Estimation Theory Final Test_Solution
December 8, 2010
1. A simplified spacecraft tracking problem is formulated by
c c c
c c c c
x w , w ~N(0, )
z x v , v ~N(0, q r
=
= +
).
)
(T10.2.1-1)
(a) Suppose that the measurements are taken every 0.5 second. Show that the discrete model for Eq. (T10.2.1-1) is given by
( 1) ( ) (
( ) ( ) ( ).
x k x k w
z k x k v k
+ = +
= +
k
)
(T10.2.1-2)
Determine the mean and variance of w k( ) and v k( ). (Solution) (10 points)
Given
, 0, 1, (0,
, (0, )
c c c c
x w A x G w A G w N q
z x v v N r
= ≡ + = =
= +
∼
∼
the discrete model is given by
( 1) A Tc ( ) ( ) ( ) ( ) ( ) ( )
x k+ =e x k +w k =x k +w k ≡ Ax k +Gw k (T2.1-1) (T2.1-2)
( ) ( ) ( ) ( ) ( )
z k =x k +v k ≡Hx k +v k where
(
0( ) )
( ) 0, 0.5
( ) 0, 2 .
c c
T T
A T A
c c
w k N e G QG e d Tq q
v k N r r
T
τ τ τ = =
⎛ = ⎞
⎜ ⎟
⎝ ⎠
∫
∼
∼
(b) Find the steady-state Kalman filter solution for this problem assuming that and are white Gaussian and uncorrelated each other.
( )
w k v k( ) (Solutiom) (20 points)
Find P∞ by solving the ARE
( )
( )
1
1
2
2
2
2 2
T T T
P A P P H HP H R HP A GQG P P P r P q
P q
P P r
−
∞ ∞ ∞ ∞ ∞
−
∞ ∞ ∞ ∞
∞ ∞
∞
⎡ ⎤
= ⎢⎣ − + ⎥⎦ +
⎡ ⎤
=⎣ − + ⎦+
= − +
+
T
2
2 2
P q
P r
∞
∞
+ =
2 0
2
P∞ −qP∞−rq=
2
4 4 .
q q
P∞ = ± ⎛ ⎞⎜ ⎟⎝ ⎠ +rq Since , P∞ >0
( )
2
1 2
4 4 4 16
q q
P∞ = + ⎛ ⎞⎜ ⎟⎝ ⎠ +rq = q+ q + rq . (T2.1-3) And
( )
( )
( )
( )
1
1
2
2
2
2
1 16
4 .
1 16 2
4
K P H HP HT R
P P r
P
P r
q q rq
q q rq r
−
∞ ∞ ∞
−
∞ ∞
∞
∞
= +
= +
= +
+ +
=
+ + +
(T2.1-4)
The transfer function for the steady-state Kalman filter, HSSKF( )z , is
[ ]
( )
1( ) 1
SSKF
H z H zI A I K H AK K
z K
− ∞
∞ ∞
∞
= − − =
− + (T2.1-5) Let q= =r 1 for comparison,
( ) 0.39
SSKF 0.61
H z
≈ z
− . (T2.1-6)
(c) Find the causal Wiener filter solution for this problem and compare it with the result of (b).
(Solution) (20 points)
Suppose w k( )and v k( )are white, then
SW( )z =0.5q
From x k( + =1) x k( )+w( )k , ( ) ( ) 11
( ) 1
X w to x
W
S z
H z
S z Z−
= =
− (T2.1-7) And
1
1
1
( ) ( ) ( ) ( )
1 1
0.5 1 1
0.5
(1 )(1 )
X W wto x wto x
S z S z H z H z
q z z
q
z z
−
−
−
=
= ⋅ ⋅
−
−
= − −
(T2.1-8)
Let,
( ) ( )
( ) ( ) ( ) s k x k z k s k v k
=
= +
Then,
1
1
( ) ( )
( ) ( ) ( )
0.5 2
(1 )(1 )
( ) ( ) 0.5
(1 )(1 )
S X
Z S V
SZ S
S z S z
S z S z S z
q r
z z
S z S z q
z z
−
−
=
= +
= +
− −
= =
− −
(T2.1-9)
( 1) 1 1( ) ( ) ( )
SZ Wiener
Z Z
S z
H z
S z S z
−
+ −
+
= ⎡⎢
⎣ ⎦
⎤⎥ (T2.1-10) (Note: Refer to Eq.(T2.1-7))
To compare with (b), let q=r=1, then
1 1 1 1 1
1 1 1 1
( ) 0.5 2
(1 )(1 )
0.5 2(1 )(1 )
(1 )(1 )
4.5 2 2
(1 )(1 )
1.22(1.64 )(1.64 )
(1 )(1 )
1.10(1.64 ) 1.10(1.64 ) (1 )
(1 )
( ) ( )
Z
Z Z
S z
z z
z z
z z
z z
z z
z z
z z
z z
z z
S z S z
−
−
−
−
−
−
−
−
−
+ −
= +
− −
+ − −
= − −
− −
= − −
− −
= − −
− −
= ⋅
−
−
≡
1 1
1
1 1
1 1
1 1
1 1
1
( ) 0.5 (1 )
1.10(1.64 )
( ) (1 )(1 )
0.45 (1 )(1.64 )
0.70 0.70
(1 ) (1 1.64 )
( ) 0.70
( ) 1
(1 ) 0.70
( )
1.10(1.64 ) (1 ) 0.39
1 0.61
SZ Z
SZ Z
Wiener
S z z
z
S z z z
z z
z Z
S z
S z z
H z z
z z
z
− −
−
− −
− −
+
− −
− −
−
= ⋅ −
−
− −
= − −
= −
− −
⎡ ⎤
⎢ ⎥ = −
⎣ ⎦
= − ⋅
− −
= −
( ) 0.39
Wiener 0.61
H z
= z
− (T2.1-11)
Comparing Eqs. (T2.1-6) and (T2.1-11), we see that HSSKF( )z =HWiener( )z . (d) Find the steady-state optimal smooth solution for this problem and compare
it with the result of (b).
(For (b), (c), and (d), let q= =r 1.) (Solution)
The forward filter is the same as (b), viz,
1 2
( 16
4 2
P q q r
K P
P r
∞
∞ ∞
∞
= + +
= +
) q
(T2.1-12)
The backward filter is given by
1 1 1
1 1 1
1 0.5 2
T T T T
S A I S G G S G Q G S A H R H
S S S
q r
− − −
∞ ∞ ∞ ∞
−
∞ ∞ ∞
⎡ ⎡ ⎤ ⎤
= ⎢⎣ − ⎣ + ⎦ ⎥⎦ +
⎡ ⎛ ⎞ ⎤
= −⎢ ⎜ + ⎟ ⎥ +
⎢ ⎝ ⎠ ⎥
⎣ ⎦
(T2.1-13)
Solve Eq.(T2.1-13) for S∞ to obtain
1 16
1 1 ( 0
S 4 S
r q
∞ ∞
⎡ ⎤
= ⎢ + + ⎥ >
⎣ ⎦ )
The steady-state optimal smoother is obtained by
[ ]
[ ]
1 S
S S
K P S I P S
P I K P
−
∞ ∞ ∞ ∞
∞
= +
= −
For a simple comparison, let q=r=1. Then,
( )
( )
[ ]1
1 1 17 1.28 4
1 1 17 1.28 4
1.28 1.28 1 1.28 1.28 0.62
(1 0.62) 1.28 0.49
S
S
P S K P
∞
∞
−
= + =
= + =
= × × + ×
=
= − × =
We can see that the steady-state error variance is reduced to 0.49 from 1.28.
2. Consider the following state and measurement equations
k k
k x w
x ⎥ +
⎦
⎢ ⎤
⎣
=⎡
+ 0 1
0 4
1 , ⎟⎟⎠,
⎞
⎜⎜⎝
⎛ ⎥
⎦
⎢ ⎤
⎣
⎡ 5 . 0 0
0 , 0 0
k ~
w x0 ~
(
0,P0)
k k
k Hx v
z = + , vk ~
( )
0,1 .(a) Determine if the steady-state Kalman gain K is asymptotically stable when
[
0 3]
H = .
(Solution) (10 points)
4 0 0 0
, ,
0 0.5 0 1
0 0 0 0
0 0.707
0 0.5
A G I Q Q T
Q
⎡ ⎤
⎡ ⎤ Q
⎢ ⎥ ⎢ ⎥
= ⎢ ⎥ = =⎢ ⎥ =
⎢ ⎥
⎢ ⎥ ⎣ ⎦
⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
= ⎢⎢⎣ ⎥⎥⎦ =⎢⎢⎣ ⎥⎥⎦
Reachability test for
(
A G Q,)
.0 0 0 0 0 0.707 0 0.707 1.
ρ⎡ ⎤
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎣ ⎦
"
"
Therefore,
(
A G Q,)
is non-reachable.Now, test detectability for
(
A H,)
. When , .[0 3]
H =
1 1
2 2
4 0 4 3
0 3
0 1 0 1 3
l l
A LH l l
⎡ ⎤ ⎡
⎡ ⎤ −
⎡ ⎤ ⎤
⎢ ⎥ ⎢
⎢ ⎥
− = − ⎢ ⎥ = ⎥
⎢ ⎥ ⎢
⎢ ⎥ ⎣ ⎦ − ⎥
⎢ ⎥ ⎢
⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎥⎦
(
A H,)
is non-detectable since we can not move the eigenvalue 4.According to Theorem 5-1 and 5-2 in the note, the steady-state error with the Kalman gain K is asymptotically unstable. In addition, it is not guaranteed that for every choice of there is a bounded limiting solution P.
P0
(b) What if H =
[
3 3]
?(Solution) (10 points) When H =[3 3],
1 1
2 2
4 0 4 3 3
3 3
0 1 3 1 3
l l
A LH l l
1 2
l . l
⎡ ⎤ ⎡
⎡ ⎤ − −
⎡ ⎤ ⎤
⎢ ⎥ ⎢
⎢ ⎥
− = − ⎢ ⎥ = ⎥
⎢ ⎥ ⎢
⎢ ⎥ ⎣ ⎦ − − ⎥
⎢ ⎥ ⎢
⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎥⎦
)
Two eigenvalues of A may be arbitrarily located by properly choosing and . Therefore,
(
is detectable. The steady-state error with the Kalman gain K is asymptotically unstable. However, for every choice of there is a bounded limiting solution P.l1
P0
l2 A H,
3. The equation of motion of a pendulum hanging from a ceiling is given by the differential equation
2 2
( ) sin ( ) ( ), d t
t w t dt
θ + θ =
where is the angular position of the pendulum at time t. Discrete measurements of are given by , where the sampling
interval . Suppose that , , and
. Give the equations for the EKF that provides an estimate of
, , based on the measurements for . ( )t
θ
T (0, N
=1,2
( )t
θ z n( )=θ( )n +v n( ) ( ) ~ (0, 0.02) w t N
( )
z i =
=0.5 0.02)
,"
( ) ~ (0,1) v n N
1,2, , i " n (0) ~
θ ( )i
θ i
(Solution) (Kamen’s Problem 8.8)
4. Suppose that RV x is uniformly distributed on [-1, 1], and y=e2x. (a) What is the mean of y, y?
(Solution) (5 points)
{ } { }
111 2 1(
2 2)
1.8132 4
x x
y E y E e e dx e e−
= = =
∫
− = − =(b) What is the first-order approximation to y?
(Solution) (5 points) 1st order approximation
( ) { } 1.
x x
y h x h E x
x =
+∂ =
∂
(c) What is the second-order approximation to y?
(Solution) (5 points) 2nd order approximation
{ ( )} ( )
{ }
{ }
2
2
2 2
1 2!
1 1
=1 1 4 1.666.
2 2
x x
x x x
y E h x h x E D h D h
h E x P
x =
= + +
+ ∂ = + ⋅ =
∂
5
3 ≈ (d) What is the unscented approximation to y?
(Solution) (5 points) Since
2 1
0, x 3
x = σ = and
(1) 1 (2) 1
,
3 3
x = x = − , we obtain
2 2
3 3
1 1.744.
u 2
y e e
⎛ − ⎞
= ⎜⎜ + ⎟⎟=
⎝ ⎠ .
(e) What is the variance of y? What is the unscented approximation to the variance of y?
(Solution) (10 points)
{ }
2 2{ }
4( )
2var( )y =E y −y =E e x − 1.813 =6.8225 3.2885− =3.534..
( )
2 2 2 22 2
( ) 3 3
1
1 1
var( ) 1.744 1.744 2.042.
2 2
i
u u
i
y h x y e e
−
=
⎡⎛ ⎞ ⎛ ⎞ ⎤
⎢ ⎥
⎡ ⎤
=