2๐‘Ÿ๐‘‘๐‘Ÿ

๐‘Ž 0

.

Finally, the change of potential energy, ๐›ฟ๐‘Š, for ๐‘š/๐‘› = 1/1 mode is derived as

๐›ฟ๐‘Š =2๐œ‹2๐ต๐œ™2

๐œ‡0๐‘…0 โˆซ (๐‘Ÿ๐‘‘๐œ‰ ๐‘‘๐‘Ÿ)

2

(1 โˆ’1 ๐‘ž)

2

๐‘Ÿ๐‘‘๐‘Ÿ

๐‘Ž 0

+2๐œ‹2 ๐‘…0

โˆซ {2๐‘Ÿ๐‘โ€ฒ+๐ต๐œ™2 ๐œ‡0

(1 โˆ’1

๐‘ž) (3 +1

๐‘ž)} ๐œ‰2๐‘Ÿ๐‘‘๐‘Ÿ

๐‘Ž 0

(2.90)

with

๐›ฟ๐‘Š2 =2๐œ‹2๐ต๐œ™2

๐œ‡0๐‘… โˆซ (๐‘Ÿ๐‘‘๐œ‰ ๐‘‘๐‘Ÿ)

2

(1 โˆ’1 ๐‘ž)

2

๐‘Ÿ๐‘‘๐‘Ÿ

๐‘Ž 0

,

๐›ฟ๐‘Š4=2๐œ‹2

๐‘…0 โˆซ {2๐‘Ÿ๐‘โ€ฒโˆ’๐ต๐œƒ2

๐œ‡0 (1 โˆ’ ๐‘ž)(1 + 3๐‘ž)} ๐œ‰2๐‘Ÿ๐‘‘๐‘Ÿ

๐‘Ž 0

.

or

๐›ฟ๐‘Š = 2๐œ‹2๐‘…0โˆซ ๐ต๐œƒ2

๐œ‡0(1 โˆ’ ๐‘ž)2(d๐œ‰ d๐‘Ÿ)

2

๐‘Ÿ๐‘‘๐‘Ÿ

๐‘Ž 0

+2๐œ‹2

๐‘…0 โˆซ {2๐‘Ÿ๐‘โ€ฒโˆ’๐ต๐œƒ2

๐œ‡0 (1 โˆ’ ๐‘ž)(1 + 3๐‘ž)} ๐œ‰2๐‘Ÿ๐‘‘๐‘Ÿ

๐‘Ž 0

(2.91)

with

๐›ฟ๐‘Š2= 2๐œ‹2๐‘…0โˆซ ๐ต๐œƒ2

๐œ‡0(1 โˆ’ ๐‘ž)2(๐‘‘๐œ‰ ๐‘‘๐‘Ÿ)

2

๐‘Ÿ๐‘‘๐‘Ÿ

๐‘Ž 0

,

๐›ฟ๐‘Š4=2๐œ‹2

๐‘…0 โˆซ {2๐‘Ÿ๐‘โ€ฒโˆ’๐ต๐œƒ2

๐œ‡0 (1 โˆ’ ๐‘ž)(1 + 3๐‘ž)} ๐œ‰2๐‘Ÿ๐‘‘๐‘Ÿ

๐‘Ž 0

.

Two models for sawtooth instability are introduced to minimize ๐›ฟ๐‘Š2 of Eq. (2.91). Kadomtsevโ€™s model tries to explain instability by taking d๐œ‰/d๐‘Ÿ โ†’ 0 inside the ๐‘ž = 1 surface [30], whereas Wessonโ€™s model tries to explain instability by taking ๐‘ž โ†’ 1 inside the ๐‘ž = 1 surface.

2.3.2 Kadomtsevโ€™s model

As mentioned in section 2.3.1, Kaomtsevโ€™s model tries to minimize ๐›ฟ๐‘Š2 by d๐œ‰/d๐‘Ÿ โ†’ 0 inside the ๐‘ž = 1 surface. At the magnetic axis (๐‘Ÿ = 0), the displacement is ๐œ‰ = ๐œ‰0, and at the edge (๐‘Ÿ = ๐‘Ž), ๐œ‰๐‘Ž= 0. To minimize ๐›ฟ๐‘Š2, d๐œ‰/d๐‘Ÿ = 0 except near ๐‘ž = 1 surface (โˆต At ๐‘ž = 1, d๐œ‰/d๐‘Ÿ cannot be zero).

Based on this picture, the radial displacement distribution, ๐œ‰(๐‘Ÿ), is described in Figure 2.5 as

Figure 2.5 The displacement distribution, ๐œ‰(๐‘Ÿ), based on Kadomtsevโ€™s model.

The corresponding ๐›ฟ๐‘Š is ๐›ฟ๐‘Š =2๐œ‹2๐œ‰02

๐‘…2 โˆซ {2๐‘Ÿ๐‘โ€ฒโˆ’๐ต๐œƒ2

๐œ‡0 (1 โˆ’ ๐‘ž)(1 + 3๐‘ž)} ๐‘Ÿ๐‘‘๐‘Ÿ

๐‘Ÿ1 0

(2.92) and ๐‘โ€ฒ< 0 (โˆต ๐‘ = ๐‘›๐‘˜๐ต๐‘‡ and ๐‘‡ is decreased as ๐‘Ÿ increased as shown in Figure 1.3), then it is concluded as ๐›ฟ๐‘Š < 0.

๐‘Ÿ ๐œ‰

๐‘Ÿ1 ๐‘Ÿ1โˆ’ ๐›ฟ ๐œ‰0

๐œ‰ = ๐œ‰0 as ๐‘Ÿ < ๐‘Ÿ1

๐œ‰ = 0 as ๐‘Ÿ > ๐‘Ÿ1

๐‘ž = 1 surface

The ๐‘š/๐‘› = 1/1 internal kink mode has a radial displacement of ๐œ‰ ~ ๐‘’๐‘–(๐œƒโˆ’๐œ™).

(a) (b)

Figure 2.6 The ๐‘š/๐‘› = 1/1 internal kink within ๐‘ž = 1 surface. (a) total view of tokamak (b) poloidal view of tokamak.

The corresponding flow pattern of Figure 2.6 (b) - โ‘ก is shown in Figure 2.7 as

Figure 2.7 The flow pattern of plasma in

โ‘ 

โ‘ก

โ‘ข

โ‘ฃ ๐œ‰ = ๐œ‰0cos(๐œƒ โˆ’ ๐œ™)

โ‘  โ‘ก

โ‘ข โ‘ฃ

๐‘ฃ1 ๐›ฟ ๐‘ฃ2

๐‘ฃ2

The velocity, ๐‘ฃ1, is the hot core velocity and the velocity, ๐‘ฃ2, is the plasma velocity which comes from the narrow layer. The thickness, ๐›ฟ, is the thickness of the narrow resistive layer.

The helical magnetic field line is

๐ตโˆ—= ๐ต๐œƒโˆ’ (๐‘Ÿ/๐‘…)๐ต๐œ™= ๐ต๐œƒ(1 โˆ’ ๐‘ž) (2.93) and current, ๐‘— comes from the electric field as equivalent to

๐‘— ~ ๐œŽ๐‘ฃ1๐ตโˆ—=๐‘ฃ1๐ตโˆ—

๐œ‚ . (2.94)

From Ampereโ€™s law,

๐‘—~๐ตโˆ—/๐œ‡0๐›ฟ. (2.95)

Combining Eq. (2.94) and Eq. (2.95), ๐‘ฃ1 is expressed as ๐‘ฃ1= ๐œ‚

๐œ‡0๐›ฟ. (2.96)

The magnetic pressure is equivalent to plasma pressure by ๐‘ฃ2 as ๐ตโˆ—2

2๐œ‡0

~ 1

2๐œŒ๐‘ฃ22+1

2๐œŒ๐‘ฃ22= ๐œŒ๐‘ฃ22. Then, the velocity ๐‘ฃ2 is

๐‘ฃ2~ ๐ตโˆ—

โˆš2๐œŒ๐œ‡0

. (2.97)

From continuity equation

๐‘ฃ1๐‘Ÿ1~๐‘ฃ2๐›ฟ, then

๐›ฟ ~ ๐‘ฃ1๐‘Ÿ1

๐‘ฃ2 =๐œ‚๐‘Ÿ1โˆš2๐œŒ๐œ‡0

๐ตโˆ—๐œ‡0๐›ฟ . or

where

๐œ๐‘…=๐œ‡0

๐œ‚ ๐‘Ÿ12, (2.99)

๐œ๐ด= ๐‘Ÿ1 ๐ตโˆ—/โˆš๐œŒ๐œ‡0

. (2.100)

The collapse time is given by

๐œ๐พ ~ ๐‘Ÿ1

๐‘ฃ1. (2.101)

โ€˜

Substituting (2.95) into (2.98), the collapse time is calculated as ๐œ๐พ ~ ๐›ฟ2

(๐œ๐ด/๐œ๐‘…)1/2 ๐œ‡0

๐œ‚ ~ (๐œ๐‘…/๐œ๐ด)1/2(๐œ๐ด ๐œ๐‘…)๐œ‡0

๐œ‚ ๐‘Ÿ12 = (๐œ๐ด/๐œ๐‘…)1/2๐œ๐‘…= (๐œ๐ด๐œ๐‘…)1/2 Finally, the collapse time in Kadomtsevโ€™s model is

๐œ๐พ ~ (๐œ๐ด๐œ๐‘…)1/2. (2.102)

The whole process of sawtooth oscillation in Kadomtsevโ€™s model is shown in Figure 2.9. Initially, ๐‘ž > 1 everywhere as in Figure 2.9 (a). As the temperature at the core increases, ๐‘ž = 1 surface appears and, instability occurs as in Figure 2.9 (b). The core starts to move by internal kink, and a new magnetic island appears on the other side, resulting in two apparent islands. One magnetic island by internal kink has ๐‘ž < 1 whereas the magnetic island on the other side has ๐‘ž > 1 . Then, magnetic reconnection occurs at the narrow resistive layer near ๐‘ž = 1 surface as in Figure 2.9 (c). One magnetic island which has ๐‘ž < 1 is annihilated by magnetic reconnection whereas the new magnetic island which has ๐‘ž > 1 is expanded. After the old magnetic island is annihilated completely, it returns to the initial state as ๐‘ž >

1 everywhere as in Figure 2.9 (d). Then the periodic behavior is repeated, starting from the state illustrated in Figure 2.9 (a). This is the theoretical review of Kadomtsevโ€™s model to observe fast crash by magnetic reconnection.

Figure 2.8 The whole process of sawtooth oscillation in Kadomtsevโ€™s model [31].

(a) ๐‘ž > 1 everywhere

(d) ๐‘ž > 1 everywhere (b) Internal kink

๐‘ž < 1

New magnetic island

Core starts to move Two island systems

๐‘ž < 1 ๐‘ž > 1

(c) Magnetic reconnection

Magnetic reconnection

2.3.3 Wessonโ€™s model

Wessonโ€™s model tries to explain the inconsistencies of Kadomtsevโ€™s model. There are a few discrepancies in Kadomtsevโ€™s model when compared to the experimental observations. One discrepancy is the crash time. The collapse times of several types of tokamak, using Kadomtsevโ€™ model, were calculated as in Table 2.3 with ๐‘‡ = 1 keV, ๐‘› = 2ร—1020mโˆ’3 , and ๐‘ž0 ~ 0.9 . The detailed calculation process is in Appendix C.2. According to Table 2.1, Kadomtsevโ€™ collapse time is ๐œ๐พ โˆ ๐‘Ÿ1/โˆš๐ต๐œ™, and ๐œ๐พ ~ 2ร—10โˆ’4-3ร—10โˆ’3s. But the actual tokamaks have always ๐œ๐พ ~ 10โˆ’4 s and does not depend on the tokamak geometry [32].

To explain this inconsistency, Wesson assumed a flat ๐‘ž-profile inside the ๐‘ž = 1 surface. By taking ๐‘ž โ†’ 1 to Eq. (2.91),

๐›ฟ๐‘Š โ†’2๐œ‹2

๐‘…0 โˆซ {2๐‘Ÿ๐‘โ€ฒโˆ’๐ต๐œƒ2

๐œ‡0 (1 โˆ’ ๐‘ž)(1 + 3๐‘ž)} ๐œ‰2๐‘Ÿ๐‘‘๐‘Ÿ

๐‘Ž 0

(2.103) and the corresponding displacement distribution [18] is illustrated in Figure 2.10.

Kadomtsevโ€™s collapse time calculation is not applicable for the ๐‘ž โ†’ 1 case, since ๐œ๐พ becomes infinite. So, Wesson introduced a new model [18]. In this model, there is no magnetic shear stress inside the ๐‘ž = 1 surface, because of the magnetic shear stress, given in Eq. (2.103) [12],

๐‘  =๐‘Ÿ ๐‘ž

d๐‘ž

d๐‘Ÿ (2.103)

goes to zero as ๐‘ž goes to 1. Due to the absence of magnetic shear, the magnetic surface deforms into a crescent shape, and cold plasma comes into the core as shown in Figure 2.10 [14, 33]. This flow pattern is called โ€˜hot crescent, cold bubbleโ€™. The magnetic reconnection takes place during the ramp phase and not in the fast collapse phase [18].

Table 2.3 Calculated Kadomtsevโ€™s collapse time according to several tokamaks [34-39].

Tokamak

Major radius [m]

Toroidal Magnetic

field [T]

q=1 surface radius [m]

Resistive diffusion time [s]

Alfven time [s]

Kadomtsev's collapse

time [s]

DIII-D 1.67 2.2 0.1

(estimated) 2.26ร—10โˆ’1 4.91ร—10โˆ’6 1.05ร—10โˆ’3

JET 2.96 3.45 0.2 9.05ร—10โˆ’1 5.54ร—10โˆ’6 2.24ร—10โˆ’3

ADITYA 0.75 1.2 0.03

(estimated) 2.04ร—10โˆ’2 4.04ร—10โˆ’6 2.87ร—10โˆ’4

ASDEX 1.65 3.1 0.1

(estimated) 2.26ร—10โˆ’1 3.44ร—10โˆ’6 8.82ร—10โˆ’4

TCV 0.88 1.43 0.03

(estimated) 2.04ร—10โˆ’2 3.98ร—10โˆ’6 2.85ร—10โˆ’4

WEST 2.25 4.5 0.1

(estimated) 2.26ร—10โˆ’1 3.23ร—10โˆ’6 8.55ร—10โˆ’4

COMPASS 0.56 0.9 ~ 2.1 0.03

(estimated) 2.04ร—10โˆ’2 2.41ร—10โˆ’7 2.22ร—10โˆ’4

NSTX-U 0.85 1 0.1

(estimated) 2.26ร—10โˆ’1 5.49ร—10โˆ’6 1.11ร—10โˆ’3

TEXTOR 1.75 3 0.09ยฑ0.01 1.83ร—10โˆ’1 3.77ร—10โˆ’6 8.31ร—10โˆ’4

SST-1 1.1 3 0.04

(estimated) 3.62ร—10โˆ’2 2.36ร—10โˆ’7 2.93ร—10โˆ’3

EAST 1.75 3.5 0.05~0.09 1.11ร—10โˆ’1 3.23ร—10โˆ’6 5.98ร—10โˆ’4

KSTAR 1.8 3.5 0.1 2.26ร—10โˆ’1 3.32ร—10โˆ’6 8.67ร—10โˆ’4

T-15U 2.43 3.5 0.15

(estimated) 5.09ร—10โˆ’1 4.49ร—10โˆ’6 1.51ร—10โˆ’3 0.2

Figure 2.9 The displacement distribution, ๐œ‰(๐‘Ÿ), based on Wessonโ€™s model [18].

Figure 2.10 The flow pattern of plasma in Wessonโ€™s model. The red region is hot region, and the blue

๐‘ž = 1 surface

๐‘Ÿ ๐œ‰

๐‘Ÿ1 ๐œ‰0

๐œ‰ = 0 as ๐‘Ÿ > ๐‘Ÿ1

2.3.4 Comparison of the two models

This concludes the theoretical review of sawtooth instability. Summarizing section 2.3.2 and section 2.3.3, a comparison of Kadomtsevโ€™s model and Wessonโ€™s model is shown in Table 2.4.

Table 2.4 Comparison between Kadomtsevโ€™s model and Wessonโ€™s model.

Kadomtsevโ€™s model Wessonโ€™s model

Model Fast reconnection model Quasi-interchange model

Safety factor,

๐‘ž 1 โˆ’ ๐‘ž > ๐œ€ 1 โˆ’ ๐‘ž โ‰ช ๐œ€

To diminish ๐›ฟ๐‘Š2 term

d๐œ‰

d๐‘Ÿโ†’ 0 except ๐‘ž = 1 surface ๐‘ž โ†’ 1 inside ๐‘ž = 1 surface Approximated

๐›ฟ๐‘Š

2๐œ‹2๐œ‰02

๐‘…0 โˆซ {2๐‘Ÿ๐‘โ€ฒโˆ’๐ต๐œƒ2

๐œ‡0 (1 โˆ’ ๐‘ž)(1 +

๐‘Ž 0

3๐‘ž)} ๐‘Ÿ๐‘‘๐‘Ÿ

2๐œ‹2

๐‘…0 โˆซ {2๐‘Ÿ๐‘โ€ฒโˆ’๐ต๐œƒ2

๐œ‡0 (1 โˆ’ ๐‘ž)(1 +

๐‘Ž 0

3๐‘ž)} ๐œ‰2๐‘Ÿ๐‘‘๐‘Ÿ Flow structure Hot bubble, cold crescent Hot crescent, cold bubble

Magnetic

reconnection Occurs at fast collapse phase Occurs at ramp phase

III. Experimental Methods

The ECEI system is a diagnostic system that visualizes electron temperature fluctuation in 2-D/3-D spaces of tokamak plasmas. The ECEI system operates based on the principle of ECE (Electron Cyclotron Emission). First, the physical principle of ECE will be reviewed. Then, the ECEI (Electron Cyclotron Emission Imaging) system in KSTAR will be reviewed. Finally, the experimental set up for the measurement of sawtooth instability will be described.

3.1 ECE and KSTAR ECEI System

In tokamak, it is impossible to measure the plasma electron temperature with commercial thermometers, because the plasma electron temperature is too high to be measured. Instead of a thermometer, an ECE (electron cyclotron emission) radiometer or ECE imaging system can be used to measure electron temperature by measuring radiation intensity emitted from gyrating electrons.

3.1.1 Physical principle of ECE

The electron is gyrating around a magnetic field in tokamak as shown in Figure 3.1. The cyclotron radiation is emitted from gyrating electrons.

Magnetic field line Trace of electron

In this picture, the equation of motion is ๐‘š๐‘‘๐ฏ

๐‘‘๐‘ก = ๐‘ž๐ฏร—๐ (3.1)

and the solution of the equation is simple harmonic motion. The angular velocity of the solution is ๐œ” = ๐‘’๐ต

๐‘š๐‘’

. (3.2)

where ๐‘š๐‘’ is the mass of the electron, and ๐ต is the magnitude of magnetic field [20].

In this gyration motion, the radioactive transfer equation is given as ๐‘‘๐ผ๐œˆ

๐‘‘๐‘  = ๐‘—๐œˆโˆ’ ๐›ผ๐ผ๐‘ฃ. (3.3)

where ๐ผ๐œˆ is the intensity of radiation, ๐‘  is the radiation traveling distance, ๐‘—๐œˆ is the emission coefficient, and ๐›ผ is the absorption coefficient [40]. The optical depth, ๐œ, is defined as

๐œ = โˆซ ๐›ผ๐‘‘๐‘ 

๐‘ 

. (3.4)

If the radiation travel from 0 to ๐œ, the solution for the equation is given as ๐ผ๐œˆ(๐œ) = ๐ผ๐œˆ(0)๐‘’โˆ’๐œ+๐‘—๐œˆ(๐œ)

๐›ผ (1 โˆ’ ๐‘’โˆ’๐œ) =๐‘—๐œˆ(๐œ)

๐›ผ + {๐ผ๐œˆ(0) โˆ’๐‘—๐œˆ(๐œ)

๐›ผ } ๐‘’โˆ’๐œ. (3.5)

When the optical depth is thick enough, the radiation density is approximated as ๐ผ๐œˆ(๐œ) = ๐‘—๐œˆ/๐›ผ [41].

This means all radiation is absorbed. In this case, the plasma can be regarded as a blackbody, so it follows Rayleigh-Jeanโ€™s law as

๐ผ๐œˆ= 2โ„Ž๐œˆ3/๐‘2

๐‘’โ„Ž๐œˆ/๐‘˜๐ต๐‘‡๐‘’โˆ’ 1. (3.6)

where โ„Ž is the Planck constant and ๐‘‡๐‘’ is the electron temperature [42, 43]. With low frequency approximation, โ„Ž๐œˆ โ‰ช ๐‘‡๐‘’, Eq. (3.6) approximated as

๐ผ๐œˆ =2โ„Ž๐œˆ2๐‘˜๐ต๐‘‡๐‘’

๐‘2 . (3.7)

Finally, for thick optical depths, the electron temperature is obtained as ๐‘‡๐‘’=2๐œ‹2๐‘2๐ผ๐œ”

โ„Ž๐œ”2๐‘˜๐ต =2๐œ‹2๐‘2๐‘š2๐ผ๐œ”

โ„Ž๐‘’2๐ต2๐‘˜๐ต . (3.9)

This shows that the electron temperature, ๐‘‡๐‘’, is proportional to radiation intensity, ๐ผ๐œ”, for thick optics. In order to satisfy this characteristic, the plasma should be optically thick.

3.1.2 KSTAR ECEI System

The KSTAR ECEI system is used to visualize MHD instability in 3D by measuring relative electron temperature, ๐›ฟ๐‘‡๐‘’/โŒฉ๐‘‡๐‘’โŒช, where ๐›ฟ๐‘‡๐‘’= ๐‘‡๐‘’โˆ’ โŒฉ๐‘‡๐‘’โŒช, and โŒฉ๐‘‡๐‘’โŒช is the time averaged temperature.

In KSTAR, there are 3 detector arrays for ECEI measurement. Two of them are placed in H-port and another is placed in G-port as shown in Figure 3.2. The angle difference of G-port and H-port is 22.5ยฐ toroidally. Each of the two detector arrays in G-port is placed on HFS (High Field Side, ๐‘… < ๐‘…0) and LFS (Low Field Side, ๐‘… > ๐‘…0 ) as shown in Figure 3.2. The magnetic field, ๐ต can be approximated by ๐ต๐œ™ (โˆต ๐ต = โˆš๐ต๐œƒ2+ ๐ต๐œ™2 and ๐ต๐œ™ โ‰ซ ๐ต๐œƒ ), and according to Eq. (2.12), ๐ต๐œ™ is proportional to 1/๐‘…. Thus, ๐ต ~ 1/๐‘….

Each detector array has 24 vertical and 8 radial detection channels. In other words, each detector has 192 detection channels, and at H-port, there are 384 channels and at G-port, there are 192 channels, so in total, there are 576 channels on the ECEI system. The vertical and radial resolution is ~1.5 cm per channel and the time resolution is 0.5, 1, 2 ๐œ‡s [44].

Figure 3.2 The schematics of the ECEI system. The first system is in H-port, and the second system is in G-port [45].

3.2 Experimental Set-up

The major and minor radii of KSTAR is shown in Table 3.1. These parameters are constant in every experiment.

Table 3.1 Parameters of KSTAR [32]

Radius

Major radius ๐‘…0= 1.8 m

Minor radius ๐‘Ž = 0.5 m

The intrinsic rotation experiment # 11264 is used to observe the sawtooth oscillation in 3D with the KSTAR ECEI system. The experimental set-up is shown in Table 3.2. In the next chapter, the experimental results will be shown and discussed by the results. Then, the results will be compared with the theoretical models.

Table 3.2 Experiment set-up for # 11264 Set-up

Measurement duration ๐‘ก = 0 ~ 10.5 s

Observed time ๐‘ก = 3.5 ~ 4.5 s

Time resolution โˆ†๐‘ก = 2 ๐œ‡s

Mode H-mode

Average density of electron โŒฉ๐‘›๐‘’โŒช = 1.8ร—1019mโˆ’3 Average density of electron at the core โŒฉ๐‘›๐‘’0โŒช = 3ร—103mโˆ’3

Average electron temperature โŒฉ๐‘‡๐‘’0โŒช = 1.5 ~ 2.7 keV Average electron temperature at the core โŒฉ๐‘‡๐‘’0โŒช = 2.5 keV

Sampling frequency ๐‘“๐‘ = 500 kHz

Harmonic extraordinary mode

Total plasma current ๐ผ๐‘= 600 kA

Total driven current ๐ผ๐‘ก = 20 kA

Heating power 0.765 MW

Elongation ๐œ… = 1.8

Safety factor at ๐‘Ÿ = 0.95๐‘Ž ๐‘ž95โ‰ˆ 5 Radial (๐‘…) position /

Vertical size / Zoom factor

HFS, H-port 180 m - 190 m / 40 cm / 1.3 G-port 190 m - 200 m / 50 cm / 1.6 LFS, H-port 205 m - 215 m / 40 cm / 1.3

Vertical position 0.02 ~ 0.04 m

Toroidal magnetic field ๐ต๐‘ก = 3.5 T Radial spatial resolution โˆ†๐‘… = 1 cm Vertical spatial resolution โˆ†๐‘ง = 2 cm

Triangularity ๐›ฟ = 0.8

Poloidal beta ๐›ฝ๐‘= 0.4

Rotation speed ๐‘ฃ๐œ™ = 110 km/s

IV. Results & Discussion

4.1 Experimental results

4.1.1 Observation of periodic behavior

The relative temperature fluctuation was observed in 10.5 s intervals. Within this time interval, 3.4 - 4.6 s was selected as shown in Figure 4.1. The results show the time traces of the ratio of electron temperature fluctuation to average temperature, observed through two detection channels from the ECEI system.

(a) (b)

The observed sawtooth period, theoretically calculated Kadomtsevโ€™s collapse time, and the observed collapse time, are shown in Table 4.2.

Table 4.1 Sawtooth period, and collapse times.

Times Symbol Result

Sawtooth period (observed) ๐œsawtooth 28.2 ms Kadomtsevโ€™s collapse time

(calculated) ๐œ๐พ 867 ๐œ‡s

Collapse time (observed) ๐œ๐‘ 150 ๐œ‡s

According to the results, the observed collapse time is very short compared to the sawtooth period, i.e., ๐œ๐‘/๐œsawtooth ~ 10โˆ’2. That is why this phenomenon is called fast collapse.

The whole periodic behavior of at the central region (observed in high field side of H-port) and the outer region (observed in G-port) is shown in Figure 4.2. Also, the corresponding three phases are shown in Table 4.2.

(a)

Figure 4.2 1-D time trace of ๐›ฟ๐‘‡๐‘’/โŒฉ๐‘‡๐‘’โŒช in one period (a) at the central region (b) at the outer region.

Table 4.2 The time lengths of the three phases in Figure 4.2.

Times Time interval (s) Duration Ramp phase 3.52482 ~ 3.54982 25 ms

Precursor phase 3.54982 ~ 3.55287 3.05 ms

Fast collapse phase 3.55287 ~ 3.55302 150 ๐œ‡s

The ECE images of periodic behavior are shown in Figure 4.3. The observation time is from 3.52488 s to 3.55308 s. Initially, as shown in Figure 4.3 (a), the core is relatively cold and it is stable. The temperature of the core increases over time in Figure 4.3 (a) โ€“ Figure 4.3 (f). Then, the new magnetic island is growing in Figure 4.3 (g) โ€“ Figure 4.3 (k). A new magnetic island was first distinctly observed as shown in Figure 4.3 (i). The old magnetic island and new magnetic island were observed alternately, as plasma was noticed to be rotating. Finally, between Figure 4.3 (g) โ€“ Figure 4.3 (k), the crash occurred.

After the crash occurred, the heat of the core spread to the outer region. The plasma returned to its initial conditions as shown in Figure 4.3 (l). This behavior of relative electron temperature fluctuation occurs repeatedly.

The stable ramp phase is shown in Figure 4.3 (b) โ€“ Figure 4.3 (f); the precursor phase is shown in Figure 4.3 (g) โ€“ Figure 4.3 (j); and the fast collapse phase is shown in Figure 4.3 (k) โ€“ Figure 4.3 (l). In the ramp phase, the core is heating. In the precursor phase, the temperature reached critical temperature, and the hot core started to move by internal kink. On the other side of the hot core plasma, a new magnetic island appeared, and a new magnetic island grew. The old magnetic island disappeared suddenly, and the electron temperature fluctuation distribution returned to initial sate, which is the first state of the stable ramp phase. This demonstrated that the experiment resembles Kadomtsevโ€™s model more than Wessonโ€™s model, which was described in section 2.3.2.

Dokumen terkait