• Tidak ada hasil yang ditemukan

Summary

Dalam dokumen Chapter 1. Introduction (Halaman 88-99)

I have reported a new coating method for DSSC working-electrode preparation. The method could control the reaction temperatures with concentrations of N719 in various solvents. Especially ethylene glycol and glycerol mixture solvent, was ideally applied to shorten the coating time to only 3 ~5 min which is much improved from the several hour scale needed for the conventional solvents. At high temperatures, Gly is still viscous, but EG viscosity is reduced. At temperatures near 90 ℃, EG becomes a mobile vehicle to deliver dyes to the TiO2 surface and the relatively viscous Gly keeps the surface protected from air and moisture. Dye coating could be easily controlled and fast. So, I could make dual-dye-band working electrodes. Also, I have reported a new co-adsorbant such as TDT to enhance the conversion efficiency of the DSSCs mainly by current density increase. I believe that current density increase may due to insulating layer formation by TDT like other co-adsorbants, higher sensitivity to light, and less dye-dimers.

I also showed that NiO was decorated onto vertically aligned silicon nanowire arrays with a carbon shell (NiO@SiNW/C). The fabricated material was employed as the counter electrode for the I/I3

redox reaction in the DSSCs. The NiO decoration induced an increase in both the Jsc and the FF, which may be due to the improvement in the hole-charge transfer resistance. As a result, the DSSC based on the NiO@SiNW/C counter electrode achieved the highest power conversion efficiency.

Therefore, NiO@SiNW/C is potentially a promising alternative to conventional Pt counter electrodes for DSSCs.

References

1 Kalyanasundaram, K., Photochemical and Photoelectrochemical Approaches to Energy Conversion. In Dye Sensitized Solar Cells, Kalyanasundaram, K., Ed. EPFL Press: 2010; pp 1-43.

2 Park, N. G.; van de Lagemaat, J.; Frank, A. J., Comparison of Dye-Sensitized Rutile- and Anatase- Based TiO2 Solar Cells. The Journal of Physical Chemistry B 2000, 104 (38), 8989-8994.

3 Becquerel, A. E., Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques. Comptes Rendus de L´Academie des Sciences 1839, 9.

4 Grätzel, M., Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C:

Photochemistry Reviews 2003, 4 (2), 145-153.

5 Grätzel, M., Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic Chemistry 2005, 44 (20), 6841-6851.

6 Memming, R., PHOTOCHEMICAL AND ELECTROCHEMICAL PROCESSES OF EXCITED DYES AT SEMICONDUCTOR AND METAL ELECTRODES*. Photochemistry and Photobiology 1972, 16 (4), 325-333.

7 Matsumura, M.; Nomura, Y.; Tsubomura, H., Dye-sensitization on the Photocurrent at Zinc Oxide Electrode in Aqueous Electrolyte Solution. Bulletin of the Chemical Society of Japan 1977, 50 (10), 2533-2537.

8 O'Regan, B.; Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353 (6346), 737-740.

9 Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-sensitized solar cells. Chemical Reviews 2010, 110 (11), 6595-6663.

10 Austin, R. H.; Lim, S.-f., The Sackler Colloquium on promises and perils in nanotechnology for medicine. Proceedings of the National Academy of Sciences 2008, 105 (45), 17217-17221.

11 Woodley, S. M.; Catlow, C. R. A., Structure prediction of titania phases: Implementation of Darwinian versus Lamarckian concepts in an Evolutionary Algorithm. Computational Materials Science 2009, 45 (1), 84-95.

12 Xu, Q.; Zhang, J.; Feng, Z.; Ma, Y.; Wang, X.; Li, C., Surface Structural Transformation and the Phase Transition Kinetics of Brookite TiO2. Chemistry – An Asian Journal 2010, 5 (10), 2158-2161.

13 Masatoshi, Y.; Youhei, N.; Keiichi, Y.; Shin, S.; Liyuan, H., Effective charge collection in dye- sensitized nanocrystalline TiO 2. Advances in Natural Sciences: Nanoscience and Nanotechnology 2013, 4 (1), 015006.

14 Chi Hwan, L.; Sang, A. K.; Mi Ran, J.; Kwang-Soon, A.; Yoon Soo, H.; Jae Hong, K., Aggregation control of organic sensitizers for panchromatic dye co-sensitized solar cells. Japanese Journal of Applied Physics 2014, 53 (8S3), 08NC04.

15 Hagfeldt, A.; Grätzel, M., Molecular Photovoltaics. Accounts of Chemical Research 2000, 33 (5), 269-277.

16 Yu, U.; Shogo, M.; Kohjiro, H.; Nagatoshi, K., Carbazole Dyes with Ether Groups for Dye- Sensitized Solar Cells: Effect of Negative Charges in Dye Molecules on Electron Lifetime. Japanese Journal of Applied Physics 2012, 51 (10S), 10NE14.

17 Kang, T. S.; Chun, K. H.; Hong, J. S.; Moon, S. H.; Kim, K. J., Enhanced Stability of Photocurrent-Voltage Curves in Ru(II)-Dye-Sensitized Nanocrystalline TiO2 Electrodes with Carboxylic Acids. J. Electrochem. Soc. 2000, 147 (8), 3049-3053.

18 Savaş, S.; Cafer, A.; Seçkin, A., High-efficiency dye-sensitized solar cells using ferrocene-based electrolytes and natural photosensitizers. Journal of Physics D: Applied Physics 2012, 45 (42), 425101.

19 Kusama, H.; Arakawa, H., Influence of aminotriazole additives in electrolytic solution on dye- sensitized solar cell performance. Journal of Photochemistry and Photobiology A: Chemistry 2004, 164 (1–3), 103-110.

20 Kubo, W.; Murakoshi, K.; Kitamura, T.; Wada, Y.; Hanabusa, K.; Shirai, H.; Yanagida, S., Fabrication of Quasi-solid-state Dye-sensitized TiO<SUB>2</SUB> Solar Cells Using Low Molecular Weight Gelators. Chemistry Letters 1998, 27 (12), 1241-1242.

21 Josef, V.; Attila, J. M.; Dan, L.; David, O.; Gordon, W.; Ray, B.; Anvar, Z., Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells.

Nanotechnology 2012, 23 (8), 085201.

22 Murakami, T. N.; Ito, S.; Wang, Q.; Nazeeruddin, M. K.; Bessho, T.; Cesar, I.; Liska, P.;

Humphry-Baker, R.; Comte, P.; Péchy, P.; Grätzel, M., Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes. J. Electrochem. Soc. 2006, 153 (12), A2255-A2261.

23 Olsen, E.; Hagen, G.; Eric Lindquist, S., Dissolution of platinum in methoxy propionitrile containing LiI/I2. Sol. Energy Mater. Sol. Cells 2000, 63 (3), 267-273.

24 Guai, G. H.; Leiw, M. Y.; Ng, C. M.; Li, C. M., Sulfur-doped nickel oxide thin film as an alternative to Pt for dye-sensitized solar cell counter electrodes. Adv. Energy Mater. 2012, 2 (3), 334- 338.

25 Kay, A.; Grätzel, M., Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells 1996, 44 (1), 99-117.

26 Imoto, K.; Takahashi, K.; Yamaguchi, T.; Komura, T.; Nakamura, J.-i.; Murata, K., High- performance carbon counter electrode for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2003, 79 (4), 459-469.

27 Suzuki, K.; Yamaguchi, M.; Kumagai, M.; Yanagida, S., Application of Carbon Nanotubes to Counter Electrodes of Dye-sensitized Solar Cells. Chemistry Letters 2003, 32 (1), 28-29.

28 Cong, J.; Yang, X.; Kloo, L.; Sun, L., Iodine/iodide-free redox shuttles for liquid electrolyte- based dye-sensitized solar cells. Energy & Environmental Science 2012, 5 (11), 9180-9194.

29 Gervaldo, M.; Fungo, F.; Durantini, E. N.; Silber, J. J.; Sereno, L.; Otero, L., J. Phys. Chem. B 2005, 109, 20953.

30 Hauch, A.; Georg, A., Electrochim. Acta 2001, 46, 3457.

31 O’Regan, B. C.; Lopez-Duarte, I.; Martinez-Diaz, M. V.; Forneli, A.; Albero, J.; Morandeira, A.;

Palomares, E.; Torres, T.; Durrant, J. R., J. Am. Chem. Soc. 2008, 130, 2906.

32 O’Regan, B. C.; Walley, K.; Juozapavicius, M.; Anderson, A. Y.; Matar, F.; Ghaddar, T.;

Zakeeruddin, S. M.; Klein, C.; Durrant, J. R., J. Am. Chem. Soc. 2009, 131, 3541.

33 Nogueira, A. F.; Paoli, M. A. D.; Montanari, I.; Monkhouse, R.; Nelson, J.; Durrant, J. R., J. Phys.

Chem. B 2001, 105, 7517.

34 Montanari, I.; Nelson, J.; Durrant, J. R., J. Phys. Chem. B 2002, 106, 12203.

35 Bauer, C.; Boschloo, G.; Mukhtar, E.; Hagfeldt, A., J. Phys. Chem. B 2002, 106, 12693.

36 Haque, S. A.; Tachibana, Y.; Klug, D. R.; Durrant, J. R., J. Phys. Chem. B 1998, 102, 1745.

37 Pelet, S.; Moser, J. E.; Grätzel, M., J. Phys. Chem. B 2000, 104, 1791.

38 Kay, A.; Humphry-Baker, R.; Grätzel, M., J. Phys. Chem. 1994, 98, 952.

39 Mosurkal, R.; He, J. A.; Kumar, J.; Li, L.; Walker, J.; Samuelson, L., Mater. Res. Soc. Symp. Proc.

2002, 708, 367.

40 Tatay, S.; Haque, S. A.; O’Regan, B.; Durrant, J. R.; Verhees, W. J. H.; Kroon, J. M.; Vidal- Ferran, A.; Gavina, P.; Palomares, E., J. Mater. Chem. 2007, 17, 3037.

41 Qin, P.; Yang, X.; Chen, R.; Sun, L.; Marinado, T.; Edvinsson, T.; Boschloo, G.; Hagfeldt, A., J.

Phys. Chem. C 2007, 111, 1853.

42 Wenger, S.; Bouit, P. A.; Chen, Q.; Teuscher, J.; Di Censo, D.; Humphry-Baker, R.; Moser, J. E.;

Delgado, J. L.; Martín, N.; Zakeeruddin, S. M.; Grätzel, M., J. Am. Chem. Soc. 2010, 132, 5164.

43 Ferrere, S.; Zaban, A.; Gregg, B. A., J. Phys. Chem. B 1997, 101, 4490.

44 Wolfbauer, G.; Bond, A. M.; Eklund, J. C.; MacFarlane, D. R., Sol. Energy Mater. Sol. Cells 2001, 70, 85.

45 Oskam, G.; Bergeron, B. V.; Meyer, G. J.; Searson, P. C., J. Phys. Chem. B 2001, 105, 6867.

46 Privalov, T.; Boschloo, G.; Hagfeldt, A.; Svensson, P. H.; Kloo, L., J. Phys. Chem. C 2009, 113, 783.

47 Koide, N.; Han, L., Rev. Sci. Instrum. 2004, 75, 2828.

48 Seaman, C. H., Sol. Energy 1982, 29, 291.

49 Green, M. A., Solar cell fill factors: General graph and empirical expressions. Solid-State Electronics 1981, 24.

50 Nelson, J.; Haque, S. A.; Klug, D. R.; Durrant, J. R., Phys. Rev. B 2001, 63, 205321.

51 Yan, S. G.; Hupp, J. T., J. Phys. Chem. B 1997, 101, 1493.

52 Hara, K.; Kurashige, M.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H., Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New Journal of Chemistry 2003, 27 (5), 783-785.

53 Schmidt-Mende, L.; Bach, U.; Humphry-Baker, R.; Horiuchi, T.; Miura, H.; Ito, S.; Uchida, S.;

Grätzel, M., Organic Dye for Highly Efficient Solid-State Dye-Sensitized Solar Cells. Adv Mater 2005, 17 (7), 813-815.

54 Dloczik, L.; Ileperuma, O.; Lauermann, I.; Peter, L. M.; Ponomarev, E. A.; Redmond, G.; Shaw, N. J.; Uhlendorf, I., Dynamic Response of Dye-Sensitized Nanocrystalline Solar Cells: 

Characterization by Intensity-Modulated Photocurrent Spectroscopy. The Journal of Physical Chemistry B 1997, 101 (49), 10281-10289.

55 Bisquert, J., J. Phys. Chem. B 2004, 108, 2323.

56 Greijer-Agrell, H.; Boschloo, G.; Hagfeldt, A., J. Phys. Chem. B 2004, 108, 12388.

57 van de Krol, R.; Goossens, A.; Meulenkamp, E. A., J. Appl. Phys. 2001, 90, 2235.

58 Fabregat-Santiago, F.; Bisquert, J.; Garcia-Belmonte, G.; Boschloo, G.; Hagfeldt, A., Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Sol. Energy Mater. Sol. Cells 2005, 87 (1–4), 117-131.

59 He, C.; Zhao, L.; Zheng, Z.; Lu, F., J. Phys. Chem. C 2008, 112, 18730.

60 Wang, H.; He, J.; Boschloo, G.; Lindström, H.; Hagfeldt, A.; Lindquist, S. E., J. Phys. Chem. B 2001, 105, 2529.

61 Hasselman, G. M.; Watson, D. F.; Stromberg, J. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S.;

Meyer, G. J., J. Phys. Chem. B 2006, 110, 25430.

62 Desilvestro, J.; Grätzel, M.; Kavan, L.; Moser, J.; Augustynski, J., J. Am. Chem. Soc. 1985, 107, 2988.

63 Nazeeruddin, M. K.; Liska, P.; Moser, J.; Vlachopoulos, N.; Grätzel, M., Helv. Chim. Acta 1990, 73, 1788.

64 Lenzmann, F. O.; Kroon, J. M., Adv. OptoElectron. 2007, 65073/1.

65 Grätzel, M.; Leite, E. R., Nanostructured Materials for Electrochemical Energy Production and Storage. 2008.

66 Hsieh, C.-T.; Yang, B.-H.; Lin, J.-Y., One- and two-dimensional carbon nanomaterials as counter electrodes for dye-sensitized solar cells. Carbon 2011, 49 (9), 3092-3097.

67 Jiang, Q. W.; Li, G. R.; Wang, F.; Gao, X. P., Highly ordered mesoporous carbon arrays from natural wood materials as counter electrode for dye-sensitized solar cells. Electrochemistry Communications 2010, 12 (7), 924-927.

68 Balis, N.; Makris, T.; Dracopoulos, V.; Stergiopoulos, T.; Lianos, P., Quasi-Solid-State Dye- Sensitized Solar Cells made with poly(3,4-ethylenedioxythiophene)-functionalized counter-electrodes.

69 Pringle, J. M.; Armel, V.; MacFarlane, D. R., Electrodeposited PEDOT-on-plastic cathodes for dye-sensitized solar cells. Chem. Commun. 2010, 46 (29), 5367-5369.

70 Cho, S.; Hwang, S. H.; Kim, C.; Jang, J., Polyaniline porous counter-electrodes for high performance dye-sensitized solar cells. J. Mater. Chem. 2012, 22 (24), 12164-12171.

71 Jeon, S. S.; Kim, C.; Ko, J.; Im, S. S., Spherical polypyrrole nanoparticles as a highly efficient counter electrode for dye-sensitized solar cells. J. Mater. Chem. 2011, 21 (22), 8146-8151.

72 Veerappan, G.; Bojan, K.; Rhee, S.-W., Amorphous carbon as a flexible counter electrode for low cost and efficient dye sensitized solar cell. Renewable Energy 2012, 41 (0), 383-388.

73 Ramasamy, E.; Chun, J.; Lee, J., Soft-template synthesized ordered mesoporous carbon counter electrodes for dye-sensitized solar cells. Carbon 2010, 48 (15), 4563-4565.

74 Nazeeruddin, M. K.; Splivallo, R.; Liska, P.; Comte, P.; Grätzel, M., A swift dye uptake procedure for dye sensitized solar cells. Chem. Commun. 2003, 9 (12), 1456-1457.

75 Koops, S. E.; O'Regan, B. C.; Barnes, P. R. F.; Durrant, J. R., Parameters influencing the efficiency of electron injection in dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131 (13), 4808- 4818.

76 Wang, G.; Lin, R.; Lin, Y.; Li, X.; Zhou, X.; Xiao, X., A novel high-performance counter electrode for dye-sensitized solar cells. Electrochim. Acta 2005, 50 (28), 5546-5552.

77 Grätzel, M., The advent of mesoscopic injection solar cells. Progress in Photovoltaics: Research and Applications 2006, 14 (5), 429-442.

78 Jun, Y.; Kim, J.; Kang, M. G., A study of stainless steel-based dye-sensitized solar cells and modules. Sol. Energy Mater. Sol. Cells 2007, 91 (9), 779-784.

79 Jun, Y.; Son, J.-H.; Sohn, D.; Kang, M. G., A module of a TiO2 nanocrystalline dye-sensitized solar cell with effective dimensions. Journal of Photochemistry and Photobiology A: Chemistry 2008, 200 (2–3), 314-317.

80 Sastrawan, R.; Beier, J.; Belledin, U.; Hemming, S.; Hinsch, A.; Kern, R.; Vetter, C.; Petrat, F. M.;

Prodi-Schwab, A.; Lechner, P.; Hoffmann, W., New interdigital design for large area dye solar modules using a lead-free glass frit sealing. Progress in Photovoltaics: Research and Applications 2006, 14 (8), 697-709.

81 Toyoda, T.; Sano, T.; Nakajima, J.; Doi, S.; Fukumoto, S.; Ito, A.; Tohyama, T.; Yoshida, M.;

Kanagawa, T.; Motohiro, T.; Shiga, T.; Higuchi, K.; Tanaka, H.; Takeda, Y.; Fukano, T.; Katoh, N.;

Takeichi, A.; Takechi, K.; Shiozawa, M., Outdoor performance of large scale DSC modules. Journal of Photochemistry and Photobiology A: Chemistry 2004, 164 (1–3), 203-207.

82 Seo, H.; Son, M. K.; Shin, I.; Kim, J. K.; Lee, K. J.; Prabakar, K.; Kim, H. J., Faster dye- adsorption of dye-sensitized solar cells by applying an electric field. Electrochim. Acta 2010, 55 (13), 4120-4123.

83 Lee, C. R.; Kim, H. S.; Jang, I. H.; Im, J. H.; Park, N. G., Pseudo first-order adsorption kinetics of N719 dye on TiO2 surface. ACS Appl. Mater. 2011, 3 (6), 1953-1957.

84 Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.;

Takeru, B.; Grätzel, M., Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 2005, 127 (48), 16835-16847.

85 Sauvage, F.; Decoppet, J.-D.; Zhang, M.; Zakeeruddin, S. M.; Comte, P.; Nazeeruddin, M.; Wang, P.; Grätzel, M., Effect of Sensitizer Adsorption Temperature on the Performance of Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2011, 133 (24), 9304-9310.

86 Fredin, K.; Anderson, K. F.; Duffy, N. W.; Wilson, G. J.; Fell, C. J.; Hagberg, D. P.; Sun, L.;

Bach, U.; Lindquist, S. E., Effect on cell efficiency following thermal degradation of dye-sensitized mesoporous electrodes using N719 and D5 sensitizers. J. Phys. Chem. C 2009, 113 (43), 18902-18906.

87 Murakoshi, K.; Kano, G.; Wada, Y.; Yanagida, S.; Miyazaki, H.; Matsumoto, M.; Murasawa, S., Importance of binding states between photosensitizing molecules and the TiO2 surface for efficiency in a dye-sensitized solar cell. J. Electroanal. Chem. 1995, 396 (1–2), 27-34.

88 Philippopoulos, A. I.; Terzis, A.; Raptopoulou, C. P.; Catalano, V. J.; Falaras, P., Synthesis, characterization, and sensitizing properties of heteroleptic RuII complexes based on 2,6-bis(1- pyrazolyl)pyridine and 2,2′-bipyridine-4,4′-dicarboxylic acid ligands. Eur. J. Inorg. Chem. 2007, (36), 5633-5644.

89 Hirose, F.; Shikaku, M.; Kimura, Y.; Niwano, M., IR study on N719 dye adsorption with high temperature dye solution for highly efficient dye-sensitized solar cells. J. Electrochem. Soc. 2010, 157 (11), B1578-B1581.

90 Finnie, K. S.; Bartlett, J. R.; Woolfrey, J. L., Vibrational spectroscopic study of the coordination of (2,2′-bipyridyl-4,4′-dicarboxylic acid)ruthenium(II) complexes to the surface of nanocrystalline titania. Langmuir 1998, 14 (10), 2741-2749.

91 Pérez León, C.; Kador, L.; Peng, B.; Thelakkat, M., Characterization of the adsorption of Ru-bpy dyes on mesoporous TiO 2 films with UV-Vis, Raman, and FTIR spectroscopies. J. Phys. Chem. B 2006, 110 (17), 8723-8730.

92 Bisquert, J.; Vikhrenko, V. S., Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells. J. Phys. Chem. B 2004, 108 (7), 2313-2322.

93 Wang, Q.; Moser, J. E.; Grätzel, M., Electrochemical impedance spectroscopic analysis of dye- sensitized solar cells. J. Phys. Chem. B 2005, 109 (31), 14945-14953.

94 Han, L.; Koide, N.; Chiba, Y.; Mitate, T., Modeling of an equivalent circuit for dye-sensitized solar cells. Appl. Phys. Lett. 2004, 84 (13), 2433-2435.

95 Hoshikawa, T.; Yamada, M.; Kikuchi, R.; Eguchi, K., Impedance analysis of internal resistance affecting the photoelectrochemical performance of dye-sensitized solar cells. J. Electrochem. Soc.

2005, 152 (2), E68-E73.

96 Gratzel, M., Photoelectrochemical cells. Nature 2001, 414 (6861), 338-344.

97 Yasuo, C.; Ashraful, I.; Yuki, W.; Ryoichi, K.; Naoki, K.; Liyuan, H., Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%. Japanese Journal of Applied Physics 2006, 45 (7L), L638.

98 Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.;

Vlachopoulos, N.; Graetzel, M., Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'- dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 1993, 115 (14), 6382-6390.

99 Atsushi, F.; Nobuhiro, F.; Ryoichi, K.; Naoki, K.; Ryohsuke, Y.; Hiroyuki, K.; Liyuan, H., Dye- Sensitized Photovoltaic Module with Conversion Efficiency of 8.4%. Applied Physics Express 2009, 2 (8), 082202.

100 Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; Grätzel, M., A Binary Ionic Liquid Electrolyte to Achieve ≥7% Power Conversion Efficiencies in Dye-Sensitized Solar Cells. Chem.

Mater. 2004, 16 (14), 2694-2696.

101 Wang, M.; Plogmaker, S.; Humphry-Baker, R.; Pechy, P.; Rensmo, H.; Zakeeruddin, S. M.;

Grätzel, M., Molecular-Scale Interface Engineering of Nanocrystalline Titania by Co-adsorbents for Solar Energy Conversion. ChemSusChem 2012, 5 (1), 181-187.

102 Wang, M.; Li, X.; Lin, H.; Pechy, P.; Zakeeruddin, S. M.; Gratzel, M., Passivation of nanocrystalline TiO2 junctions by surface adsorbed phosphinate amphiphiles enhances the photovoltaic performance of dye sensitized solar cells. Dalton Transactions 2009, (45), 10015- 10020.

103 Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R., Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers. J. Am. Chem. Soc. 2003, 125 (2), 475-482.

104 Reynal, A.; Palomares, E., Increasing the performance of cis-dithiocyanato(4,4[prime or minute]-dicarboxy-2,2[prime or minute]-bipyridine)(1,10-phenanthroline) ruthenium (ii) based DSC using citric acid as co-adsorbant. Energy & Environmental Science 2009, 2 (10), 1078-1081.

105 Schlichthörl, G.; Huang, S. Y.; Sprague, J.; Frank, A. J., Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells:  A Study by Intensity Modulated Photovoltage Spectroscopy. The Journal of Physical Chemistry B 1997, 101 (41), 8141- 8155.

106 Magne, C.; Urien, M.; Ciofini, I.; Tugsuz, T.; Pauporte, T., Amphiphilic acids as co-adsorbents of metal-free organic dyes for the efficient sensitization of nanostructured photoelectrode. RSC Adv.

2012, 2 (31), 11836-11842.

107 Marinado, T.; Hahlin, M.; Jiang, X.; Quintana, M.; Johansson, E. M. J.; Gabrielsson, E.;

Plogmaker, S.; Hagberg, D. P.; Boschloo, G.; Zakeeruddin, S. M.; Grätzel, M.; Siegbahn, H.; Sun, L.;

Hagfeldt, A.; Rensmo, H., Surface Molecular Quantification and Photoelectrochemical Characterization of Mixed Organic Dye and Coadsorbent Layers on TiO2 for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2010, 114 (27), 11903-11910.

108 Yum, J.-H.; Jang, S.-r.; Humphry-Baker, R.; Grätzel, M.; Cid, J.-J.; Torres, T.; Nazeeruddin, M.

K., Effect of Coadsorbent on the Photovoltaic Performance of Zinc Pthalocyanine-Sensitized Solar Cells. Langmuir 2008, 24 (10), 5636-5640.

109 Hirose, F.; Kuribayashi, K.; Shikaku, M.; Narita, Y., In situ observation of N719 on TiO2 in dye-sensitized solar cells by IR absorption spectroscopy. Electrochem. Solid-State Lett. 2009, 12 (12), B167-B170.

110 Dell'Orto, E.; Raimondo, L.; Sassella, A.; Abbotto, A., Dye-sensitized solar cells: spectroscopic evaluation of dye loading on TiO2. J. Mater. Chem. 2012, 22 (22), 11364-11369.

111 Lee, C.-P.; Chen, P.-Y.; Vittal, R.; Ho, K.-C., Iodine-free high efficient quasi solid-state dye- sensitized solar cell containing ionic liquid and polyaniline-loaded carbon black. J. Mater. Chem.

2010, 20 (12), 2356-2361.

112 Jin, L.; Chen, D., Enhancement in photovoltaic performance of phthalocyanine-sensitized solar cells by attapulgite nanoparticles. Electrochim. Acta 2012, 72 (0), 40-45.

113 Wu, J.; Hao, S.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Li, P.; Yin, S.; Sato, T., An all-solid- state dye-sensitized solar cell-based poly(N-alkyl-4-vinyl- pyridine iodide) electrolyte with efficiency of 5.64%. J. Am. Chem. Soc. 2008, 130 (35), 11568-11569.

114 Murakami, T. N.; Grätzel, M., Counter electrodes for DSC: Application of functional materials as catalysts. Inorg. Chim. Acta. 2008, 361 (3), 572-580.

115 Holliman, P. J.; Al-Salihi, K. J.; Connell, A.; Davies, M. L.; Jones, E. W.; Worsley, D. A., Development of selective, ultra-fast multiple co-sensitization to control dye loading in dye-sensitized solar cells. RSC Adv. 2014, 4 (5), 2515-2522.

116 Li, L.; Hao, Y.; Yang, X.; Zhao, J.; Tian, H.; Teng, C.; Hagfeldt , A.; Sun , L., A Double-Band Tandem Organic Dye-sensitized Solar Cell with an Efficiency of 11.5 %. ChemSusChem 2011, 4 (5), 609-612.

117 Jo, Y.; Jung, C. L.; Lim, J.; Kim, B. H.; Han, C. H.; Kim, J.; Kim, S.; Kim, D.; Jun, Y., A novel dye coating method for N719 dye-sensitized solar cells. Electrochim. Acta 2012, 66, 121-125.

118 Murakoshi, K.; Kano, G.; Wada, Y.; Yanagida, S.; Miyazaki, H.; Matsumoto, M.; Murasawa, S., Importance of binding states between photosensitizing molecules and the TiO2 surface for efficiency in a dye-sensitized solar cell. J. Electroanal. Chem. 1995, 396 (1-2), 27-34.

119 De Angelis, F.; Fantacci, S.; Selloni, A.; Grätzel, M.; Nazeeruddin, M. K., Influence of the sensitizer adsorption mode on the open-circuit potential of dye-sensitized solar cells. Nano Lett. 2007, 7 (10), 3189-3195.

120 Xu, J.; Wang, M.; Wickramaratne, N. P.; Jaroniec, M.; Dou, S.; Dai, L., High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv Mater 2015, 27 (12), 2042-2048.

121 Maiti, U. N.; Lim, J.; Lee, K. E.; Lee, W. J.; Kim, S. O., Three-dimensional shape engineered, interfacial gelation of reduced graphene oxide for high rate, large capacity supercapacitors. Adv Mater 2014, 26 (4), 615-619.

122 Lee, K. S.; Lee, W. J.; Park, N. G.; Kim, S. O.; Park, J. H., Transferred vertically aligned N- doped carbon nanotube arrays: Use in dye-sensitized solar cells as counter electrodes. Chem. Commun.

2011, 47 (14), 4264-4266.

123 He, B.; Tang, Q.; Liang, T.; Li, Q., Efficient dye-sensitized solar cells from polyaniline-single wall carbon nanotube complex counter electrodes. J. Mater. Chem. A 2014, 2 (9), 3119-3126.

124 Meng, X.; Yu, C.; Song, X.; Liu, Y.; Liang, S.; Liu, Z.; Hao, C.; Qiu, J., Nitrogen-doped graphene nanoribbons with surface enriched active sites and enhanced performance for dye-sensitized solar cells. Adv. Energy Mater. 2015.

125 Ju, M. J.; Jeon, I. Y.; Kim, J. C.; Lim, K.; Choi, H. J.; Jung, S. M.; Choi, I. T.; Eom, Y. K.;

Kwon, Y. J.; Ko, J.; Lee, J. J.; Kim, H. K.; Baek, J. B., Graphene nanoplatelets doped with N at its edges as metal-free cathodes for organic dye-sensitized solar cells. Adv Mater 2014, 26 (19), 3055- 3062.

126 Jeon, I.-Y.; Kim, H. M.; Choi, I. T.; Lim, K.; Ko, J.; Kim, J. C.; Choi, H.-J.; Ju, M. J.; Lee, J.-J.;

Kim, H. K.; Baek, J.-B., High-performance dye-sensitized solar cells using edge-halogenated graphene nanoplatelets as counter electrodes. Nano Energy 2015, 13 (0), 336-345.

127 Trancik, J. E.; Barton, S. C.; Hone, J., Transparent and catalytic carbon nanotube films. Nano Lett. 2008, 8 (4), 982-987.

128 Banks, C. E.; Davies, T. J.; Wildgoose, G. G.; Compton, R. G., Electrocatalysis at graphite and carbon nanotube modified electrodes: Edge-plane sites and tube ends are the reactive sites. Chem.

Commun. 2005, (7), 829-841.

129 Kavan, L.; Yum, J. H.; Nazeeruddin, M. K.; Grätzel, M., Graphene nanoplatelet cathode for Co(III)/(II) mediated dye-sensitized solar cells. ACS Nano 2011, 5 (11), 9171-9178.

130 Du, S.; Lu, Y.; Malladi, S. K.; Xu, Q.; Steinberger-Wilckens, R., A simple approach for PtNi- MWCNT hybrid nanostructures as high performance electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2014, 2 (3), 692-698.

131 Dao, V. D.; Larina, L. L.; Jung, K. D.; Lee, J. K.; Choi, H. S., Graphene-NiO nanohybrid prepared by dry plasma reduction as a low-cost counter electrode material for dye-sensitized solar cells. Nanoscale 2014, 6 (1), 477-482.

132 Irwin, M. D.; Buchholz, D. B.; Hains, A. W.; Chang, R. P. H.; Marks, T. J., p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk- heterojunction solar cells. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (8), 2783-2787.

133 Peng, K. Q.; Yan, Y. J.; Gao, S. P.; Zhu, J., Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry. Adv Mater 2002, 14 (16), 1164-1167.

134 Chen, C. Y.; Wu, C. S.; Chou, C. J.; Yen, T. J., Morphological control of single-crystalline silicon nanowire arrays near room temperature. Adv Mater 2008, 20 (20), 3811-3815.

135 Zhang, M. L.; Peng, K. Q.; Fan, X.; Jie, J. S.; Zhang, R. Q.; Lee, S. T.; Wong, N. B., Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. J.

Phys. Chem. C 2008, 112 (12), 4444-4450.

136 Togonal, A. S.; He, L.; Roca I Cabarrocas, P.; Rusli, Effect of wettability on the agglomeration of silicon nanowire arrays fabricated by metal-assisted chemical etching. Langmuir 2014, 30 (34), 10290-10298.

137 Sasi, B.; Gopchandran, K. G., Nanostructured mesoporous nickel oxide thin films.

Nanotechnology 2007, 18 (11).

138 Sun, K.; Park, N.; Sun, Z.; Zhou, J.; Wang, J.; Pang, X.; Shen, S.; Noh, S. Y.; Jing, Y.; Jin, S.;

Yu, P. K. L.; Wang, D., Nickel oxide functionalized silicon for efficient photo-oxidation of water.

Energy Environ. Sci. 2012, 5 (7), 7872-7877.

139 Lin, F.; Nordlund, D.; Weng, T. C.; Moore, R. G.; Gillaspie, D. T.; Dillon, A. C.; Richards, R.

M.; Engtrakul, C., Hole doping in al-containing nickel oxide materials to improve electrochromic performance. ACS Appl. Mater. 2013, 5 (2), 301-309.

140 Wang, H.-Y.; Hsu, Y.-Y.; Chen, R.; Chan, T.-S.; Chen, H. M.; Liu, B., Ni3+-Induced Formation of Active NiOOH on the Spinel Ni–Co Oxide Surface for Efficient Oxygen Evolution Reaction. Adv.

Energy Mater. 2015, n/a-n/a.

141 Zhou, G.; Wang, D. W.; Yin, L. C.; Li, N.; Li, F.; Cheng, H. M., Oxygen bridges between nio nanosheets and graphene for improvement of lithium storage. ACS Nano 2012, 6 (4), 3214-3223.

142 Joshi, P.; Zhou, Z.; Poudel, P.; Thapa, A.; Wu, X. F.; Qiao, Q., Nickel incorporated carbon nanotube/nanofiber composites as counter electrodes for dye-sensitized solar cells. Nanoscale 2012, 4 (18), 5659-5664.

143 Xia, X.; Tu, J.; Mai, Y.; Chen, R.; Wang, X.; Gu, C.; Zhao, X., Graphene sheet/porous NiO hybrid film for supercapacitor applications. Chem. Eur. J. 2011, 17 (39), 10898-10905.

144 Lim, J.; Ryu, S. Y.; Kim, J.; Jun, Y., A study of TiO2/carbon black composition as counter

Dalam dokumen Chapter 1. Introduction (Halaman 88-99)

Dokumen terkait