• Tidak ada hasil yang ditemukan

朝鮮大學校 大學院 裵 京 眞

N/A
N/A
Protected

Academic year: 2024

Membagikan "朝鮮大學校 大學院 裵 京 眞"

Copied!
99
0
0

Teks penuh

(1)

2012 年 2 月

碩士學位論文

朝鮮大學校 大學院

機 械 工 學 科

裵 京 眞

[UCI]I804:24011-200000256733

(2)

0 0

0

Experimental Study on the Performance Characteristics of the High-Temperature

Generator Using Exhaust Gas

2012 年 2 月 24 日

朝鮮大學校 大學院

機 械 工 學 科

裵 京 眞

0

(3)

0

0

指導敎授 曺 弘 鉉

2011 年 10 月

朝鮮大學校 大學院

機 械 工 學 科

裵 京 眞

(4)

裵 京 眞 碩士學位論文 認准

委員長 朝鮮大學校 敎 授 洪 明 錫 ㊞ 委 員 朝鮮大學校 敎 授 鄭 洛 奎 ㊞ 委 員 朝鮮大學校 敎 授 曺 弘 鉉 ㊞

2011 年 11 月

朝 鮮 大 學 校 大 學 院

(5)

Contents

Contents ⅰ

List of Figures ⅲ

List of Tables ⅶ

Nomenclature ⅷ

ABSTRACT ⅹ

(6)
(7)

List of Figures

(8)
(9)
(10)
(11)

List of Tables

(12)

Nomenclature

Cp : Specific heat (J/kgK)

D : Diameter (m)

h : Enthalpy (kJ/kg) k : Conductivity (w/mk)

m : Refrigerant mass flow rate (kg/s)

Nu : Nusselt number

Pr : Prandtl number Q : Heat quantity (kW) Re : Reynolds number v : Velocity (m/s)

Greeks

 : Density (kg/m3)

 : Specific volume (m3/kg)

Subscripts

(13)

a : Air

ds : Dilute solution

cs : Concentrated solution cw : Cooling water

ex : Exhaust gas

in : Inlet

out : Outlet

(14)

ABSTRACT

Experimental Study on the Performance Characteristic of the High-Temperature Generator Using Exhaust Gas

Bae, kyung-jin

Advisor: Prof. Cho, Hong-hyun, Ph. D.

Department of Mechanical Engineering, Graduate School of Chosun University

Recently, the ozonosphere depletion and greenhouse effect was caused by heat pump system using the CFC and HCFs refrigerant and it have become more and more serious. Therefore, usage of existing refrigerant has regulated through the International agreement. The absorption chiller-heater using just the natural refrigerants has very little effects on the environmental pollution.

The absorption chiller-heater is received the heat from the low temperature using the high-temperature heat source and emits the heat to the middle temperature state. As the cooling uses natural gas in summer, peak lode can be relieved and the energy supply and demand may doesn't care the capacity of the seasonal limitation. Cogeneration has been generalized in order to utilize an efficient application of the energy. The efficiency of cogeneration or mi- cro-gas turbine is extremely low level about 20~30%. The engine exhaust

(15)

gas temperature is about 500oC. When engine exhaust gas is used to the ab- sorption chiller-heater, energy efficiency can be increased up to 75~90% and the coefficient of absorption chiller-heater performance can be improved significantly.

In the absorption chiller-heater, the high-temperature generator using ex- haust gas is an important factor to achieve high system performance. To in- vestigate performance of the high-temperature generator using exhaust gas in the absorption chiller-heater, Lab. scale high-temperature generator using exhaust gas was designed and setup. Since it is very difficult to uses and control the 500oC exhaust gas, the experiment was performed using 200oC air instead of 500oC exhaust gas by using the dimensionless scaling method. It is very important to investigate the performance change of high temperature re- generator using exhaust gas according to the inlet condition of the exhaust gas and absorbing solution.

In this study, to analyse the performance of the high-temperature generator using exhaust gas in the absorption chiller-heater with operating conditions, the inlet condition of solution liquid and exhaust gas was changed. As a result, air mass flow rate ratio increased from 80% to 120% in the inlet concen- tration of high-temperature generator of 56% and 53%, heat capacity was in- creased by 30%, 37%, respectively. In absorption liquid mass flow rate ratio of 100%, as the mass flow rate ratio of absorption liquid was changed from 80% to 120%, heat capacity of high-temperature generator of inlet concen- tration of 56%, 55%, 54%, 53% was almost constant by 3.6%, 4.47%, 5.6%, 5.7%, respectively. Concentration difference of absorption liquid between the inlet and outlet is closely related to steam mass flow rate from separating of

(16)

the absorbing solution. In air mass flow rate ratio of 100% and inlet concen- tration of absorption liquid of 55%, when array of fin-tube heat exchanger was changed from first to fourth, the decreasing rate of air side temperature was reduced by 17.7%, 5.8% 2.1%, 1.1%, respectively. However, as the array of fin-tube heat exchanger was changed from fifth to outlet, the decreasing rate of air side temperature was increased by 1.5%, 3%, respectively. As the air mass flow rate ratio was changed from 80% to 120%, for all inlet con- centration of absorption liquid, the pressure drop of air side was increased by 72 kPa. Except for the variation of air mass flow rate ratio, the air side pressure drop was almost constant by the pressure of 107 kPa with the op- erating condition.

(17)

. 25%

, 2005 4,340 TOE , 2010 5,160 TOE, 2020

6,470 TOE

.

Fig. 1.2 2007 949.9 $( : 709 $)

26.6% .( : 603.2 $, : 126.5 $, :

56.8 $)

(18)

Fig. 1.3 1 (43.6%), LNG(13.7%),

(22.1%), (15.9%) ,

(56.0%), (21.0%), / (20.7%) .

(2002 ~2005 ) / /

1.0% , 3.1% .

(19)

LNG 2 ,

, , 1987

16.5% , 2000

9.1% . 2007 24,765 2017

31,657 3.93% ,

2003 64.9% 2017 78.6%

. Fig. 1.4 .

. , Fig. 1.5 .

. ,

,

, .

,

. ,

. 30%

.

. , CO2 .

125 , 1 2008

2012 , CO2 9 2

2013 CO2 .

, CO2

.

(20)

5,770

24,893 22,722 17,983

15,386 13,658 11,979 9,528

10,300 11,147

14,217 15,588 18,447

21,270

23,958 25,331 29,276

31,657

11,629 14,578

16,164

19,435

0 10,000 20,000 30,000 40,000

1997 2000 2001 2003 2005 2007 2010 2015 2017

도시가스 발전용 수요 도입

(21)

(

) 1929 Servel H2O/LiCl

, 1945 Carrier H2O/LiBr

York, McQuay, Trane, Hunham-Bush

.

. , 1958 H2O/LiBr

, 1968 Kawasaki 2

. Ebara, Sanyo, Hitachi, Yazaki 7.5 ∼

2,000RT .

, LNG

, .

1 (single-effect), 2

(double-effect) , 1

, COP(coefficient of performance, ) “0.7”

2 ( COP=1.0)

(direct-fired Type) .

1 Fig. 1.6 ,

, , , , ,

. 95oC ,

80oC , / 12oC/7oC 13oC/8oC

(22)

5oC , / 31oC/36.5oC .

, COP 95oC .

2 / 1 ,

, 2

. Fig. 1.7

,

. 1 , , ,

, ,

, 3 , 1

, COP 1

1.0 .

2 ·

(direct-fired type) (steam-fired Type) .

LNG , . 1

. Fig 1.7 .

, (steam)

. ,

. Fig. 1.8 .

(23)
(24)
(25)

,

. /

. CCHP(combined cooling, heating and

power) ,

,

. Fig. 1.9 ,

64% CCHP

94% .

30%

500oC ,

450oC 2

. 95oC

, . Fig. 1.10

Fig. 1.11

.

(26)
(27)

CFC HCFC

. ·

Libr-water .

.

·

· .

COP ,

. .

· .

· Park

et al.(1998)

, Kim et al.(1999)

3~5% . Cho and

Lee(2009)

6.8 . Varma et al.(1994)

Libr-water , Rivera et

al.(2003) Libr-water

(28)

.

Marcos et al.(2009) Libr-water ·

.

·

.

(29)

.

(cogeneration or combined heat and power) .

.

.

· .

· .

500℃

Lab. scale . 500oC

Pr Re 200oC

,

, ,

.

.

CO2

.

(30)

106.7 kW

1/3.3 Lab. scale

. Lab. scale 392.6 kW

(782☓908☓1979 mm3)

. · , ,

Re number

. Lab. scale Fig.

2.1 .

, ·

. Fig. 2.2

Lab. scale Fig. 2.3

.

(31)
(32)

-

. · 40 mm, 47 mm , 1.2

mm, 13 mm (spiral) - . Fig. 2.4

- , Fig. 2.5 .

(33)

. .

.

Fig. 2.6 .

(34)

.

Fig. 2.7 .

.

. 2.8

.

(35)

.

. -

. .

, .

Fig. 2.9 .

(36)

Lab. scale

Fig. 2.3

. 200oC 30 kW

, 9 m3/min Blower fan

. ,

.

.

.

.

. 3 RT

.

. ,

. .

(37)

. Fig. 2.11 Lab. scale

, Fig. 2.12

Lab. scale .

, , · RTD

,

(Oval) . , data

logger(DA-100)

. ,

.

   (2-1)

  (2-2)

         (2-3)

  (2-4)

         (2-5)

(38)
(39)
(40)

, , 2

(probe) RTD .

· ·

, - ·

7 RTD .

RTD Fig. 2.13 , RTD Table 2.1

.

Item Value

Range -200 ~ 600℃

Diameter 4.8 mm

(41)

, (pressure transducer) (difference pressure transducer) .

.

, , Fig. 2.14, Fig. 2.15, Fig.

2.16 , Table 2.2 .

(42)
(43)

Pressure transmitter - SETRA

Model C206 C209 C234

Range -14.7 ~ 3000 psig 0~1 psig 0~15 mmH2O

Input 24 VDC 24 VDC 24 VDC

Output 4~20mA 4~20mA 4~20mA

Accuracy 0.13% 0.25% ±0.14%

(44)

.

Oval (CT9401-K7MM33)

.

.

Fig. 2.17 , OVAL Table 2.3 .

(45)

Item Specification Max pressure 85.6 

Max temp 105℃

Flow rate 36 ~ 360 kg/h

Density 300 ~ 2000 kg/m3

Trans. Model CT9401-K7MM33

Power 85~254V AC

Sensor model CN006C-SS-200K

(46)

, , 2

.

(ADG-S-S) Blower fan ,

(E-MAG-I) .

.

(E-MAG-I) .

Fig. 2.18, Fig. 2.19 , Table 2.4 .

(47)
(48)

Item

Air volumetric flow meter

Volumetric flow meter

Volumetric flow meter

Fluid Air Water LiBr-water

Type Difference Pressure Electromagnetic Electromagnetic

Diameter 80A 15A 10A

Flow rate 80 ~ 400 Nm3/h 0.19 ~ 6.3 m3/h 0.1 ~ 2.7 m3/h

Trans. Model ADG-S-S E-MAG-I E-MAG-I

Temperature AMB 100oC 230oC

Pressure ATM 10 kgf/cm2·G 10 kgf/cm2·G

Power AC 220V AC 90 ~ 250V AC 90 ~ 250V

Output 4 ~ 20mA 4 ~ 20mA 4 ~ 20mA

(49)

100oC 100oC .

100oC

80oC .

,

Fig. 2.20 , Table 2.5 .

(50)

Item Specification

Type Chevron type

Chevron angle 60o

Plate Size(L×W) 280

Channel 10 EA

Corrugation depth 1.2 mm

Plate thickness 0.8 mm

Corrugation wave length 10 mm

Material SUS 430

(51)

.

.

. Fig. 2.21 Table

2.6 .

Item Specification

Diameter of inside 35 mm

Length 50 mm

Number of heater 30 EA

Heat capacity 5 kW

(52)

, 2

. 80oC

90oC 2

.

2 .

Fig. 2.22 Table 2.7 .

Item Specification

Inside tube diameter 20 mm

Outside tube diameter 40 mm

Tube thickness 3 mm

Length 4 m

Material SUS 304, Copper

(53)

Fig 2.23

, .

2 Fig. 2.24

, .

2 Table 2.8 .

(54)

Item Solution-liquid pump Cooling water pump Fluid LiBr-water Antifreezing solution

Model - PH-600i

Max. Flow rate 2.4 m3/h 17.4 m3/h

Total head 15 m 11 m

Power 3-Phase 380 V 3-Phase 380 V

(55)

,

.

Fig. 2.25 , Table 2.9 .

Item Specification

Model number SV-FP5

Max Applicable Motor Output 0.4-22KW, 50/60 Hz

Input 3-Phase 380 ~ 400V

Output 3-Phase 0.1~400Hz

(56)

·

.

. Fig 2.26

, Table 2.10 .

Item Specification

Model EHP-100

Displacement 6 m3/h

Ultimate vacuum 5×10-4 Torr

Power 0.4 kW

(57)

Fig 2.27 .

,

· .

.

(58)

, , ,

(Data logger

- Yokogawa MX100) . MX100

standard ,

. Data logger

Fig. 2.28 , Data logger Table 2.11 .

Item Specification

Manufacturer Yokogawa

Model MX100

Measurement interval 500ms

Input voltage AC 100~240V

Max voltage 70VA

(59)

(LNG)

Fig. 2.29 .

. REFPROP

( , ) .

500oC .

.

.

500oC .

500oC Pr Number Re

Number 200oC

. Pr Number Re Number .

   

 ×  

 

 (2-6)

  

 ×  ×  

 

 (2-7)

(60)

  ,    (2-8)

 

  

 



,  



 

(2-9)

500oC Pr Number Re Number

. 500oC LNG 20%

, , , 1 .

,

EES Program .

78%, 21%, 1% ,

. 20% LNG

LNG , , ,

, , Table 2.12 .

Table 2.13 .

, , Table 2.14 .

Pr Number Re Number 500oC

200oC , 0.3184 m3/s .

(61)

Lab. scale 200oC

Lab. scale Re Number

. 0.07045 m3/s

, 0.3079 kg/s .

Lab. scale ·

Fig 3.30 . Lab. scale

Re number Pr number

, .

10oC,

10%, 10oC, 10%, 1%

Table

2.15 .

(62)
(63)

LNG ingredient

Chemical formula

Air-fuel ratio

Complete 20%

excess air

Mole friction

Complete 20%

excess air

CH4 17.20 20.64 15.71 18.85

C2H6 16.06 19.27 0.86 1.04

C3H8 15.64 18.77 0.33 0.40

C4H10 15.25 18.30 0.14 0.17

Air-fuel ratio 17.04 20.46

Exhaust gas ingredient Molar fraction

CO2 0.118685215

H2O 0.094656118

N2 0.743755605

Ar 0.009534014

O2 0.033369049

Total 1

(64)

Exhaust gas ingredient

Molar fraction

Property

Cp Viscosity k

Ar 0.0095 0.00496 4.04e-07 0.0003165

CO2 0.1186 0.13720 4.05e-06 0.0062820

H2O 0.0946 0.20228 2.69e-06 0.0063135

O2 0.0333 0.03497 1.37e-06 0.0020515

N2 0.7437 0.833006 2.567e-05 0.0398504

Total 1 1.212419 3.419e-05 0.0548140

Condition Value

Air

Inlet Temperature (oC) 170, 180, 190, 200*, 210

mass flow rate (kg/s) 0.0564 , 0.0634, 0.0705*, 0.0775, 0.0845

Solution

Inlet Temperature(oC) 134.8, 136.8, 138.8*, 140.8, 142.8 Mass flow rate (kg/s) 0.2463, 0.2771, 0.3079*, 0.3387, 0.3695

Concentration (%) /

Pressure (kPa) 53 / 110, 54 / 100, 55 / 90*, 56 /88 Basic condition*

(65)

·

·

.

. 500oC 200oC

. Fig. 3.1

.

. , Re

.

.

.

, 56%, 55%, 54%, 53%

80% 120% 30%, 33%,

(66)

34%, 37% .

. Fig. 3.2

.

.

. 56%, 53% ,

80% 120%

18.5%, 15.9% .

,

56% 55%

,

54% 53%

. .

.

(67)

80 90 100 110 120 3.5

4.0 4.5 5.0 5.5

TAir,inlet=200oC

TAbsorption liquid, inlet=138.8oC MAbsorption liquid = 0.3079 kg/s Concentration

56%

55%

54%

53%

Capacity(kW)

Air mass flow rate ratio (%)

Concentration 56%

55%

54%

53%

80 90 100 110 120

0.0005 0.0007 0.0009 0.0011 0.0013

TAir,inlet=200oC

TAbsorption liquid, inlet=138.8oC MAbsorption liquid = 0.3079 kg/s

Steam mass flow rate (kg/s)

Air mass flow rate ratio (%)

(68)

Fig. 3.3

.

.

.

.

. 56%,

53% 80% 120%

1.2oC, 1.6oC .

Fig. 3.4 ·

.

,

. LiBr-water LiBr

.

.

(69)

Concentration 56%

55%

54%

53%

80 90 100 110 120

140 141 142 143 144

TAir,inlet=200oC

TAbsorption liquid, inlet=138.8oC MAbsorption liquid = 0.3079 kg/s

Air mass flow rate ratio (%) Absorption liquid outlet temperature (o C)

Concentration 56%

55%

54%

53%

80 90 100 110 120

0.10 0.13 0.16 0.19

0.22 TAir,inlet=200oC

TAbsorption liquid, inlet=138.8oC MAbsorption liquid = 0.3079 kg/s

Air mass flow rate ratio (%)

Concentration difference (%)

(70)

Fig. 3.5 - .

.

.

100%, 55% -

4 17.7%, 5.8% 2.1%, 1.1%

- 5 1.5%, 3%

.

- 5

. Fig. 3.6

.

. -

. 80% 120%

72 kPa .

. .

(71)

Position of fin-tube array Concentration 1 4 7 56% 54%

2 5 55% 53%

3 6

120 150 180 210 240

TAir,inlet=200oC, TAbsorption liquid, inlet=138.8oC, MAbsorption liquid = 0.3079 kg/s

Air temperature (o C)

Air mass flow rate ratio (%) 80 90 100 110 120

80 90 100 110 120

60 85 110 135 160

TAir,inlet=200oC

TAbsorption liquid, inlet=138.8oC MAbsorption liquid = 0.3079 kg/s

Air side pressure drop (kPa)

Air mass flow rate ratio(%)

Concentration 56%

55%

54%

53%

(72)

500oC

.

. Fig. 3.7

.

.

.

.

. 56%, 55%,

54%, 53% 170oC 210oC

140%, 160%, 220%, 224% .

170o 53% 56%

34% 210oC

2.4%

.

. Fig. 3.8

(73)

.

, 56% 55%

190oC, 54% 53% 200oC

,

.

56% 55% 142oC, 143oC , 54% 53%

144oC .

56% 55% 190oC,

54% 53% 200oC

. 170oC

54% 53%

. 500oC

.

(74)

170 180 190 200 210 1.0

1.9 2.8 3.7 4.6 5.5

MAir=0.0705 kg/s TAbsorption liquid, inlet=138.8oC MAbsorption liquid = 0.3079 kg/s Concentration

56%

55%

54%

53%

Capacity(kW)

Air inlet temperature (oC)

Concentration 56%

55%

54%

53%

170 180 190 200 210

0.0000 0.0003 0.0006 0.0009 0.0012

MAir=0.0705 kg/s TAbsorption liquid, inlet=138.8oC MAbsorption liquid = 0.3079 kg/s

Steam mass flow rate(kg/s)

Air inlet temperature (oC)

(75)

Fig. 3.9

.

.

. 54%

53% 200oC 210oC

,

56% 55% 190oC 200oC

.

54% 53%

,

56% 55% 210oC

.

170oC 54%

53% Fig. 3.8

0 kg/s .

Fig. 3.10 ·

.

· ,

, ·

.

(76)

Concentration 56%

55%

54%

53%

170 180 190 200 210

140 141 142 143 144

MAir=0.0705 kg/s TAbsorption liquid, inlet=138.8oC MAbsorption liquid = 0.3079 kg/s

Air inlet temperature (oC) Absorption liquid outlet temperature(o C)

Concentration 56%

55%

54%

53%

170 180 190 200 210

0.00 0.05 0.10 0.15 0.20

MAir=0.0705 kg/s TAbsorption liquid, inlet=138.8oC MAbsorption liquid = 0.3079 kg/s

Concentration difference (%)

Air inlet temperature (oC)

(77)

Fig. 3.11 - .

- .

-

. 55%

- 8.9%, 12.3%, 15.7%, 17.7%, 21%

, -

.

-

, -

. Fig. 3.12

.

107 kPa .

.

(78)

Position of fin-tube array Concentration 1 4 7 56% 54%

2 5 55% 53%

3 6

120 150 180 210 240

MAir=0.0705 kg/s, TAbsorption liquid, inlet=138.8oC, MAbsorption liquid = 0.3079 kg/s

Air temperature (o C)

Air inlet temperature (oC)

170 180 190 200 210

170 180 190 200 210

60 85 110 135 160

MAir=0.0705 kg/s TAbsorption liquid, inlet=138.8oC MAbsorption liquid = 0.3079 kg/s

Air side pressure drop (kPa)

Air inlet temperature (oC)

Concentration 56%

55%

54%

53%

(79)

.

0.3079 kg/s

. Fig. 3.13

.

.

Re

. ,

100% 80% 120%

56%, 55%, 54%, 53% 3.6%, 4.47%, 5.6%, 5.7%

.

.

. 80%

(80)

120%

.

Fig. 3.14 .

.

.

.

.

110% 120%

56%, 55%, 54%, 53%

0.9% 1.8%, 4.4%, 7.5% .

(81)

80 90 100 110 120 3.5

4.0 4.5 5.0 5.5

TAir,inlet=200oC MAir=0.0705 kg/s TAbsorption liquid, inlet=138.8oC Concentration

56%

55%

54%

53%

Capacity(kW)

Absorption liquid mass flow rate ratio (%)

Concentration 56%

55%

54%

53%

80 90 100 110 120

0.0004 0.0006 0.0008 0.0010 0.0012

TAir,inlet=200oC MAir=0.0705 kg/s TAbsorption liquid, inlet=138.8oC

Absorption liquid mass flow rate ratio(%)

Steam mass flow rate (kg/s)

(82)

Fig. 3.15

.

,

. 56%

80% 120% 10% 0.89oC,

0.65oC, 0.37oC, 0.18oC

.

.

.

110% 120%

56%, 55%, 54%, 53%

0.18oC, 0.26oC, 0.33oC, 0.39oC

.

. Fig. 3.16

· .

,

.

(83)

·

.

.

· .

(84)

Concentration 56%

55%

54%

53%

80 90 100 110 120

141 142 143 144 145

TAir,inlet=200oC MAir=0.0705 kg/s TAbsorption liquid, inlet=138.8oC

Absorption liuid mass flow rate ratio (%) Absorption liquid outlet temperature (o C)

Concentration 56%

55%

54%

53%

80 90 100 110 120

0.10 0.13 0.16 0.19 0.22

TAir,inlet=200oC MAir=0.0705 kg/s TAbsorption liquid, inlet=138.8oC

Concentration difference (%)

Absorption liuid mass flow rate ratio (%)

(85)

Fig. 3.17

- .

.

. 80%

120% 2~2.5% .

4 -

5 0.5% .

- 5

. Fig. 3.18

.

107 kPa .

.

(86)

Position of fin-tube array Concentration 1 4 7 56% 54%

2 5 55% 53%

3 6

120 150 180 210 240

TAir,inlet=200oC, MAir=0.0705 kg/s, TAbsorption liquid, inlet=138.8oC

Air temperature (o C)

Absorption liquid mass flow rate ratio (%) 80 90 100 110 120

80 90 100 110 120

60 85 110 135 160

TAir,inlet=200oC MAir=0.0705 kg/s TAbsorption liquid, inlet=138.8oC

Air side pressure drop (kPa)

Absorption liquid mass flow rate ratio (%)

Concentration 56%

55%

54%

53%

(87)

.

.

. Fig. 3.19

. 200oC

.

138.8oC .

138.8oC 140.8oC

56% 2% 5.4% ,

53% 0.7% 5.4%

. 140.8oC

. Fig. 3.20

.

(88)

56% 55% 54% 53%

138.8oC, 140.8oC .

54% 53%

56% 55% 138.8oC

.

(89)

3.5 4.0 4.5 5.0 5.5

134.8 136.8 138.8 140.8 142.8

TAir,inlet=200oC MAir=0.0705 kg/s MAbsorption liquid = 0.3079 kg/s

Concentration 56%

55%

54%

53%

Absorption liquid inlet temperature (oC)

Capacity(kW)

Concentration 56%

55%

54%

53%

0.0000 0.0005 0.0010 0.0015

134.8 136.8 138.8 140.8 142.8

TAir,inlet=200oC MAir=0.0705 kg/s MAbsorption liquid = 0.3079 kg/s

Steam mass flow rate (Kg/s)

Absorption liquid inlet temperature (oC)

(90)

Fig. 3.21

.

56% 55%

138.8oC, 54% 53%

140.8oC

. 138.8oC

138.8oC

.

.

Fig. 3.22 ·

.

·

.

·

.

(91)

Concentration 56%

55%

54%

53%

138 140 142 144 146 148

134.8 136.8 138.8 140.8 142.8

TAir,inlet=200oC MAir=0.0705 kg/s MAbsorption liquid = 0.3079 kg/s

Absorption liquid outlet temperature (o C)

Absorption liquid inlet temperature (oC)

Concentration 56%

55%

54%

53%

0.06 0.09 0.12 0.15 0.18 0.21

134.8 136.8 138.8 140.8 142.8 Absorption liquid inlet temperature (oC)

TAir,inlet=200oC MAir=0.0705 kg/s MAbsorption liquid = 0.3079 kg/s

Concentration difference (%)

(92)

Fig. 3.23 - .

. 134.8oC 142.8oC 2oC

54% 53% 56% 55%

2 .

.

. Fig. 3.24

. .

107 kPa .

(93)

Position of fin-tube array Concentration 1 4 7 56% 54%

2 5 55% 53%

3 6

120 150 180 210 240

TAir,inlet=200oC, MAir=0.0705 kg/s, MAbsorption liquid = 0.3079 kg/s

Air temperature (o C)

Absorption liquid inlet temperature (oC) 134.8 136.8 138.8 140.8 142.8

60 85 110 135 160

134.8 136.8 138.8 140.8 142.8

TAir,inlet=200oC MAir=0.0705 kg/s MAbsorption liquid = 0.3079 kg/s

Air side pressure drop (kPa)

Absortion liquid inlet temperature (oC)

Concentration 56%

55%

54%

53%

(94)

·

500oC Re Pr

200oC .

. .

.

56% 53% , 80% 120%

30% 37%,

18.48% 15.87%, 1.2oC 1.6oC

. ·

. ,

100%, 55% -

4 17.7%, 5.8%, 2.1%, 1.1%

- 5 1.5%, 3%

.

, ,

56%, 55%, 54%, 53%

170oC 210oC 140%, 160%,

(95)

220%, 224% . 170oC

54% 53%

.

·

, ·

. 55%

- 8.9%, 12.3%, 15.7%, 17.7%, 21%

.

100% 80% 120%

56%, 55%, 54%, 53% 3.6%, 4.47%, 5.6%, 5.7%

. 56%

80% 120% 10% 0.89oC,

0.65oC, 0.37oC, 0.18oC .

·

.

80% 120% 2~2.5%

.

56% 53% ,

138.8oC 140.8oC

2% 5.4% , 0.7% 5.4% .

,

(96)

56% 55% 138.8oC,

54% 53%

140.8oC .

.

·

. 134.8oC 142.8oC 2oC

54% 53%

56% 55% 2 .

80% 120%

72 kPa ,

, ,

107 kPa .

(97)

REFERENCE

Florides, G. A., Kalogirou, S. A., Tassou, S. A., Wrobel, L. C., 2003,Design and consruction of a libr-water absorption machine, Energy Conversion and Management Vol. 44, pp. 2483-2508.

Furukawa, M., Enomoto, E., Sckoguchi, K., 1993, Boiling heat transfer in high temperature generator of absorption chiller heater, International Absorption Heat Pump Conference, Vol. 31, pp. 517-523.

Grossman, G., 1983, Simultaneous heat and mass transfer in film absorption under laminar flow, International Journal of Heat Mass Transfer, Vol. 26, No.

3, pp. 357–371.

Kaita, Y., 2001, Thermodynamic properties of lithium bromide-water solutions at high temperatures, International Journal of Refrigeration, Vol. 24, pp.

374-390.

Kim, J. M., Moon, C. G., Kwon, O. K., Yoon, J. I., Choi, J. W., 1999, Proceeding of the Society of Refrigerating and Air Conditioning '99 Conference, pp. 470-474.

Lee, I. S. and Cho, K. N., 2009, Effect of the geometry of flattened tube on the thermal performance of a high temperature generator, International Journal

(98)

of Refrigeration, Vol. 32, pp. 667-674.

Marcos, J. D., Izquierdo, M., Lizarte, R., Palacios, E., Infante Ferreira, C. A., 2009, Experimental boiling heat transfer coefficients in the high temperature generator of a double effect absorption machine for the lithium bromide/water mixture, International Journal of Refrigeration, Vol. 32, pp. 627-634.

Morioka, I., Kiyota, M., Nakao, R.. 1993, Absorption of water vapor into a film of aqueous solution of libr falling along a vertical pipe, JSME Int J, Ser B Vol. 36, No. 2, pp. 351-356.

Park, C. W., Jung, J., 1998, On the performance of a desorber for absortion heat pumps with a thermosyphon and a surface-flame burner, Applied Thermal Engineering, Vol. 18, No. 3-4, pp. 73-83.

Park, C. W., Jung, J. S., Chin, S. M., Chung, B. C., Ryu, B. S., 1998, An analysis of the heat transfer characteristics of a regenerator of absorption heat pump with a capacity of 150 RT, Proceeding of the Society of Refrigerating and Air Conditioning '98 Conference, pp. 1512-1517.

Rivera, W., Xicalse, A., Garcia-Valladares, O., 2003, Boiling heat transfer co- efficients inside a vertical smooth tube for the water/lithium bromide mixture, international Journal of Energy Research, Vol 70, pp. 265-275

Varma, H. K., Mehrotra, R. K., Agrawal, K. N., 1994, Heat transfer during

(99)

pool boiling of libr-water solutions at subatmospheric pressures, International Communications in Heat and Mass Transfer, Vol. 21, No. 4, pp. 539-548.

Gambar

Fig.  1.3 1 (43.6%),  LNG(13.7%),
Fig. 2.22 Table 2.7 .
Fig. 2.25 ,  Table 2.9 .
Fig. 2.28 , Data logger Table 2.11 .

Referensi

Dokumen terkait