• Tidak ada hasil yang ditemukan

33

34

is high population density than an industrial area. For NPAHs, high risk was identified especially in non-ferrous metal industrial complexes suggesting that NPAHs having toxic coefficients were emitted in non-ferrous metal industrial complexes.

In this study, the seasonal and spatial variation were confirmed to identify the level of target compounds (PAHs, OPAHs, and NPAHs) and their potential emission sources using PAS-PUF in Ulsan, which is large industrial area. These results can be used as basic data for domestic NOPAHs research in the future. However, long-term monitoring is required to clearly identify the emission source of contamination. Since PAS-PUF mainly collects gas phases, there are limitations in using diagnostic ratio and identification of long-range transport. To solve these limitations, it is necessary to predict the particulate concentration with gas-particle partitioning and correct the concentration.

Further studies on particulate NOPAH using an active air sampler are also necessary to clearly identify gas-particle distribution on NOPAHs in Korea.

35

Reference

Albinet, A., Leoz-Garziandia, E., Budzinski, H., & Viilenave, E. (2006). Simultaneous analysis of oxygenated and nitrated polycyclic aromatic hydrocarbons on standard reference material 1649a (urban dust) and on natural ambient air samples by gas chromatography-mass spectrometry with negative ion chemical ionisation. J Chromatogr A, 1121(1), 106-113. https://doi.org/10.1016/j.chroma.2006.04.043 Albinet, A., Leoz-Garziandia, E., Budzinski, H., & Viilenave, E. (2007). Polycyclic aromatic

hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air of the Marseilles area (South of France): concentrations and sources. Sci Total Environ, 384(1-3), 280-292. https://doi.org/10.1016/j.scitotenv.2007.04.028

Albinet, A., Leoz-Garziandia, E., Budzinski, H., Villenave, E., & Jaffrezo, J. L. (2008).

Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleysPart 1: Concentrations, sources and gas/particle partitioning. Atmospheric Environment, 42(1), 43-54.

https://doi.org/10.1016/j.atmosenv.2007.10.009

Alves, C., Vicente, A., Gomes, J., Nunes, T., Duarte, M., & Bandowe, B. (2016). Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (oxygenated-PAHs, nitrated- PAHs and azaarenes) in size-fractionated particles emitted in an urban road tunnel.

Atmospheric research, 180, 128-137.

Arey, J., Zielinska, B., Atkinson, R., Winer, A. M., Ramdahl, T., & Pitts Jr, J. N. (1986). The formation of nitro-PAH from the gas-phase reactions of fluoranthene and pyrene with the OH radical in the presence of NOx. Atmospheric Environment (1967), 20(12), 2339-2345.

Awonaike, B., Lei, Y. D., Parajulee, A., Mitchell, C. P., & Wania, F. (2021). Polycyclic aromatic hydrocarbons and quinones in urban and rural stormwater runoff: effects of land use and storm characteristics. ACS ES&T Water, 1(5), 1209-1219.

Bamford, H. A., & Baker, J. E. (2003). Nitro-polycyclic aromatic hydrocarbon concentrations and sources in urban and suburban atmospheres of the Mid-Atlantic region.

Atmospheric Environment, 37(15), 2077-2091.

Chiu, C., & Miles, W. (1996). An improved method for nitro-PAH analysis. Polycyclic Aromatic Compounds, 9(1-4), 307-314.

Choi, S.-D., Kwon, H.-O., Lee, Y.-S., Park, E.-J., & Oh, J.-Y. (2012). Improving the spatial resolution of atmospheric polycyclic aromatic hydrocarbons using passive air samplers in a multi-industrial city. Journal of hazardous materials, 241, 252-258.

Choi, S. D. (2014). Time trends in the levels and patterns of polycyclic aromatic hydrocarbons (PAHs) in pine bark, litter, and soil after a forest fire. Sci Total Environ, 470-471, 1441-1449. https://doi.org/10.1016/j.scitotenv.2013.07.100

ChooChuay, C., Pongpiachan, S., Tipmanee, D., Suttinun, O., Deelaman, W., Wang, Q., Xing, L., Li, G., Han, Y., & Palakun, J. (2020). Impacts of PM2. 5 sources on variations in particulate chemical compounds in ambient air of Bangkok, Thailand. Atmospheric Pollution Research, 11(9), 1657-1667.

Chuesaard, T., Chetiyanukornkul, T., Kameda, T., Hayakawa, K., & Toriba, A. (2014).

Influence of biomass burning on the levels of atmospheric polycyclic aromatic

hydrocarbons and their nitro derivatives in Chiang Mai, Thailand. Aerosol and Air

Quality Research, 14(4), 1247-1257.

36

Delgado-Saborit, J. M., Alam, M. S., Pollitt, K. J. G., Stark, C., & Harrison, R. M. (2013).

Analysis of atmospheric concentrations of quinones and polycyclic aromatic hydrocarbons in vapour and particulate phases. Atmospheric Environment, 77, 974- 982.

Fewtrell, L., & Bartram, J. (2001). Water quality: guidelines, standards & health. IWA publishing.

Fox, M. A., & Olive, S. (1979). Photooxidation of anthracene on atmospheric particulate matter. Science, 205(4406), 582-583.

Galmiche, M., Delhomme, O., François, Y.-N., & Millet, M. (2021). Environmental analysis of polar and non-polar polycyclic aromatic compounds in airborne particulate matter, settled dust and soot: part II: instrumental analysis and occurrence. TrAC Trends in Analytical Chemistry, 134, 116146.

Guo, J., Wu, F., Luo, X., Liang, Z., Liao, H., Zhang, R., Li, W., Zhao, X., Chen, S., & Mai, B.

(2010). Anthropogenic input of polycyclic aromatic hydrocarbons into five lakes in Western China. Environmental Pollution, 158(6), 2175-2180.

Hao, X., Zhang, X., Cao, X., Shen, X., Shi, J., & Yao, Z. (2018). Characterization and carcinogenic risk assessment of polycyclic aromatic and nitro-polycyclic aromatic hydrocarbons in exhaust emission from gasoline passenger cars using on-road measurements in Beijing, China. Science of the Total Environment, 645, 347-355.

Harner, T., Su, K., Genualdi, S., Karpowicz, J., Ahrens, L., Mihele, C., Schuster, J., Charland, J.-P., & Narayan, J. (2013). Calibration and application of PUF disk passive air samplers for tracking polycyclic aromatic compounds (PACs). Atmospheric Environment, 75, 123-128.

Herkert, N. J., Martinez, A., & Hornbuckle, K. C. (2016). A model using local weather data to determine the effective sampling volume for PCB congeners collected on passive air samplers. Environmental Science & Technology, 50(13), 6690-6697.

Herkert, N. J., Spak, S. N., Smith, A., Schuster, J. K., Harner, T., Martinez, A., & Hornbuckle, K. C. (2018). Calibration and evaluation of PUF-PAS sampling rates across the Global Atmospheric Passive Sampling (GAPS) network. Environmental Science:

Processes & Impacts, 20(1), 210-219.

Huang, B., Liu, M., Bi, X., Chaemfa, C., Ren, Z., Wang, X., Sheng, G., & Fu, J. (2014).

Phase distribution, sources and risk assessment of PAHs, NPAHs and OPAHs in a rural site of Pearl River Delta region, China. Atmospheric Pollution Research, 5(2), 210-218.

IARC. (2004). IARC monographs on the evaluation of carcinogenic risks to humans. IARC, Lyon, 1, 1-1452.

IARC. (2010). IARC monographs on the evaluation of carcinogenic risks to humans.

Ingested nitrate and nitrite, and cyanobacterial peptide toxins. IARC monographs on the evaluation of carcinogenic risks to humans, 94, v.

IARC. (2012). Chemical agents and related occupations. IARC monographs on the evaluation of carcinogenic risks to humans, 100(PT F), 9.

IARC. (2014). DIESEL AND GASOLINE ENGINE EXHAUSTS AND SOME NITROARENES. IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS. IARC monographs on the evaluation of carcinogenic risks to humans, 105, 9.

Jariyasopit, N., Harner, T., Wu, D., Williams, A., Halappanavar, S., & Su, K. (2016).

Mapping Indicators of Toxicity for Polycyclic Aromatic Compounds in the

37

Atmosphere of the Athabasca Oil Sands Region. Environ Sci Technol, 50(20), 11282- 11291. https://doi.org/10.1021/acs.est.6b02058

Jariyasopit, N., Tung, P., Su, K., Halappanavar, S., Evans, G. J., Su, Y., Khoomrung, S., &

Harner, T. (2019). Polycyclic aromatic compounds in urban air and associated inhalation cancer risks: a case study targeting distinct source sectors. Environmental Pollution, 252, 1882-1891.

Jariyasopit, N., Zhang, Y., Martin, J. W., & Harner, T. (2018). Comparison of polycyclic aromatic compounds in air measured by conventional passive air samplers and passive dry deposition samplers and contributions from petcoke and oil sands ore.

Atmospheric Chemistry and Physics, 18(12), 9161-9171.

https://doi.org/10.5194/acp- 18-9161-2018

Kalisa, E., Nagato, E., Bizuru, E., Lee, K., Tang, N., Pointing, S., Hayakawa, K., Archer, S.,

& Lacap-Bugler, D. (2019). Pollution characteristics and risk assessment of ambient PM2. 5-bound PAHs and NPAHs in typical Japanese and New Zealand cities and rural sites. Atmospheric Pollution Research, 10(5), 1396-1403.

Kojima, Y., Inazu, K., Hisamatsu, Y., Okochi, H., Baba, T., & Nagoya, T. (2010). Influence of secondary formation on atmospheric occurrences of oxygenated polycyclic aromatic hydrocarbons in airborne particles. Atmospheric Environment, 44(24), 2873- 2880.

Lee, H. H., Choi, N. R., Lim, H. B., Yi, S. M., Kim, Y. P., & Lee, J. Y. (2018).

Characteristics of oxygenated PAHs in PM10 at Seoul, Korea. Atmospheric Pollution Research, 9(1), 112-118.

Lee, J., & Kim, Y. (2007). Source apportionment of the particulate PAHs at Seoul, Korea:

impact of long range transport to a megacity. Atmospheric Chemistry and Physics, 7(13), 3587-3596.

Lee, J. Y., Ji Hyung Hong, Chang Hoon Jung, & Yong Pyo Kim. (2013). Measurement and Control of Hazardous PAHs Reaction Products [Measurement and Control of Hazardous PAHs Reaction Products]. PARTICLE AND AEROSOL RESEARCH, 9(2), 111-125. http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE08972990 Leotz-Gartziandia, E., Tatry, V., & Carlier, P. (2000). Sampling and analysis of polycyclic

aromatic hydrocarbons (PAH) and oxygenated PAH in diesel exhaust and ambient air.

Polycyclic Aromatic Compounds, 20(1-4), 245-258.

Li, X., Zheng, Y., Guan, C., Cheung, C. S., & Huang, Z. (2018). Effect of biodiesel on PAH, OPAH, and NPAH emissions from a direct injection diesel engine. Environmental Science and Pollution Research, 25(34), 34131-34138.

Lin, Y., Qiu, X., Ma, Y., Ma, J., Zheng, M., & Shao, M. (2015). Concentrations and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in the atmosphere of North China, and the transformation from PAHs to NPAHs.

Environ Pollut, 196, 164-170. https://doi.org/10.1016/j.envpol.2014.10.005

Liu, D., Lin, T., Syed, J. H., Cheng, Z., Xu, Y., Li, K., Zhang, G., & Li, J. (2017).

Concentration, source identification, and exposure risk assessment of PM2. 5-bound parent PAHs and nitro-PAHs in atmosphere from typical Chinese cities. Scientific reports, 7(1), 1-12.

Lixin, Li, B., Liu, Y., Sun, X., Fu, D., Sun, S., Thapa, S., Geng, J., Qi, H., & Zhang, A.

(2020). Characterization, sources and risk assessment of PM2. 5-bound polycyclic

aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in Harbin, a cold city in

Northern China. Journal of Cleaner Production, 264, 121673.

38

Ma, W.-L., Li, Y.-F., Qi, H., Sun, D.-Z., Liu, L.-Y., & Wang, D.-G. (2010). Seasonal variations of sources of polycyclic aromatic hydrocarbons (PAHs) to a northeastern urban city, China. Chemosphere, 79(4), 441-447.

Masih, J., Singhvi, R., Taneja, A., Kumar, K., & Masih, H. (2012). Gaseous/particulate bound polycyclic aromatic hydrocarbons (PAHs), seasonal variation in North central part of rural India. Sustainable Cities and Society, 3, 30-36.

Nguyen, T. N. T., Kwon, H.-O., Lammel, G., Jung, K.-S., Lee, S.-J., & Choi, S.-D. (2020).

Spatially high-resolved monitoring and risk assessment of polycyclic aromatic hydrocarbons in an industrial city. Journal of hazardous materials, 393, 122409.

Nielsen, T., Seitz, B., & Ramdahl, T. (1984). Occurrence of nitro-PAH in the atmosphere in a rural area. Atmospheric Environment (1967), 18(10), 2159-2165.

Nocun, M. S., & Schantz, M. M. (2013). Determination of selected oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) in diesel and air particulate matter standard reference materials (SRMs). Analytical and bioanalytical chemistry, 405(16), 5583- 5593.

OEHHA, B. (1994). pyrene as a Toxic Air Contaminant. Part B. Health Assessment, Air Resources Board and Office of Environmental Health Hazard Assessment, California Environmental Protection Agency.

Paputa-Peck, M., Marano, R., Schuetzle, D., Riley, T., Hampton, C., Prater, T., Skewes, L., Jensen, T., & Ruehle, P. (1983). Determination of nitrated polynuclear aromatic hydrocarbons in particulate extracts by using capillary column gas chromatography with nitrogen selective detection. Analytical Chemistry, 55(12), 1946-1954.

Park, J.-M., Lee, S.-B., Kim, M.-J., Kim, J.-C., & Lee, S.-J. (2010). Analysis of PAHs and Nitro-PAHs in stationary emissions. Proceedings of the Korea Air Pollution Research Association Conference,

Pedersen, D. U., Durant, J. L., Taghizadeh, K., Hemond, H. F., Lafleur, A. L., & Cass, G. R.

(2005). Human cell mutagens in respirable airborne particles from the northeastern United States. 2. Quantification of mutagens and other organic compounds.

Environmental Science & Technology, 39(24), 9547-9560.

Percy, K. E., & Foster, K. R. (2011). Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution Sampling System during March, 2011.

Pitts Jr, J. N., Van Cauwenberghe, K. A., Grosjean, D., Schmid, J. P., Fitz, D. R., Belser Jr, W. L., Knudson, G. B., & Hynds, P. M. (1978). Atmospheric reactions of polycyclic aromatic hydrocarbons: facile formation of mutagenic nitro derivatives. Science, 202(4367), 515-519.

Qiao, M., Wang, C., Huang, S., Wang, D., & Wang, Z. (2006). Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China. Environment international, 32(1), 28-33.

Ringuet, J., Albinet, A., Leoz-Garziandia, E., Budzinski, H., & Villenave, E. (2012).

Diurnal/nocturnal concentrations and sources of particulate-bound PAHs, OPAHs and NPAHs at traffic and suburban sites in the region of Paris (France). Sci Total Environ, 437, 297-305. https://doi.org/10.1016/j.scitotenv.2012.07.072

Ringuet, J., Leoz-Garziandia, E., Budzinski, H., Villenave, E., & Albinet, A. (2012). Particle size distribution of nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) on traffic and suburban sites of a European megacity: Paris (France). Atmospheric Chemistry and Physics, 12(18), 8877-8887.

https://doi.org/10.5194/acp-12-8877-2012

39

Sasaki, J., Aschmann, S. M., Kwok, E. S., Atkinson, R., & Arey, J. (1997). Products of the gas-phase OH and NO3 radical-initiated reactions of naphthalene. Environmental Science & Technology, 31(11), 3173-3179.

Shen, G., Tao, S., Wei, S., Chen, Y., Zhang, Y., Shen, H., Huang, Y., Zhu, D., Yuan, C., Wang, H., Wang, Y., Pei, L., Liao, Y., Duan, Y., Wang, B., Wang, R., Lv, Y., Li, W., Wang, X., & Zheng, X. (2013). Field measurement of emission factors of PM, EC, OC, parent, nitro-, and oxy- polycyclic aromatic hydrocarbons for residential briquette, coal cake, and wood in rural Shanxi, China. Environ Sci Technol, 47(6), 2998-3005. https://doi.org/10.1021/es304599g

Shen, G., Tao, S., Wei, S., Zhang, Y., Wang, R., Wang, B., Li, W., Shen, H., Huang, Y., Chen, Y., Chen, H., Yang, Y., Wang, W., Wang, X., Liu, W., & Simonich, S. L.

(2012). Emissions of parent, nitro, and oxygenated polycyclic aromatic hydrocarbons from residential wood combustion in rural China. Environ Sci Technol, 46(15), 8123- 8130. https://doi.org/10.1021/es301146v

Shin, S. M., Lee, J. Y., Shin, H. J., & Kim, Y. P. (2022). Seasonal variation and source apportionment of Oxygenated Polycyclic Aromatic Hydrocarbons (OPAHs) and Polycyclic Aromatic Hydrocarbons (PAHs) in PM2. 5 in Seoul, Korea. Atmospheric Environment, 272, 118937.

Singh, B. P., Kumar, K., & Jain, V. K. (2021). Source identification and health risk assessment associated with particulate-and gaseous-phase PAHs at residential sites in Delhi, India. Air Quality, Atmosphere & Health, 14(10), 1505-1521.

Thang, P. Q., Kim, S.-J., Lee, S.-J., Kim, C. H., Lim, H.-J., Lee, S.-B., Kim, J. Y., Vuong, Q.

T., & Choi, S.-D. (2020). Monitoring of polycyclic aromatic hydrocarbons using passive air samplers in Seoul, South Korea: Spatial distribution, seasonal variation, and source identification. Atmospheric Environment, 229.

https://doi.org/10.1016/j.atmosenv.2020.117460

Tomaz, S., Shahpoury, P., Jaffrezo, J. L., Lammel, G., Perraudin, E., Villenave, E., & Albinet, A. (2016). One-year study of polycyclic aromatic compounds at an urban site in Grenoble (France): Seasonal variations, gas/particle partitioning and cancer risk

estimation. Sci Total Environ, 565, 1071-1083.

https://doi.org/10.1016/j.scitotenv.2016.05.137

Tsai, P.-J., Shih, T.-S., Chen, H.-L., Lee, W.-J., Lai, C.-H., & Liou, S.-H. (2004). Assessing and predicting the exposures of polycyclic aromatic hydrocarbons (PAHs) and their carcinogenic potencies from vehicle engine exhausts to highway toll station workers.

Atmospheric Environment, 38(2), 333-343.

US-EPA. (2010). Development of a Relative Potency Factor (Rpf) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures (External Review Draft, Suspended).

Vasiljevic, T., Jariyasopit, N., Schuster, J. K., & Harner, T. (2021). Insights into sources and occurrence of oxy-and nitro-PAHs in the alberta oil sands region using a network of passive air samplers. Environmental Pollution, 286, 117513.

Vicente, E. D., Vicente, A. M., Musa Bandowe, B. A., & Alves, C. A. (2015). Particulate phase emission of parent polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, azaarenes and nitrated PAHs) from manually and automatically fired combustion appliances. Air Quality, Atmosphere &

Health, 9(6), 653-668. https://doi.org/10.1007/s11869-015-0364-1

Vicente, E. D., Vicente, A. M., Musa Bandowe, B. A., & Alves, C. A. (2016). Particulate

phase emission of parent polycyclic aromatic hydrocarbons (PAHs) and their

40

derivatives (alkyl-PAHs, oxygenated-PAHs, azaarenes and nitrated PAHs) from manually and automatically fired combustion appliances. Air Quality, Atmosphere &

Health, 9(6), 653-668.

Vuong, Q. T., Kim, S. J., Nguyen, T. N. T., Thang, P. Q., Lee, S. J., Ohura, T., & Choi, S. D.

(2020). Passive air sampling of halogenated polycyclic aromatic hydrocarbons in the largest industrial city in Korea: Spatial distributions and source identification. J Hazard Mater, 382, 121238. https://doi.org/10.1016/j.jhazmat.2019.121238

Vuong, Q. T., Son, J. M., Thang, P. Q., Ohura, T., & Choi, S. D. (2022). Application of gas chromatographic retention times to determine physicochemical properties of nitrated, oxygenated, and parent polycyclic aromatic hydrocarbons. Environ Pollut, 294, 118644. https://doi.org/10.1016/j.envpol.2021.118644

Wang, W., Jariyasopit, N., Schrlau, J., Jia, Y., Tao, S., Yu, T.-W., Dashwood, R. H., Zhang, W., Wang, X., & Simonich, S. L. M. (2011). Concentration and photochemistry of PAHs, NPAHs, and OPAHs and toxicity of PM2. 5 during the Beijing Olympic Games. Environmental Science & Technology, 45(16), 6887-6895.

Wang, Y., Qi, A., Wang, P., Tuo, X., Huang, Q., Zhang, Y., Xu, P., Zhang, T., Zhang, X., Zhao, T., Wang, W., & Yang, L. (2022). Temporal profiles, source analysis, and health risk assessments of parent polycyclic aromatic hydrocarbons (PPAHs) and their derivatives (NPAHs, OPAHs, ClPAHs, and BrPAHs) in PM2.5 and PM1.0 from the eastern coastal region of China: Urban coastal area versus coastal background area.

Chemosphere, 292, 133341. https://doi.org/10.1016/j.chemosphere.2021.133341 Wnorowski, A., & Charland, J.-P. (2017). Profiling quinones in ambient air samples collected

from the Athabasca region (Canada). Chemosphere, 189, 55-66.

Yadav, I. C., & Devi, N. L. (2021). Nitrated-and oxygenated-polycyclic aromatic hydrocarbon in urban soil from Nepal: Source assessment, air-soil exchange, and soil- air partitioning. Ecotoxicology and Environmental Safety, 211, 111951.

Yadav, I. C., Devi, N. L., Singh, V. K., Li, J., & Zhang, G. (2018). Concentrations, sources and health risk of nitrated- and oxygenated-polycyclic aromatic hydrocarbon in urban indoor air and dust from four cities of Nepal. Sci Total Environ, 643, 1013-1023.

https://doi.org/10.1016/j.scitotenv.2018.06.265

Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic geochemistry, 33(4), 489-515.

Zeng, M., Liao, Z., & Wang, L. (2020). Atmospheric oxidation of gaseous anthracene and phenanthrene initiated by OH radicals. Atmospheric Environment, 234, 117587.

Zhang, J., Yang, L., Mellouki, A., Chen, J., Chen, X., Gao, Y., Jiang, P., Li, Y., Yu, H., &

Wang, W. (2018a). Atmospheric PAHs, NPAHs, and OPAHs at an urban, mountainous, and marine sites in Northern China: Molecular composition, sources, and ageing. Atmospheric Environment, 173, 256-264.

Zhang, J., Yang, L., Mellouki, A., Chen, J., Chen, X., Gao, Y., Jiang, P., Li, Y., Yu, H., &

Wang, W. (2018b). Diurnal concentrations, sources, and cancer risk assessments of PM2. 5-bound PAHs, NPAHs, and OPAHs in urban, marine and mountain environments. Chemosphere, 209, 147-155.

Zhang, Y., Li, R., Fang, J., Wang, C., & Cai, Z. (2018). Simultaneous determination of

eighteen nitro-polyaromatic hydrocarbons in PM2. 5 by atmospheric pressure gas

chromatography-tandem mass spectrometry. Chemosphere, 198, 303-310.

41

Zhao, T., Yang, L., Huang, Q., Zhang, Y., Bie, S., Li, J., Zhang, W., Duan, S., Gao, H., &

Wang, W. (2020). PM2. 5-bound polycyclic aromatic hydrocarbons (PAHs) and their derivatives (nitrated-PAHs and oxygenated-PAHs) in a road tunnel located in Qingdao, China: Characteristics, sources and emission factors. Science of the Total Environment, 720, 137521.

Zielinska, B., Arey, J., Atkinson, R., & Winer, A. M. (1989). The nitroarenes of molecular weight 247 in ambient particulate samples collected in southern California.

Atmospheric Environment (1967), 23(1), 223-229.

42

Supplementary information

Figure S1. Chromatograms of calibration standard and real sample.

43

Table S1. List of physicochemical properties of target compounds consisting of chemical names, abbreviations, CAS number, MW: molecular weight, H:

Henry’s law constant, boiling point, melting point, KOA: octanol-air partition coefficient, U: Internal energy. (EPI SuiteTM 4.1 (US EPA), Vuong et al.

(2022))

No. Compound Abbreviation CAS number MW

(g/mol)

log H (Pa·m3/mol)

Boiling point (°C)

Melting point

(°C) Log KOA dUOA (J/mol) Parent PAHs

1 Fluorene Flu 86-73-7 166 0.23 292.6 63.7 7.456 65.55

2 Phenanthrene Phe 1985-01-08 178 0.716 327.3 78.1 7.648 56.5

3 Anthracene Ant 120-12-7 178 0.716 327.3 78.1 7.694 57.04

4 Fluoranthene Flt 206-44-0 202 –0.075 371.9 119.9 8.711 68.43

5 Pyrene Pyr 129-00-0 202 –0.075 371.9 119.9 9.112 78.79

6 Benzo[c]phenanthrene BcP 195-19-7 228 –0.294 399.2 136 10.19 85.04

7 Benz[a]anthracene BaA 56-55-3 228 –0.294 399.2 136 10.31 86.01

8 Chrysene Chr 218-01-9 228 –0.294 399.2 136 10.34 86.24

9 Benzo[b]fluoranthene BbF 205-99-2 252 –1.086 442.8 169.4 11.44 97.55

10 Benzo[j]fluoranthene BjF 205-82-3 252 –1.086 442.8 169.4 11.44 97.55

11 Benzo[k]fluoranthene BkF 207-08-9 252 –1.086 442.8 169.4 11.49 98.12

12 7,12-Dimethylbenz[a]anthracene 7,12-DMBaA 57-97-6 256 –0.208 422.4 153.9 11.44 97.55

13 Benz[e]pyrene BeP 192-97-2 252 –1.086 442.8 169.4 11.66 99.6

14 Benz[a]pyrene BaP 50-32-8 252 –1.086 442.8 169.4 11.7 99.94

15 3-Methylcholanthrene 3-MCA 56-49-5 268 –0.521 438.3 167 12.14 104.7

16 Indeno[1,2,3-c,d]pyrene IcdP 193-39-5 276 –1.876 486.3 200 12.59 108.3

17 Dibenz[a,h]anthracene DBahA 53-70-3 278 –1.305 470.1 180.5 12.74 110

18 Benzo[g,h,i]perylene BghiP 191-24-2 276 –1.876 486.3 200 12.73 109.5

19 Dibenzo[a,i]pyrene DBaiP 189-55-9 302 –2.096 513.7 215.7 13.712 115.55

20 Dibenzo[a,h]pyrene DBahP 189-64-0 302 –2.096 513.7 215.7 13.712 115.55

21 Dibenzo[a,l]pyrene DBalP 191-30-0 302 –2.096 513.7 215.7 13.712 115.55

44 NPAHs

1 1-Nitronaphthalene 1-NNap 86-57-7 173 -0.678 309.6 92.9 7.716 79.37

2 2-Nitronaphthalene 2-NNap 581-89-5 173 -0.678 309.6 92.9 7.913 81.8

3 5-Nitroacenaphthene 5-Nace 602-87-9 211 -1.175 355.2 126.9 8.702 78.86

4 2-Nitrofluorene 2-NFlu 607-57-8 223 -1.688 384 141.6 9.1796 81.36

5 9-Nitroanthracene 9-NAnt 602-60-8 223 -1.688 384 141.6 9.06 72.81

6 3-Nitrophenanthrene 3-NPhe 17024-19-0 223 -1.688 384 141.6 9.216 74.6

7 9-Nitrophenanthrene 9-NPhe 954-46-1 223 -1.688 384 141.6 9.456 77.01

8 2-Nitrofluoranthene 2-NFlt 13177-29-2 247 -2.699 427.5 170.6 9.693 79.66

9 3-Nitrofluoranthene 3-NFlt 892-21-7 247 -2.699 427.5 170.6 10.72 89.99

10 1-Nitropyrene 1-NPyr 5522-43-0 247 -2.699 427.5 170.6 10.73 89.99

11 2-Nitropyrene 2-NPyr 57835-92-4 247 -2.699 454.9 186.6 10.6124 88.87

12 4-Nitropyrene 4-NPyr 789-07-1 247 -2.699 454.9 186.6 10.87 91.33

13 7-Nitrobenz(a)anthracene 7-NBaA 20268-51-3 273 -7.703 454.9 186.6 11.53 97.91

14 6-Nitrochyrsene 6-NChr 7496-02-08 273 -7.703 454.9 186.6 11.82 100.7

15 1,3-Dinitropyrene 1,3-DNP 75321-20-9 292 -9.889 483.2 204.7 12.4034 98.26

16 1,6-Dinitropyrene 1,6-DNP 42397-64-8 292 -9.889 483.2 204.7 12.4034 98.26

17 1,8-Dinitropyrene 1,8-DNP 42397-65-9 292 -9.889 483.2 204.7 12.4034 98.26

OPAHs

1 1,4-Naphthalenedione NAD 130-15-4 158 –3.701 301.2 82.9 6.784 66.94

2 1-Napthaldehyde NAQ 66-77-3 156 –0.876 291.1 55.3 7.245 73.14

3 9-Fluorenone FLO 486-25-9 180 –1.164 331.7 99.5 8.254 85.54

4 9-Xanthone XAT 90-47-1 196 –1.710 333.5 101.2 8.745 91.14

5 9,10-Anthracenedione ANQ 84-65-1 208 –3.492 363.6 127.6 8.519 66.81

6 2-Methyl-9,10-Anthracenedione MANQ 1984-11-07 208 –3.564 377.7 133.8 9.091 73.26

7 11-Benzo[a]fluorenone BaFL 479-79-8 230 –2.174 403.2 148.5 9.878 80.91

8 7-Benz[d,e]anthracenone BENZ 1982-05-03 230 –2.174 403.2 148.5 10.3 84.79

9 7,12-Benz[a]anthracenedione BaAD 2498-66-0 258 –4.503 434.5 173 10.63 88.08

45

Table S2. Comparison of total mean concentration of PAHs (ng/m3), OPAHs (ng/m3), and NPAHs (pg/m3) in other studies.

Location Types of sampling sites Sampling period Sampling method

PAHs (ng/m3)

OPAHs (ng/m3)

NPAHs

(pg/m3) Reference Ulsan, Korea Industrial, Urban, Rural 2016.03 - 2017.03 Passive 14.14±6.97 3.21±2.15 159.88±68.22 This study Shanxi and Shandong, China Town, Countryside,

Megacity 2011.06 - 2011.08 Passive 294 50-3740 (Lin et al.,

2015)

Alberta, Canada Oil sand area 2014.04 - 2014.05 Passive 0.05-1.32 20.9-47.8 (Jariyasopit et

al., 2016) Pokhara, Birgunj,

Kathmandu, and Biratnagar of Nepal

Urban, Industrial,

residential 2014 Passive 7.03 0.44-106 1.96-276 ng/m3 (Yadav et al.,

2018)

Alberta, Canada Oil sand area 2013.10-2016.02 Passive 400-2400

pg/m3 20-250 (Vasiljevic et al., 2021) Toronto, Canada

Background, Residential, Traffic, Urban, and

Industrial

2016.08-2017.08 Passive 5.0-27.7 0.573-3.92 22.3-147 (Jariyasopit et al., 2019)

Alberta, Canada Oil sand area 2015.10-2015.11 Passive 0.21-1.48 8.42-170 (Jariyasopit et

al., 2018) Marseille, France Urban, Sub-urban, and

Rural 2004,07 Active

(PM10+PUF) 4.4-21.4 1.3-6.3 30-710 (Albinet et al., 2007)

Paris, France Traffic, Suburban 2009 Active 0.53-7.05 113.2-1503.8

pg/m3 25.4-175.4

(Ringuet, Albinet, et al.,

2012) Beijing, China Megacity 2008.07-2008.08 Active 10.5-22.1 0.69-.1.03 421.3-792.1 (Wang et al.,

2011)

Seoul, Korea Megacity 2020.05-2020.06 Active 3.96 ± 3.36 5.49 ± 2.40 (Shin et al.,

2022)

Birmingham, UK Traffic roadside 2010.02 Active

(PM10+PUF) 87.6 50.4

(Delgado- Saborit et al.,

2013)

Alpine valleys Suburban 2002-2003 Active

(PM10+PUF) 4.6-17.3 120-520 (Albinet et al.,

2008)

Tianjin, China Traffic roadside 2016.11 Active

(PM2.5) 6.86-15.84 3.98-18.44 482-3766 (Wang et al., 2022)

46

Table S3. Result of correlation analysis between NOPAHs and CAPs at spring.

Table S4. Result of correlation analysis between NOPAHs and CAPs at summer.

47

Table S5. Result of correlation analysis between NOPAHs and CAPs at Fall.

Table S6. Result of correlation analysis between NOPAHs and CAPs at Winter.

48

Figure S2. Spatial distribution of NO2 in Ulsan, in (a) spring, (b) summer, (c) fall, and (d) winter.

Figure S3. Spatial distribution of population density (people/km2) in Ulsan.

49

Table S7. Result of correlation analysis between PAHs and OPAHs.

Table S8. Result of correlation analysis between PAHs and NPAHs.

Table S9. Result of correlation analysis between NPAHs and OPAHs.

50

Acknowledgement

졸업이 다가오니 2013년 UNIST에 입학한 후 저의 20대의 기억들이 새록새록 생각납니다. 고등학생 때 생명공학에 관심이 있어 입학하였지만, 대학생 생활을 하면서 환경에 관심이 생겨 학과를 변경하여 도시환경공학부에 들어오게 되었습니다. 여러 일이 있어 군대를 다녀온 후, 저의 대학생 지도교수님인 최성득 교수님 연구실(환경분석화학 연구실, EACL)에 인턴으로 들어왔습니다. 인턴 생활 동안 환경시료채취와 데이터 수집 및 해석을 해가며 환경연구에 더욱 흥미가 생겨 대학원을 진학하였습니다. 최성득 교수님께서는 부족한 저를 받아주시고 연구할 수 있는 환경을 제공해주셨고 삶에 대해서도 아낌없는 조언을 해주셨습니다. 저를 한 단계 더 나아가게 해주신 최성득 교수님께 깊은 감사를 전하고 싶습니다.

석사졸업논문과 논문발표에 심사위원을 참여해주신 장윤석 교수님과 송창근 교수님에게 감사를 표합니다. 바쁘신 시간을 내어 주셔서 제가 생각하지 못한 조언과 논평을 해주셔서 정말 감사합니다.

교수님들 덕분에 학위논문을 더 의미 있게 보강하여 마무리 지을 수 있었습니다.

EACL에 들어온 지 어느덧 2년 6개월이 지나며, 많은 사람을 만났습니다. 같이 석사과정을 들어와 힘든 시간 이겨낸 종현, 민재부터 연구실 선후배로 만난 민규 형, 성준 형, 상진 형, 혜경 누나, 호영, 인규, 나라, 혜지, 손지민 선생님, 상화, 민지, 정태, Quang, Tien, Renato, Bala, Nirmala, Onynine, Phu까지 같이 연구하고 토론할 수 있어서 정말 즐겁고 덕분에 의미 있는 시간을 보낼 수 있었습니다.

선배님들에게 환경연구를 하기 위한 시료채취부터 데이터 해석, 연구실 생활까지 많은 것을 보고 배울 수 있었습니다. 후배 친구들은 같이 실험하고 제 졸업 실험까지 도와줘서 힘든 시기를 이겨낼 수 있게 해줘서 모두 정말 고맙고 감사합니다.

고등학생 시절부터 언제나 응원해준 주원, 민호, 현수, 주용이부터 대학생 시절부터 꾸준히 만나며 서로에게 거침없는 조언들을 해준 호영, 창근, 성호도 정말 고맙고 군대 시절 맞후임으로 인연이 생겨 나와서도 계속 연락해주고 존중해준 상기까지, 다들 저에게 큰 힘이 되어 주셔서 정말 감사합니다.

마지막으로, 사랑하는 연휘에게 바쁜 대학원생 생활을 이해해주고 응원해주고 사랑해줘서 정말 고마웠습니다. 연인으로서 군대, 대학원을 기다려줘서 언제나 큰 힘이 되어줬습니다. 앞으로 남은 인생은 제가 옆에서 큰 버팀목으로 사랑해드리겠습니다.

이 논문을 시작으로 저는 앞으로 더 나은 삶을 살아가기 위해 노력하겠습니다. 많은 분에게 배운 지식과 지혜를 바탕으로 한 치 앞도 알 수 없는 미래를 개척해 나아가겠습니다. 그동안 정말 감사했습니다.

긴 글 읽어 주셔서 감사합니다.

Dokumen terkait