• Tidak ada hasil yang ditemukan

Future work

Dalam dokumen 506521.pdf (Halaman 179-198)

further clarify the ignition characteristics of a nonpremixed H2/air mixture within a vortex, an additional parametric study was performed in a 2-D domain with different Ta, Umax, andτv.

• The flame structure, edge flame stabilization, and extinction characteristics of coun- terflow nonpremixed flames of CH4/He versus air at low strain rates were experi- mentally and numerically investigated. By adopting a novel experimental method- ology of He curtain flow in the counterflow burner, we could locate the flames in the middle of the burner, and hence, measure the critical He mole fraction,XHe,cr, for flame extinction even at very-low strain rates. The comparison between XHe,cr of the experiments and 2-D numerical simulations in normal and zero gravity re- vealed that the He curtain flow can effectively reduce the buoyancy effect on the flame characteristics such that the extinction dynamics of counterflow nonpremixed flames at low strain rates can be reasonably investigated even in normal gravity.

The dynamics of the outer edge flame for flame stabilization was numerically in- vestigated by performing 2-D transient numerical simulations of counterflow non- premixed flames of CH4/He versus air at low strain rates of 10 and 30 s1, from which the transition of the edge flame from a bibrachial edge flame with positiveSe to a monobrachial edge flame with negativeSewas observed. The species transport budget analysis was performed to better understand the flame stabilization and extinction mechanism. The following results are obtained in the present study.

quire to be modeled. Rapid advances in LES modeling accompanied by simultaneous progress in computer science and hardware have enabled LES of realistic combustion ge- ometries [144–146]. Because of these, the present study could be extended to the following research directions.

• So far, we investigated the ignition and liftoff characteristics of hydrocarbon fuels such as methane, DME, andn−heptane. As the decarbonization becomes the most stringent issue in the world, carbon-free fuels such as hydrogen and ammonia have been recently highlighted. Thus, the flame structure and ignition characteristics of hydrogen and/or hydrogen/ammonia blends will be studied by performing 2-D laminar flame simulations and 3-D DNSs.

• Extending the fundamental numerical study of the combustion characteristics of carbon-free fuels using high-fidelity numerical simulations, a series of LES of igni- tion and stabilization mechanisms of future carbon-free fuels will be investigated.

OpenFOAM is utilized for the simulations.

• A novel turbulent combustion modeling framework is needed to reduce the compu- tational cost of turbulent combustion problems. The performance of the framework will then be evaluated against the 3-D DNSs of turbulent jet flames that we have obtained.

References

[1] K. S. Jung, S. W. Kim, S. H. Chung, and C. S. Yoo, “On the flame structure and stabilization characteristics of autoignited laminar lifted n-heptane jet flames in heated coflow air,” Combust. Flame, vol. 223, pp. 307–319, 2021.

[2] G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Gold- enberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, and Z. Qin, “GRI-Mech 3.0,” http://combustion.berkeley.edu/gri-mech.

[3] San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combus- tion Research), University of California at San Diego, “Chemical-kinetic mecha- nisms for combustion applications,” http://combustion.ucsd.edu.

[4] H. Wang, X. You, A. V. Joshi, S. G. Davis, A. Laskin, F. Egolfopoulos, and C. K.

Law, “USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds,” http://ignis.usc.edu/USC\_Mech\_II.htm.

[5] E. L. Petersen, D. M. Kalitan, S. Simmons, G. Bourque, H. J. Curran, and J. M.

Simmie, “Methane/Propane oxidation at high pressures: experimental and detailed chemical kinetic modelling,”Proc. Combust. Inst., vol. 31, pp. 447–454, 2007.

[6] A. A. Konnov, “Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism,” Combust. Flame, vol. 156, pp. 2093–2105, 2009.

[7] B. C. Choi and S. H. Chung, “Autoignited laminar lifted flames of methane/hydrogen mixtures in heated coflow air,” Combust. Flame, vol. 159, pp.

1481–1488, 2012.

[8] S. M. Al-Noman, S. K. Choi, and S. H. Chung, “Autoignition characteristics of laminar lifted jet flames of pre-vaporized iso-octane in heated coflow air,”Fuel, vol.

162, pp. 171–178, 2015.

[9] Y. H. Chung, J. W. Park, J. Park, O. B. Kwon, J.-. H. Yun, and S. I. Keel, “Ex- perimental study on flame extinction in buoyancy-minimized counterflow diffusion flame,” J. Korean Soc. Combust, vol. 19, pp. 8–14, 2014.

[10] K. Maruta, M. Yoshida, H. Guo, Y. Ju, and T. Niioka, “Extinction of low-stretched diffusion flame in microgravity,” Combust. Flame., vol. 112, pp. 181–187, 1998.

[11] A. Hamins, M. Bundy, C. B. Oh, and S. C. Kim, “Effect of buoyancy on the radia- tive extinction limit of low-strain-rate nonpremixed methane-air flames,”Combust.

Flame., vol. 151, pp. 225–234, 2007.

[12] S. H. Chung and B. J. Lee, “On the characteristics of laminar lifted flames in a nonpremixed jet,” Combust. Flame, vol. 86, pp. 62–72, 1991.

[13] B. J. Lee and S. H. Chung, “Stabilization of lifted tribrachial flames in a laminar nonpremixed jet,” Combust. Flame, vol. 109, pp. 163–172, 1997.

[14] C. K. Law, Combustion Physics. Cambridge University Press, 2006.

[15] Y. C. Chen and R. W. Bilger, “Stabilization mechanisms of lifted laminar flames in axisymmetric jet flows,”Combust. Flame, vol. 123, pp. 23–45, 2000.

[16] R. Sankaran, “Propagation velocity of a deflagration front in a preheated autoignit- ing mixture,” 9th US National Combustion Meeting, p. paper 2E09, 2015.

[17] A. Krisman, E. R. Hawkes, and J. H. Chen, “The structure and propagation of laminar flames under autoignitive conditions,” Combst. Flame., vol. 188, pp. 399–

411, 2018.

[18] A. Krisman, E. R. Hawkes, M. Talei, A. Bhagatwala, and J. H. Chen, “Polybrachial structures in dimethyl ether edge-flames at negative temperature coefficient condi- tions,” Proc. Combust. Inst., vol. 35, pp. 999–1006, 2015.

[19] S. Deng, P. Zhao, M. E. Mueller, and C. K. Law, “Autoignition-affected stabilization of laminar nonpremixed DME/air coflow flames,” Combust. Flame, vol. 162, pp.

3437–3445, 2015.

[20] ——, “Stabilization of laminar nonpremixed DME/air coflow flames at elevated temperatures and pressures,” Combust. Flame, vol. 162, pp. 4471–4478, 2015.

[21] D. K. Dalakoti, A. Krisman, B. Savard, A. Wehrfritz, H. Wang, M. S. Day, J. B.

Bell, and E. R. Hawkes, “Structure and propagation of two-dimensional, partially premixed, laminar flames in diesel engine conditions,”Proc. Combust. Inst., vol. 37, pp. 1961–1969, 2019.

[22] B. C. Choi, K. N. Kim, and S. H. Chung, “Autoignited laminar lifted flames of propane in coflow jets with tribrachial edge and mild combustion,”Combust. Flame, vol. 156, pp. 396–404, 2009.

[23] B. C. Choi and S. H. Chung, “Autoignited laminar lifted flames of methane, ethy- lene, ethane, and n-butane jets in coflow air with elevated temperature,”Combust.

Flame, vol. 157, pp. 2348–2356, 2010.

[24] S. M. Al-Noman, B. C. Choi, and S. H. Chung, “Autoignited lifted flames of dimethyl ether in heated coflow air,” Combust. Flame, vol. 195, pp. 75–83, 2018.

[25] H. G. Weller, G. Tabor, H. Jasak, and C. Fureby, “A tensorial approach to compu- tational continuum mechanics using object-oriented techniques,” Comput. Phys., vol. 12, pp. 620–631, 1998.

[26] N. Peters,Turbulent combustion. Cambridge University Press, 2000.

[27] K. M. Lyons, “Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: Experiments,” Prog. Energy Combust. Sci., vol. 33, pp. 211–

231, 2007.

[28] J. E. Dec, “A conceptual model of DI diesel combustion based on laser-sheet imag- ing,” SAE Tech., vol. 970873, 1997.

[29] C. J. Lawn, “Lifted flames on fuel jets in co-flowing air,” Prog. Energy Combust.

Sci., vol. 35, pp. 1–30, 2009.

[30] R. Cabra, T. Myhrvold, J. Y. Chen, R. W. Dibble, A. N. Karpetis, and R. S.

Barlow, “Simultaneous laser Raman–Rayleigh–LIF measurements and numerical modelling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow,” Proc.

Combust. Inst., vol. 29, pp. 1881–1888, 2002.

[31] C. N. Markides and E. Mastorakos, “An experimental study of hydrogen autoigni- tion in a turbulent co-flow of heated air,”Proc. Combust. Inst., vol. 30, pp. 883–891, 2005.

[32] R. L. Gordon, A. R. Masri, and E. Mastorakos, “Simultaneous Rayleigh tempera- ture, OH- and CH2O-LIF imaging of methane jets in a vitiated coflow,” Combust.

Flame, vol. 155, pp. 181–195, 2008.

[33] E. Mastorakos, “Ignition of turbulent non-premixed flames,”Prog. Energy Combust.

Sci., vol. 35, pp. 57–97, 2009.

[34] C. S. Yoo, R. Sankaran, and J. H. Chen, “Three-dimensional direct numerical simu- lation of a turbulent lifted hydrogen jet flame in heated coflow: Flame stabilization and structure,” J. Fluid Mech., vol. 640, pp. 453–481, 2009.

[35] C. S. Yoo, E. S. Richardson, R. Sankaran, and J. H. Chen, “A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow,”Proc. Combust. Inst., vol. 33, pp. 1619–1627, 2011.

[36] S. G. Kerkemeier, C. N. Markides, C. E. Frouzakis, and K. Boulouchos, “Direct numerical simulation of the autoignition of a hydrogen plume in a turbulent coflow of hot air,” J. Fluid Mech., vol. 720, pp. 424–456, 2013.

[37] D. J. Micka and J. F. Driscoll, “Stratified jet flames in a heated (1390 K) air cross-flow with autoignition,”Combust. Flame, vol. 159, pp. 1205–1214, 2012.

[38] Y. Minamoto and J. H. Chen, “DNS of a turbulent lifted DME jet flame,”Combust.

Flame, vol. 169, pp. 38–50, 2016.

[39] A. Krisman, E. R. Hawkes, and J. H. Chen, “Two-stage autoignition and edge flames in a high pressure turbulent jet,” J. Fluid Mech., vol. 824, pp. 5–14, 2017.

[40] D. K. Dalakoti, B. Savard, E. R. Hawkes, A. Wehrfritz, H. Wang, M. S. Day, and J. B. Bell, “Direct numerical simulation of a spatially developing n-dodecane jet flame under Spray A thermochemical conditions: Flame structure and stabilization mechanism,” Combust. Flame, vol. 217, pp. 57–76, 2020.

[41] C. Gong, M. Jangi, and X.-S. Bai, “Large eddy simulation of n-dodecane spray combustion in a high pressure combustion vessel,”Appl. Energy, vol. 136, pp. 373–

381, 2014.

[42] A. R. W. Macfarlane, M. J. Dunn, M. Juddoo, and A. R. Masri, “Stabilisation of turbulent auto-igniting dimethyl ether jet flames issuing into a hot vitiated coflow,”

Proc. Combust. Inst., vol. 36, pp. 1661–1668, 2017.

[43] W. F. Carnell Jr. and M. W. Renfro, “Stable negative edge flame formation in a counterflow burner,”Combust. Flame., vol. 141, pp. 350–359, 2005.

[44] W. F. Carnell and M. W. Renfro, “Influence of advective heat flux on extinction scalar dissipation rate and velocity in negative edge flames,” Combust. Theory Model., vol. 10, pp. 815–830, 2006.

[45] C. B. Oh, A. Hamins, M. Bundy, and J. Park, “The two-dimensional structure of low strain rate counterflow nonpremixed-methane flames in normal and microgravity,”

Combust. Theory Model., vol. 12, pp. 283–302, 2008.

[46] Y. H. Chung, D. G. Park, J. Park, O. B. Kwon, J. H. Yun, and S. I. Keel, “Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diamters,” Fuel, vol. 105, pp. 540–550, 2013.

[47] T. Poinsot and D. Veynante,Theoretical and numerical combustion, 3rd ed. CNRS, 2011.

[48] J. C. Sutherland and C. A. Kennedy, “Improved boundary conditions for viscous, reacting, compressible flows,” J. Comput. Phys., vol. 191, pp. 502–524, 2003.

[49] J. H. Chen, E. R. Hawkes, R. Sankaran, S. D. Mason, and H. G. Im, “Direct numeri- cal simulation of ignition front propagation in a constant volume with temperature inhomogeneities I. Fundamental analysis and diagnostics,” Combst. Flame., vol.

145, pp. 128–144, 2006.

[50] T. Passot and A. Pouquet, “Numerical simulation of compressible homogeneous flows in the turbulent regime,” J. Fluid Mech., vol. 181, pp. 441–466, 1987.

[51] A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi, “A computational tool for the detailed kinetic modeling of laminar flames: application to C2H4/CH4 coflow flames,” Combust. Flame, vol. 160, pp. 870–886, 2013.

[52] ——, “Numerical modeling of laminar flames with detailed kinetics based on the operator-splitting method,” Energy Fuels, vol. 27, pp. 7730–7753, 2013.

[53] J. Li, Z. Zhao, A. Kazakov, and F. L. Dryer, “An updated comprehensive kinetic model of hydrogen combustion,” Int. J. Chem. Kinet., vol. 36, pp. 566–575, 2004.

[54] R. J. Kee, F. M. Rupley, E. Meeks, and J. A. Miller, “CHEMKIN-III: a fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinet- ics,” SAND96-8216, 1996.

[55] C. Kennedy, M. Carpenter, and R. Lewis, “Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations,”Appl. Numer. Math, vol. 35, pp. 177–219, 2000.

[56] C. Kennedy and M. Carpenter, “Several new numerical methods for compressible shear-layer simulations,” Appl. Numer. Math, vol. 14, pp. 397–433, 1994.

[57] C. S. Yoo, Y. Wang, A. Trouvé, and H. G. Im, “Characteristic boundary conditions for direct simulations of turbulent counterflow flames,” Combust. Theory Model., vol. 9, pp. 617–646, 2005.

[58] C. S. Yoo and H. G. Im, “Characteristic boundary conditions for simulations of compressible reacting flows with multi-dimensional, viscous and reaction effects,”

Combust. Theory Model., vol. 11, pp. 259–286, 2007.

[59] K. Seshadri and F. A. Williams, “Laminar flow between parallel plates with injec- tion of a reactant at high Reynolds number,” Int. J. Heat Mass Transfer, vol. 21, pp. 251–253, 1978.

[60] T. F. Lu and C. K. Law, “A criterion based on computational singular perturba- tion for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry,” Combust. Flame, vol. 154, pp. 761–774, 2008.

[61] Y. Ju, H. Guo, K. Maruta, and F. Liu, “On the extinction limit and flammability limit of non-adiabatic stretched methane-air premixed flames,”J. Fluid Mech., vol.

342, pp. 315–334, 1997.

[62] M. de Joannon, A. Saponaro, and A. Cavaliere, “Zero-dimensional analysis of methane diluted oxidation in rich conditions,” Proc. Combust. Inst., vol. 28, pp.

1639––1646, 2000.

[63] A. Cavaliere and M. de Joannon, “Mild combustion,”Prog. Energy Combust. Sci., vol. 30, pp. 329–366, 2004.

[64] S. K. Choi, S. Al-Noman, and S. H. Chung, “Simulation of non-autoignited and au- toignited laminar non-premixed jet flames of syngas in heated coflow air,”Combust.

Sci. Technol., vol. 187, pp. 132–147, 2015.

[65] S. M. Al-Noman, S. K. Choi, and S. H. Chung, “Numerical study of laminar non- premixed methane flames in coflow jets: Autoignited lifted flames with tribrachial

edges and MILD combustion at elevated temperatures,” Combust. Flame, vol. 171, pp. 119–132, 2016.

[66] R. W. Bilger, “The structure of turbulent nonpremixed flames,”Symp. (Int.) Com- bust., vol. 22, pp. 475–488, 1988.

[67] C. S. Yoo, E. S. Richardson, R. Sankaran, and J. H. Chen, “A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow,”Proc. Combust. Inst., vol. 33, pp. 1619–1627, 2011.

[68] Y. Xue and Y. Ju, “Studies on the liftoff properties of dimethyl ether jet diffusion flames,” Combust. Sci. Technol., vol. 178, pp. 2219–2247, 2006.

[69] K. Gkagkas and R. P. Lindstedt, “Transported PDF modelling with detailed chem- istry of pre- and auto-ignition in CH4/air mixtures,” Proc. Combust. Inst., vol. 31, pp. 1559–1566, 2007.

[70] R. L. Gordon, A. R. Masri, and E. Mastorakos, “Heat release rate as represented by [OH] × [CH2O] and its role in autoignition,” Combust. Theory Model., vol. 13, pp. 645–670, 2009.

[71] Y. Minamoto, N. Swaminathan, R. S. Cant, and T. Leung, “Reaction zones and their structure in MILD combustion,” Combust. Sci. Technol., vol. 186, pp. 1075–

1096, 2014.

[72] Z. Chen, V. M. Reddy, S. Ruan, N. A. K. Doan, W. L. Roberts, and N. Swami- nathan, “Simulation of MILD combustion using perfectly stirred reactor model,”

Proc. Combust. Inst., vol. 36, pp. 4279–4286, 2017.

[73] T. Lu, C. S. Yoo, J. H. Chen, and C. K. Law, “Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: a chemical explosive mode analysis,” J. Fluid Mech., vol. 652, pp. 45–64, 2010.

[74] Z. Luo, C. S. Yoo, E. S. Richardson, J. H. Chen, C. K. Law, and T. Lu, “Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow,”Combust. Flame, vol. 159, pp. 265–274, 2012.

[75] R. Shan, C. S. Yoo, J. H. Chen, and T. Lu, “Computational diagnostics for n- heptane flames with chemical explosive mode analysis,” Combust. Flame, vol. 159, pp. 3119–3127, 2012.

[76] M. B. Luong, G. H. Yu, S. H. Chung, and C. S. Yoo, “Ignition of a lean PRF/air mixture under RCCI/SCCI conditions: Chemical aspects,” Proc. Combust. Inst., vol. 36, pp. 3587–3596, 2017.

[77] A. Lifshitz, K. Scheller, A. Burcat, and G. B. Skinner, “Shock-tube investigation of ignition in methane-oxygen-argon mixtures,” Combust. Flame., vol. 16, pp. 311–

321, 1971.

[78] Y. Ju and T. Niioka, “Ignition simulation of methane/hydrogen mixtures in a su- personic mixing layer,” Combust. Flame., vol. 102, pp. 462–470, 1995.

[79] J. H. Chen, E. R. Hawkes, R. Sankaran, S. D. Mason, and H. G. Im, “Direct numer- ical simulation of ignition front propagation in a constant volume with temperature inhomogeneities I. Fundamental analysis and diagnostics,” Combust. Flame., vol.

145, pp. 128–144, 2006.

[80] R. L. Gordon, A. R. Masri, S. B. Pope, and G. M. Goldin, “Transport budgets in turbulent lifted flames of methane autoigniting in a vitiated co-flow,” Combust.

Flame., vol. 151, pp. 495–511, 2007.

[81] O. Schulz and N. Noiray, “Autoignition flame dynamics in sequential combustors,”

Combst. Flame., vol. 192, pp. 86–100, 2018.

[82] X. Gao, S. Yang, B. Wu, and W. Sun, “The effects of ozonolysis activated autoigni- tion on non-premixed jet flame dynamics: a numerical and experimental study.”

53rd AIAA/SAE/ASEE Joint Propulsion Conference, 2017.

[83] O. Schulz, T. Jaravel, T. Poinsot, B. Cuenot, and N. Noiray, “A criterion to dis- tinguish autoignition and propagation applied to a lifted methane-air jet flame,”

Proc. Combust. Inst., vol. 36, pp. 1–8, 2016.

[84] C. H. Gibson, “Find structure of scalar fields mixed by turbulence. I. Zero-gradient points and minimal gradient surfaces,” Phys. Fluids, vol. 11, pp. 2305–2315, 1968.

[85] T. Echekki and J. H. Chen, “Structure and propagation of methanol–air triple flames,” Combust. Flame, vol. 114, pp. 231–245, 1998.

[86] H. G. Im and J. H. Chen, “Structure and propagation of triple flames in partially premixed hydrogen–air mixtures,” Combust. Flame, vol. 119, pp. 436–454, 1999.

[87] H. S. Bak, S. R. Lee, J. H. Chen, and C. S. Yoo, “A numerical study of the diffusive- thermal instability of opposed nonpremixed tubular flames,” Combust. Flame, vol.

162, pp. 4612–4621, 2015.

[88] S. O. Kim, M. B. Luong, J. H. Chen, and C. S. Yoo, “A DNS study of the ignition of lean PRF/air mixtures with temperature inhomogeneities under high pressure and intermediate temperature,” Combust. Flame, vol. 162, pp. 717–726, 2015.

[89] R. Sankaran, E. R. Hwakes, C. S. Yoo, and J. H. Chen, “Response of flame thick- ness and propagation speed under intense turbulence in spatially developing lean premixed methane–air jet flames,”Combust. Flame., vol. 162, pp. 3294–3306, 2015.

[90] H. S. Bak and C. S. Yoo, “Flame instabilities and flame cell dynamics in opposed nonpremixed tubular flames with radiative heat loss,” Combust. Flame, vol. 194, pp. 322–333, 2018.

[91] C. S. Yoo, T. Lu, J. H. Chen, and C. K. Law, “Direct numerical simulations of igni- tion of a lean n-heptane/air mixture with temperature inhomogeneities at constant volume: Parametric study,” Combust. Flame, vol. 158, pp. 1727–1741, 2011.

[92] R. W. Grout, A. Gruber, C. S. Yoo, and J. H. Chen, “Direct numerical simulation of flame stabilization downstream of a transverse fuel jet in cross flow,”Proc. Combust.

Inst., vol. 33, pp. 1629–1637, 2011.

[93] H. Kolla, R. W. Grout, A. Gruber, and J. H. Chen, “Mechanisms of flame stabi- lization and blowout in a reacting turbulent hydrogen jet in cross-flow,” Combust.

Flame, vol. 159, pp. 2755–2766, 2012.

[94] M. B. Luong, Z. Luo, T. Lu, S. H. Chung, and C. S. Yoo, “Direct numerical simu- lations of the ignition of lean primary reference fuel/air mixtures with temperature inhomogeneities,” Combust. Flame, vol. 160, pp. 2038–2047, 2013.

[95] M. B. Luong, T. Lu, S. H. Chung, and C. S. Yoo, “Direct numerical simulations of the ignition of a lean biodiesel/air mixture with temperature and composition inhomogeneities at high pressure and intermediate temperature,”Combust. Flame, vol. 161, pp. 2878–2889, 2014.

[96] K. S. Jung, S. O. Kim, T. Lu, S. H. Chung, B. J. Lee, and C. S. Yoo, “Differen- tial diffusion effect on the stabilization characteristics of autoignited laminar lifted methane/hydrogen jet flames in heated coflow air,” Combust. Flame, vol. 198, pp.

305–319, 2018.

[97] L. Cifuentes, E. Fooladgar, and C. Duwig, “Chemical explosive mode analysis for a jet-in-hot-coflow burner operating in MILD combustion,” Fuel, vol. 232, pp. 712–

723, 2018.

[98] S. K. Choi and S. H. Chung, “Autoignited and non-autoignited lifted flames of pre-vaporized n-heptane in coflow jets at elevated temperatures,”Combust. Flame, vol. 160, pp. 1717–1724, 2013.

[99] Y. B. Zel’dovich, “Regime classification of an exothermic reaction with nonuniform initial conditions,” Combust. Flame., vol. 39, pp. 211–226, 1980.

[100] C. K. Westbrook, “Chemical kinetics of hydrocarbon ignition in practical combus- tion systems,”Proc. Combust. Inst., vol. 28, pp. 1563–1577, 2000.

[101] Z. Zhao, M. Chaos, A. Kazakov, and F. L. Dryer, “Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether,”Int. J. Chem. Kinet, vol. 40, pp. 1–18, 2008.

[102] P. Dagaut, J. Boettner, and M. Cathonnet, “Chemical kinetic study of dimethyl ether oxidation in a jet stirred reaction from 1 to 10 atm: experiments and kinetic modeling,” Symp. (Int.) Combust., vol. 26, pp. 627–632, 1996.

[103] P. Dagaut, C. Daly, J. M. Simmie, and M. Cathonnet, “The oxidation and ignition of dimethylether from low to high temperature (500 – 1600 K): experiments and kinetic modeling,” Symp. (Int.) Combust., vol. 27, pp. 361–369, 1998.

[104] S. L. Fischer, F. L. Dryer, and H. J. Curran, “The reaction kinetics of dimethyl ether. I: High-temperature pyrolysis and oxidation in flow reactors,” Int. J. Chem.

Kinet, vol. 32, pp. 713–740, 2000.

[105] G. Bansal, A. Mascarenhas, and J. H. Chen, “Direct numerical simulations of autoignition in stratified dimethyl-ether(DME)/air turbulent mixtures,” Combust.

Flame, vol. 162, pp. 688–702, 2015.

[106] J. Buckmaster, “Edge-flames,” Prog. Energy Combust. Sci, vol. 28, pp. 435–475, 2002.

[107] S. H. Chung, “Stabilization, propagation and instability of tribrachial triple flames,”

Proc. Combust. Inst., vol. 31, pp. 877–892, 2007.

[108] N. Naser, S. Y. Yang, G. Kalghatgi, and S. H. Chung, “Relating the octane numbers of fuels to ignition delay times measured in an ignition quality tester (IQT),” Fuel, vol. 187, pp. 117–127, 2017.

[109] T. Aoyama, Y. Hattori, J. Mizuta, and Y. Sato, “An experimental study on premixed-charge compression ignition gasoline engine,”SAE paper, p. 960081, 1996.

[110] K. S. Jung, B. R. Jung, S. H. Kang, S. H. Chung, and C. S. Yoo, “A numerical study of the pyrolysis effect on autoignited laminar lifted dimethyl ether jet flames in heated coflow air,” Combust. Flame, vol. 209, pp. 225–238, 2019.

[111] M. K. Kim, S. H. Won, and S. H. Chung, “Effect of velocity gradient on propagation speed of tribrachial flames in lamianr coflow jets,” Proc. Combust. Inst., vol. 31, pp. 901–908, 2007.

[112] C. Xu, J.-W. Park, C. S. Yoo, J. H. Chen, and T. Lu, “Identification of premixed flame propagation modes using chemical explosive mode analysis,”Proc. Combust.

Inst., vol. 37, pp. 2407–2415, 2019.

[113] M. B. Luong, F. E. H. P´erez, and H. G. Im, “Prediction of ignition modes of NTC-fuel/air mixtures with temperature and concentration fluctuations,”Combust.

Flame, vol. 213, pp. 382–393, 2020.

[114] P. Domingo, L. Vervisch, and J. Réveillon, “DNS analysis of partially premixed combustion in spray and gaseous turbulent flame-bases stabilized in hot air,” Com- bust. Flame, vol. 140, pp. 172–195, 2005.

[115] E. Mastorakos, T. A. Baritaud, and T. J. Poinsot, “Numerical simulations of au- toignition in turbulent mixing flows,”Combust. Flame, vol. 109, pp. 198–223, 1997.

[116] H. G. Im, J. H. Chen, and C. K. Law, “Ignition of hydrogen-air mixing layer in turbulent flows,” Symp. (Int.) Combust., vol. 27, pp. 1047–1056, 1998.

[117] T. Echekki and J. H. Chen, “Direct numerical simulation of autoignition in non- homogeneous hydrogen–air mixtures,”Combust. Flame, vol. 134, pp. 169–191, 2003.

[118] R. R. Cao, S. B. Pope, and A. R. Masri, “Turbulent lifted flames in a vitiaed coflow investigated using joing PDF calculations,” Combust. Flame, vol. 142, pp. 438–453, 2005.

[119] C. S. Yoo, J. H. Chen, and J. H. Frank, “A numerical study of transient ignition and flame characteristics of diluted hydrogen versus heated air in counterflow,”

Combust. Flame, vol. 156, pp. 140–151, 2009.

[120] N. Chakraborty, E. Mastorakos, and R. S. Cant, “Effects of turbulence on spark ignition in inhomogeneous mixtures: a direct numerical simulation (DNS) study,”

Combust. Sci. Technol., vol. 179, pp. 293–317, 2007.

[121] A. Krisman, E. R. Hawkes, M. Talei, A. Bhagatwala, and J. H. Chen, “Charac- terisation of two-stage ignition in diesel engine-relevant thermochemical conditions using direct numerical simulation,” Combust. Flame, vol. 172, pp. 326–341, 2016.

[122] S. Karami, E. R. Hawkes, M. Talei, and J. H. Chen, “Edge flame structure in a turbulent lifted flame: A direct numerical simulation study,” Combust. Flame, vol.

169, pp. 110–128, 2016.

Dalam dokumen 506521.pdf (Halaman 179-198)