• Tidak ada hasil yang ditemukan

Dicationic salts in mixture of γ-Butyrolactone and ethylene carbonate

Chapter 2. Dicationic iodide for Dye-sensitized solar cells

3. Results and discussions

3.4. Dicationic salts in mixture of γ-Butyrolactone and ethylene carbonate

In addition, mixed solvent of ethylene carbonate (EC) and γ-Butyrolactone (GBL) is used for high temperature stable electrolyte system. The boiling point of EC is 248 ˚C. γ-Butyrolactone (GBL) is also a good candidate for solvent due to its high boiling point of 204 ˚C. In addition, its dielectric constant of 42 and low viscosity of 1.7mPas−1 are preferable characteristics for DSSC applications. A mixture of EC + GBL (30:70, v/v, chosen based on the phase diagram) has been employed as a stable solvent at high temperatures.75,76 Likewise previous experiment, 1-hexyl-2,3-

48

dimethyl imidazolium iodide (HDMII) was used to prepare the reference electrolyte. 0.6 M 1- hexyl-2,3-dimethyl imidazolium iodide (HDMII), 0.1 M lithium iodide (LiI), 0.05 M iodine (I2), 0.1 M guanidinium thiocyanate and 0.5 M tert-butyl pyridine (TBP) dissolved in EC + GBL (30:70, v/v). However, synthesized ionic salts are used half amount of HDMII , 0.3 M concentrations, the other electrolytes compositions are the same of reference electrolyte. Figure 28 and Table 6 show J-V characteristics of the cells with each electrolyte, photovoltaic parameters, respectively. In this experiment, there are little different in Jsc and Voc. However, dicationic salts have better fill factors than HDMII. It caused higher efficiencies. The best performance among them is EBDMIDI electrolyte which is 6.022% with 14.8 mA cm-2 (Jsc), 0.719 V (Voc) and 56.7% (FF).

0.0 0.2 0.4 0.6 0.8

0 2 4 6 8 10 12 14 16 18

Current density (mA/cm2 )

Voltage (V) HDMII

PBDMIDI EBDMIDI PBMPyDI

Figure 28. Current density-voltage (J-V) characteristics of the each devices with different ionic salt in GBL: EC=7:3 (v/v), HDMII (■), PBDMIDI (●), EBDMIDI (▲), PBPyDI (▼) measured under AM1.5G illumination from a calibrated solar simulator with irradiation intensity of 100 mW cm-2

Table 6. Photovoltaic parameters of the devices different salts dissolved in d i f f e r e n t acetonitrile(AcCN): γ-Butyrolactone=7:3 (v/v)

GBL:EC=7:3 Jsc

[mA cm-2]

Voc

[V]

FF [%]

PCE [%]

HDMII 14.6 0.719 48.9 5.139

PBDMIDI 14.8 0.719 55.2 5.853

EBDMIDI 14.8 0.719 56.7 6.022

PBMPyDI 14.5 0.714 54.2 5.596

49 4. Conclusions

DSSCs are recognized as the promising device in the solar industry. These offer the prospective of very low cost fabrication and present attractive features that facilitate market. In this thesis, it has been investigated to improve photovoltaic properties of DSSCs, new dicationic salts based on ionic liquids were synthesized. When small iodide such as LiI and KI are used in electrolyte, cations penetrate into TiO2 surface. It causes band edge shift of TiO2. As the results, Fermi level of nanocrystalline TiO2 working electrode is lowered by cations. For this reason, voltage drop is observed. If the size of cation increases, less cations can reach and occupy the TiO2 surface, for the reason, relatively higher voltage can be expected. Synthesized bulky cationic salts have been used in DSSC electrolyte systems as iodide sources with various solvent (mixture of acetonitrile, ethylene carbonate, propylene carbonate and γ-butyrolactone) systems. In this case, quite comparable results to the conventional imidazolium salts are obtained. For the experiments, dicationic salts with different structures of cation are applied. Possible reasons are suggested for Voc changes, Jsc drops and FF depending on composition of electrolyte solvent. Future directions of dicationic iodides should not only find better molecules than generally used one but also need to investigate mechanisms of dications behavior in the electrolyte.

50

References

[1] Chemming Hu, R. M. White 1983, Solar cells: From Basic to Advenced System, Mcgraw-Hill College New York.

[2] Hahn, H., Frank, G., Klingler, W., Meyer, A. D. & Storger, G. 1953, 'Untersuchungen über ternäre Chalkogenide. V. Über einige ternäre Chalkogenide mit Chalkopyritstruktur', Zeitschrift Fur Anorganische Und Allgemeine Chemie, vol. 271, no. 3-4, pp. 153-70.

[3] Wagner, S., Shay, J. L., Migliora.P & Kasper, H. M. 1974, 'CulnSe2/CdS heterojunction photoYoltaic detectors', Applied Physics Letters, vol. 25, no. 8, pp. 434-5.

[4] Wieting, R. D. & Ieee, Ieee 2002, CIS manufacturing at the megawatt scale, Conference Record of the Twenty-Ninth Ieee Photovoltaic Specialists Conference 2002.

[5] Repins, I., Contreras, M. A., Egaas, B., DeHart, C., Scharf, J., Perkins, C. L., To, B. & Noufi, R.

2008, '19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor', Progress in Photovoltaics, vol. 16, no. 3, pp. 235-9.

[6] Shah, A., Torres, P., Tscharner, R., Wyrsch, N. & Keppner, H. 1999, 'Photovoltaic technology:

The case for thin-film solar cells', Science, vol. 285, no. 5428, pp. 692-8.

[7] Chen, Shiyou, Gong, X. G. & Wei, Su-Huai 2007, 'Band-structure anomalies of the chalcopyrite semiconductors CuGaX2 versus AgGaX2 (X=S and Se) and their alloys', Physical Review B, vol. 75, no. 20, p. 205209.

[8] Hodes, G., Lokhande, C. D. & Cahen, D. 1986, 'The flexiblilty of electrodeposition for preparation of CuInS(Se)2 films', Journal of the Electrochemical Society, vol. 133, no. 3, pp. C113-C.

[9] Romeo, A., Terheggen, A., Abou-Ras, D., Batzner, D. L., Haug, F. J., Kalin, M., Rudmann, D. &

Tiwari, A. N. 2004, 'Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells', Progress in Photovoltaics, vol. 12, no. 2-3, pp. 93-111.

[10] Mishra, K. K. & Rajeshwar, K. 1989, 'A voltammetric study of the electrodeposition chemistry in the Cu + In + Se system', Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,

51 vol. 271, no. 1-2, pp. 279-94.

[11] Rau, U. & Schmidt, M. 2001, 'Electronic properties of ZnO/CdS/Cu(In,Ga)Se2 solar cells aspects of heterojunction formation', Thin Solid Films, vol. 387, no. 1-2, pp. 141-6.

[12] Burgelman, M., Nollet, P. & Degrave, S. 2000, 'Modelling polycrystalline semiconductor solar cells', Thin Solid Films, vol. 361, pp. 527-32.

[13] Morkel, M., Weinhardt, L., Lohmuller, B., Heske, C., Umbach, E., Riedl, W., Zweigart, S. &

Karg, F. 2001, 'Flat conduction-band alignment at the CdS/CuInSe2 thin-film solar-cell heterojunction', Applied Physics Letters, vol. 79, no. 27, pp. 4482-4.

[14] Schmid, D., Ruckh, M., Grunwald, F. & Schock, H. W. 1993, 'Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2', Journal of Applied Physics, vol. 73, no. 6, pp. 2902-9.

[15] Kötschau, I. M. & Schock, H. W. 2003, 'Depth profile of the lattice constant of the Cu-poor surface layer in (Cu2Se)1-x(In2Se3)x evidenced by grazing incidence X-ray diffraction', Journal of Physics and Chemistry of Solids, vol. 64, no. 9-10, pp. 1559-63.

[16] Contreras, M. A., Wiesner, H., Tuttle, J., Ramanathan, K. & Noufi, R. 1997, 'Sues on the chalcopyrite/defect-chalcopyrite junction model for high-efficiency Cu(In,Ga)Se2 solar cells', Solar Energy Materials and Solar Cells, vol. 49, no. 1-4, pp. 239-47.

[17] Gabor, A. M., Tuttle, J. R., Albin, D. S., Contreras, M. A., Noufi, R. & Hermann, A. M. 1994, 'High-efficiency CuInxGa1-xSe2 solar cells made from (Inx,Ga1-x)2Se3 precursor films', Applied Physics Letters, vol. 65, no. 2, pp. 198-200.

[18] Guillén, C. & Herrero, J. 2002, 'Structure, morphology and photoelectrochemical activity of CuInSe2 thin films as determined by the characteristics of evaporated metallic precursors', Solar Energy Materials and Solar Cells, vol. 73, no. 2, pp. 141-9.

[19] Marudachalam, M., Birkmire, R. W., Hichri, H., Schultz, J. M., Swartzlander, A. & Al-Jassim, M.

M. 1997, 'Phases, morphology, and diffusion in CulnxGa1-xSe2 thin films', Journal of Applied Physics, vol. 82, no. 6, pp. 2896-905.

52

[20] Hodes, G. & Cahen, D. 1986, 'Electrodeposition of CuInSe2 and CuInS2 films', Solar Cells, vol.

16, no. C, pp. 245-54.

[21] Kapur, V. K., Basol, B. M. & Tseng, E. S. 1987, 'Low cost methods for the production of semiconductor films for CuInSe2/CdS solar cells', Solar Cells, vol. 21, no. 1-4, pp. 65-72.

[22] Karg, F. H. 2001, 'Development and manufacturing of CIS thin film solar modules', Solar Energy Materials and Solar Cells, vol. 66, no. 1-4, pp. 645-53.

[23] Kushiya, K., Ohshita, M., Hara, I., Tanaka, Y., Sang, B., Nagoya, Y., Tachiyuki, M. & Yamase, O. 2003, 'Yield issues on the fabrication of 30 cm × 30 cm-sized Cu(In,Ga)Se2-based thin-film modules', Solar Energy Materials and Solar Cells, vol. 75, no. 1-2, pp. 171-8.

[24] Nakada, T., Onishi, R. & Kunioka, A. 1994, 'CuInSe2-based solar cells by Se-vapor selenization from Se-containing precursors', Solar Energy Materials and Solar Cells, vol. 35, no. C, pp. 209-14.

[25] Beck, M. E., Swartzlander-Guest, A., Matson, R., Keane, J. & Noufi, R. 2000, 'CuIn(Ga)Se2- based devices via a novel absorber formation process', Solar Energy Materials and Solar Cells, vol.

64, no. 2, pp. 135-65.

[26] Nishiwaki, S., Satoh, T., Hashimoto, Y., Negami, T. & Wada, T. 2001, 'Preparation of Cu(In,Ga)Se2 thin films at low substrate temperatures', Journal of Materials Research, vol. 16, no. 2, pp. 394-9.

[27] Karg, F., Kiendl, A., Probst, V., Harms, H., Rimmasch, J., Riedel, W., Kotschy, J., Holz, J., Eibl, O. & Mitwalsky, A. 'Novel rapid-thermal-processing for CIS thin-film solar cells', Proceedings of the 23rd IEEE Photovoltaic Specialists Conference, New York, 1993, pp. 441-6.

[28] Bindu, K., Kartha, C. S., Vijayakumar, K. P., Abe, T. & Kashiwaba, Y. 2003, 'CuInSe2 thin film preparation through a new selenisation process using chemical bath deposited selenium', Solar Energy Materials and Solar Cells, vol. 79, no. 1, pp. 67-79.

[29] Pathan, H. M. & Lokhande, C. D. 2005, 'Chemical deposition and characterization of copper indium diselenide (CISe) thin films', Applied Surface Science, vol. 245, no. 1-4, pp. 328-34.

53

[30] Hibberd, C. J., Chassaing, E., Liu, W., Mitzi, D. B., Lincot, D. & Tiwari, A. N. 2010, 'Non- vacuum methods for formation of Cu(In,Ga)(Se,S)2 thin film photovoltaic absorbers', Progress in Photovoltaics, vol. 18, no. 6, pp. 434-52.

[31] Bhattacharya, R. N., Wiesner, H., Berens, T. A., Matson, J., Keane, J., Ramanathan, K., Swartzlander, A., Mason, A. & Noufi, R. N. 1997, '12.3% efficient CuIn1-xGaxSe2-based device from electrodeposited precursor', Journal of the Electrochemical Society, vol. 144, no. 4, pp. 1376-9.

[32] Nakamura, S. & Yamamoto, A. 1997, 'Preparation of CuInS2 films with sufficient sulfur content and excellent morphology by one-step electrodeposition', Solar Energy Materials and Solar Cells, vol.

49, no. 1-4, pp. 415-21.

[33] Bhattacharya, R. N., Hiltner, J. F., Batchelor, W., Contreras, M. A., Noufi, R. N. & Sites, J. R.

2000, '15.4% CuIn1-xGaxSe2-based photovoltaic cells from solution-based precursor films', Thin Solid Films, vol. 361, pp. 396-9.

[34] Krunks, M., Kijatkina, O., Rebane, H., Oja, I., Mikli, V. & Mere, A. 2002, 'Composition of CuInS2 thin films prepared by spray pyrolysis', Thin Solid Films, vol. 403-404, pp. 71-5.

[35] Bauknecht, A., Siebentritt, S., Gerhard, A., Harneit, W., Brehme, S., Albert, J., Rushworth, S. &

Lux-Steiner, M. C. 2000, 'Defects in CuGaSe2 thin films grown by MOCVD', Thin Solid Films, vol.

361, pp. 426-31.

[36] Memming, R. 1972, 'Phtochemical and electrochemical processes of excited dyes at semiconductor and metal electrodes', Photochemistry and Photobiology, vol. 16, no. 4, pp. 325-33.

[37] Matsumura, M., Nomura, Y. & Tsubomura, H. 1977, 'Dye-sensitization on the photocurrent at zinc oxide electrode in aqueous electrolyte solution', Bull. Chem. Soc. Jpn., vol. 50, pp. 2533-7.

[38] Alonso-Vante, N., Beley, M., Chartier, P. & Ern, V. 1981, Rev. Phys. Appl., vol. 16, pp. 5-10.

[39] Desilvestro, J., Grätzel, M., Kavan, L., Moser, J. & Augustynski, J. 1985, 'Highly efficient sensitization of titanium dioxide', Journal of the American Chemical Society, vol. 107, no. 10, pp.

2988-90.

54

[40] O'Regan, B. & Grätzel, M. 1991, 'A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films', Nature, vol. 353, no. 6346, pp. 737-40.

[41] Green, M. A., Emery, K., Hishikawa, Y. & Warta, W. 2008, 'Solar cell efficiency tables (Version 32)', Progress in Photovoltaics: Research and Applications, vol. 16, no. 5, pp. 435-40.

[42] Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N. & Han, L. 2006, 'Dye-sensitized solar cells with conversion efficiency of 11.1%', Japanese Journal of Applied Physics, Part 2: Letters, vol.

45, no. 24-28, pp. L638-L40.

[43] Hagfeldt, Anders, Boschloo, Gerrit, Sun, Licheng, Kloo, Lars & Pettersson, Henrik 2010, 'Dye- Sensitized Solar Cells', Chemical Reviews, vol. 110, no. 11, pp. 6595-663.

[44] Asbury, J. B., Ellingson, R. J., Ghosh, H. N., Ferrere, S., Nozik, A. J. & Lian, T. 1999, 'Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru(dcbpy)2(NCS)2 in solution and on nanocrystalline TiO2 and Al2O3 thin films', Journal of Physical Chemistry B, vol. 103, no. 16, pp. 3110-9.

[45] Benkö, G., Kallioinen, J., Korppi-Tommola, J. E. I., Yartsev, A. P. & Sundström, V. 2002, 'Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states', Journal of the American Chemical Society, vol. 124, no. 3, pp. 489-93.

[46] Kuang, D., Ito, S., Wenger, B., Klein, C., Moser, J. E., Humphry-Baker, R., Zakeeruddin, S. M.

& Grätzel, M. 2006, 'High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells', Journal of the American Chemical Society, vol. 128, no. 12, pp. 4146-54.

[47] Ramakrishna, G., Jose, D. A., Kumar, D. K., Das, A., Palit, D. K. & Ghosh, H. N. 2005, 'Strongly coupled ruthenium-polypyridyl complexes for efficient electron injection in dye-sensitized semiconductor nanoparticles', Journal of Physical Chemistry B, vol. 109, no. 32, pp. 15445-53.

[48] Koops, S. E., O'Regan, B. C., Barnes, P. R. F. & Durrant, J. R. 2009, 'Parameters influencing the efficiency of electron injection in dye-sensitized solar cells', Journal of the American Chemical Society, vol. 131, no. 13, pp. 4808-18.

[49] Ellingson, R. J., Asbury, J. B., Ferrere, S., Ghosh, H. N., Sprague, J. R., Lian, T. & Nozik, A. J.

55

1998, 'Dynamics of Electron Injection in Nanocrystalline Titanium Dioxide Films Sensitized with [Ru(4,4'-dicarboxy-2,2'-bipyridine)2(NCS)2] by infrared transient absorption', Journal of Physical Chemistry B, vol. 102, no. 34, pp. 6455-8.

[50] Islam, A., Hara, K., Singh, L. P., Katoh, R., Yanagida, M., Murata, S., Takahashi, Y., Sugihara, H. & Arakawa, H. 2000, 'Dual electron injection from charge-transfer excited states of TiO2-anchored Ru(II)-4,4'-dicarboxy-2,2'-biquinoline complex', Chemistry Letters, no. 5, pp. 490-1.

[51] Anderson, N. A. & Lian, T. 2004, 'Ultrafast electron injection from metal polypyridyl complexes to metal-oxide nanocrystalline thin films', Coordination Chemistry Reviews, vol. 248, no. 13-14, pp.

1231-46.

[52] Schwarzburg, K., Ernstorfer, R., Felber, S. & Willig, F. 2004, 'Primary and final charge separation in the nano-structured dye-sensitized electrochemical solar cell', Coordination Chemistry Reviews, vol. 248, no. 13-14, pp. 1259-70.

[53] Andersen, N. A. & Lian, T. 2005, 'Ultrafast electron transfer at the molecule-semiconductor nanoparticle interface', Annual Review of Physical Chemistry, vol. 56, pp. 491-519.

[54] Ardo, S. & Meyer, G. J. 2009, 'Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces', Chemical Society Reviews, vol. 38, no. 1, pp.

115-64.

[55] Wang, P., Wenger, B., Humphry-Baker, R., Moser, J. E., Teuscher, J., Kantlehner, W., Mezger, J., Stoyanov, E. V., Zakeeruddin, S. M. & Grätzel, M. 2005, 'Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids', Journal of the American Chemical Society, vol. 127, no. 18, pp. 6850-6.

[56] Stanbury, D. M. 1989, Advances in Inorganic Chemistry, pp. 69-138.

[57] Wang, X. & Stanbury, D. M. 2006, 'Oxidation of iodide by a series of Fe(III) complexes in acetonitrile', Inorganic Chemistry, vol. 45, no. 8, pp. 3415-23.

[58] Nelson, J. & Chandler, R. E. 2004, 'Random walk models of charge transfer and transport in dye sensitized systems', Coordination Chemistry Reviews, vol. 248, no. 13-14, pp. 1181-94.

56

[59] Papageorgiou, N., Maier, W. F. & Grätzel, M. 1997, 'An iodine/triiodide reduction electrocatalyst for aqueous and organic media', Journal of the Electrochemical Society, vol. 144, no. 3, pp. 876-84.

[60] Stanley, A. & Matthews, D. 1995, Aust. J. Chem., vol. 48, pp. 1293-300.

[61] Han, L., Koide, N., Chiba, Y., Islam, A., Komiya, R., Nobuhiro, F., Fukui, A. & Yamanaka, R.

2005, Appl. Phys. Lett., vol. 86.

[62] Ramasamy, E., Lee, W. J., Lee, D. Y. & Song, J. S. 2007, 'Nanocarbon counterelectrode for dye sensitized solar cells', Applied Physics Letters, vol. 90, no. 17.

[63] Fischer, A., Pettersson, H., Hagfeldt, A., Boschloo, G., Kloo, L. & Gorlov, M. 2007, 'Crystal formation involving 1-methylbenzimidazole in iodide/triiodide electrolytes for dye-sensitized solar cells', Solar Energy Materials and Solar Cells, vol. 91, no. 12, pp. 1062-5.

[64] Saito, Y., Kubo, W., Kitamura, T., Wada, Y. & Yanagida, S. 2004, 'I-/I3- redox reaction behavior on poly (3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells', Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, no. 1-3, pp. 153-7.

[65] Wang, M., Anghel, A. M., Marsan, B., Ha, N. L. C., Pootrakulchote, N., Zakeeruddin, S. M. &

Grätzel, M. 2009, 'CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye- sensitized solar cells', Journal of the American Chemical Society, vol. 131, no. 44, pp. 15976-7.

[66] Dürr, M., Bamedi, A., Yasuda, A. & Nelles, G. 2004, 'Tandem dye-sensitized solar cell for improved power conversion efficiencies', Applied Physics Letters, vol. 84, no. 17, pp. 3397-9.

[67] Kubo, W., Sakamoto, A., Kitamura, T., Wada, Y. & Yanagida, S. 2004, 'Dye-sensitized solar cells: Improvement of spectral response by tandem structure', Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, no. 1-3, pp. 33-9.

[68] Papageorgiou, N. 2004, 'Counter-electrode function in nanocrystalline photoelectrochemical cell configurations', Coordination Chemistry Reviews, vol. 248, no. 13-14, pp. 1421-46.

[69] Salvador, P., Hidalgo, M. G., Zaban, A. & Bisquert, J. 2005, 'Illumination intensity dependence

Dokumen terkait