• Tidak ada hasil yang ditemukan

1 Operational Amplifier Symbol and Circuits

N/A
N/A
Protected

Academic year: 2024

Membagikan "1 Operational Amplifier Symbol and Circuits"

Copied!
16
0
0

Teks penuh

(1)

Operational Amplifier Operational Amplifier

주요한 단자

(b) The correspondence between the circled pin numbers of the integrated circuit and the nodes of the operational amplifier.

(a) A µA741 integrated circuit has eight connecting pins

Lecture 6 Lecture 6--11 Circuit Theory I

Circuit Theory I

1. inverting input 2. noninverting input 3. output

4. positive power supply (v+) 5. negative power supply (v)

NC : no connection

Balance(offset null) : compensate for a degradation

Symbol and Circuits Symbol and Circuits

KCL i1 + i2 + io+ i++ i-= 0

Common node : reference

- All voltages rise from the reference node.

- All currents come into the amplifier.

An op amp, including power supplies v+ and v-.

(2)

- Op amp가 선형이기 위해서는 다음의 조건을 만족해야 한다.

v0

V Positive saturation

Ideal Operational Amplifier Ideal Operational Amplifier

) ,

) (

( SR SR slewrate dt

t dv

i i

v v

o sat o

sat o

+ V

V+

A V+/

V+/A (v2v1)

Linear region

Negative saturation

Lecture 6 Lecture 6--33 Circuit Theory I

Circuit Theory I

V/s mA

V, 2 , 500,000 14

, 741

=

=

=

SR i

v A For

sat sat

μ

Ideal Operational Amplifier Ideal Operational Amplifier

- Ideal operational amplifier

O i t t는 영이다

The ideal operational amplifier Table. Operating Condition for an Ideal

Operational Amplifier

Variable Ideal Condition

Op amp input current는 영이다.

Input node voltage는 같다.

* Virtual short condition.

0 ,

0 2

1= i =

i

1

2 v

v =

i

R

A

Inverting node input current Noninverting node input current Voltage difference between

inverting node voltage v1 and noninverting node voltage v2

i1= 0 i2= 0 v2- v1=0

(3)

Ideal Operational Amplifier Ideal Operational Amplifier

-Ideal OP Amp

Lecture 6 Lecture 6--55 Circuit Theory I

Circuit Theory I

R A

Ri , o 0,

(1) Infinite gain, (2) infinite input resistance, (3) zero output resistance

- 실제 소자 거동(e.g. saturation)을 정확히 묘사하지 못하나, 해석을 단순화.

KCL

i2+ i1+ io+ i++ i-= 0

여기서i2 , i1은 매우 작으므로

Op amp

Op amp 회로의

회로의 간략화 간략화

i2= i1 0 따라서,io= -( i++ i-)

입력전류는 영이지만 출력전류는 상당히 흐른다.

Op amp 회로는 선형 구간에서 그림과 같이 간략화 할 수 있다.

An op amp, including power suppliesv+ andv-.

여기서 이고

i2+ i1+ io= 0 은 성립하지 않는다.

왜냐하면 이 회로는 간략화한 회로이기 때문이다.

<V+

v0

The ideal operational amplifier

(4)

Nodal Analysis of Op Amp Circuits Nodal Analysis of Op Amp Circuits

가 미지수

0

, 1 2

1

2 =v i =i =

v

) 2 ( 0 30 0

0 10

1

1 + =

Ω + Ω

k v k

v v b

4

Op amp : virtual short condition Node 2

Lecture 6 Lecture 6--77 Circuit Theory I

Circuit Theory I

v1, vo가 미지수

따라서, vo= -3(vb-ba)

0

, 1 2

1

2 v i i

v

) 1 ( 0 30 0

10

1

1 + =

Ω + Ω

k v v k

v

v a o 0 (2')

3 4

) ' 1 ( 3 0 3

4

1 1

=

=

b o a

v v

v v

Input단자에서KCL적용. v

Node 1

v2= 0이고v2= v1이므로 v1= 0, i1= 0 KCL에서iR1+ iRf= 0.

0 0v v

Inverting Amplifier Inverting Amplifier

) :

( 0 0 0

1 1

0

0 1

factor scaling R

v R R v R

R v R

v

f in f

f in

=

= +

<V+

v0

v V V R v

i i

f < < +

이어야 하므로

따라서,vo= -Avin이고 이어야 하므로

vin는 매우 작아야Op amp가 선형 동작한.

1

1 v V v R R

R in < + in < f

A V vs < +

Rf가 없는open loop인 경우 vo= -Av1이 되고i1 0이므로 v1 vin가 된다.

(5)

Virtual short condition v2=v1=vb=0, i1=0

vc, vc+vsNode voltage정의

Bridge Amplifier Circuits (I) Bridge Amplifier Circuits (I)

vc

c, c s g

NodebKCL

NodeaKCL

) 1 ( 0 0

) ( 0

4 3

= + +

R v R

v

vc s c

) 2 ( ) 0

(

6 5 2

1

=

+

+ + +

R v R

v v R

v v R

v v

va c s a c a o a

(a) A bridge amplifier, including the bridge circuit

Lecture 6 Lecture 6--99 Circuit Theory I

Circuit Theory I

Supernode2 c, d5KCL 6

1 R R R

R

) 3 ( 0 0 0

3 1

4 2

= + +

+ + +

R v v R

v v v R v R

v

vc a c c s a c s

(b) The bridge circuit Supernode

vc, va, vo가 미지수.

Bridge Amplifier Circuits (II) Bridge Amplifier Circuits (II)

) ' 3 ( 1) (1 1) 1 1 (1 1) (1

) ' 2 1 (

1) (1 1) 1 1 (1

) ' 1 ( 1)

(1

3 1 4

3 2 1 2 1

1 0 5 2 1 6 5 2 1

3 4 3

s c

a

s c

a s c

R v v R

R R R v R

R R

R v v v R R v R

R R R R

R v R v R

+

= + + + + +

=

+

+ + +

= +

(c) Its Thévenin equivalent circuit

(d) The bridge amplifier, including the Thévenin equivalent of the bridge

va, vc를 소거하면vo를 구할 수 있다.

(6)

i2 0 이므로Rg에서의 전압강하= 0.

따라서 v2 vi이고v1 v2이므로

Noninverting Amplifier Noninverting Amplifier

따라서, v2 vin이고v1 v2이므로 v1= vin

KCL에서

in f f

o

f o in in

R v R R

v

R v v R v

1 ) ( 1

0 0

1 1

+

=

=

+

Lecture 6 Lecture 6--1111 Circuit Theory I

Circuit Theory I

in f

o

f f

R v v (R 1)

1 1

+

=

vp= vn= 0 이고 KCL을 적용.

Summing Amplifier Summing Amplifier

3 2

1

3 3 2

2 1

1

) ( ) ( ) (

0

R v R v

R v v

R v v R

v v R

v v R

v v

f f

f o

n n

n f

o n

+

+

=

=

+

+

+

3 3 2

2 1

1

) ( ) ( ) (

R R

o R

따라서,voscalen개의 입력 전압의 합이고 부호는 역전되어 있다.

(7)

vp= vn 이고 KCL을 적용.

0 v v0 0

vn n

=

+

Noninverting Summing Amplifier Noninverting Summing Amplifier

)) (

1 (

)) 0 (

1 /(

0 /

/ /

) 1 ( ) 1 (

) 0 1 (

3 3 2 2 1 1 3

2 1 3

2 1

3 2 1 3

3 2

2 1

1

4 0 4

0 4

4 4

v K v K v K v K K K v

K v K v K

K K K R

v K

R v v K R

v v K R

v v

K v v R K

v R

K v K

R K R

a n a

n a

n a

n

n b b

n

b b

+ + +

+

+ +

= + +

+

=

=

+

Lecture 6 Lecture 6--1313 Circuit Theory I

Circuit Theory I

) (

)) (

1 (

3 3 2 2 1 1 4

3 3 2 2 1 1

3 3 2 2 1 1 3

2 1 3

2 1

v K v K v K K v

v K v K v K v

R v K v K v K R

v K K K R

v K R

v K R

v K

o n

a a

n a

n a

n a

n

+ + + +

+ + +

+

=

=

= +

+ +

따라서,

v-= vin= vout

Ci i #1의 출력은 Ci i #2

Voltage follower (buffer amplifier)

Voltage Follower and Loading Effect Voltage Follower and Loading Effect

Circuit #1의 출력은 Circuit #2 를 연결하는 순간 변하고 만다.이 를Loading effect라고 한다.

그림(b)와 같은 전압은 바뀌게 된 다. Op ampvoltage follower

(b) After Circuit#2 is connected (a) Circuit#1 before

를 이용하면 출력전압을 그대로 유 지할 수 있다.

(c) Preventing loading using a voltage follower

(8)

(a) A voltage divider before a 30 kΩ resistor is added

in in

a v v

v 4

3 60 20

60 =

= + 그림(a)의 경우

그림(b)의 경우.

30 kΩ의 저항을 연결했으므로

Voltage Follower (Buffer or Isolation Amplifier) Voltage Follower (Buffer or Isolation Amplifier)

(b) A voltage divider after a 30-kΩresistor is added

그림(c)와 같이voltage follower를 삽입.

NodeaKCL

= Ω + Ω

Ω Ω= + Ω

k v v k k k

v k

v

v in

a a

in a

) 20 60

1 20

( 1 60 0

0 20

in

b v

v 2

1 30 //

60 20

30 //

60 =

= +

30 kΩ의 저항을 연결했으므로

Lecture 6 Lecture 6--1515 Circuit Theory I

Circuit Theory I

Ω

= Ω

=

=

=

k v k v i

v v

v v

in in

c

in out

a out

40 30

4 3

4 3

이므로

(c) A voltage follower is added to prevent loading

in

a v

v =3 4

Gf G1

G2 G2(v+vs2)+Ggv+=0

i+= 0 이므로

Difference Amplifier Difference Amplifier

V+ G2

Gg V- Vs1

Vs2

2 2

2 1

1

1 (1 ) s

g f

s f

o v

G G

G G

v G G

v G

+ + +

=

두 식에서 i-= 0 이므로

( 1) ( ) 0

1 v+vs +Gf v+vo = G

1 2 2

1 Gf G Gg vo vs vs

G = 이고 = 이면 = 만약

)

( 2 1

2

1 kGf G kGg vo k vs vs

G = = =

만약 이고 이면

(9)

Saturation & the Active Mode Saturation & the Active Mode

Lecture 6 Lecture 6--1717 Circuit Theory I

Circuit Theory I

(1) Finite gain : typically 104to 106.

(2) Saturation : Output voltage cannot exceed the saturation voltage

≠0

=v+ v vd

Typical Op

Typical Op--AmpAmp

(10)

Equivalent Circuit of a 741 Op Amp Equivalent Circuit of a 741 Op Amp

Lecture 6 Lecture 6--1919 Circuit Theory I

Circuit Theory I

Simplified Internal Circuitry of a Basic Op Amp Simplified Internal Circuitry of a Basic Op Amp

(11)

Ideal op amp.

i1= 0, i2= 0, v1-v2= 0 Practical op amp.

-nonzero bias currents (ib1, ib2)

Practical Op

Practical Op--AmpAmp

nonzero bias currents (ib1, ib2) -nonzero input offset voltage(vos) - finite input resistance(Ri) -nonzero output resistance(Ro) - finite voltage gain(A)

i1= ib 1, i2= ib2, v1-v2= vos

ios = ib1- ib2 (b) The offsets model of an

operational amplifier

Lecture 6 Lecture 6--2121 Circuit Theory I

Circuit Theory I

For µA 741,

mV nA

nA nA

5 200

500 ,

500

2 1

2 1

os

b b

b b

v i i

i i

operational amplifier

Practical Op

Practical Op--AmpAmp

Ideal op amp.

i1= 0, i2= 0, v1-v2= 0 Practical op amp.

-nonzero bias currents (ib1, ib2)

(c) The finite gain model of and operational amplifier

(b1, b2) -nonzero input offset voltage(vos) - finite input resistance(Ri) -nonzero output resistance(Ro) - finite voltage gain(A)

(d) The offsets and finite gain model of an operational amplifier

(12)

Realistic Model

Realistic Model -- Inverting Amp(I)Inverting Amp(I)

(a) An inverting amplifier (b) An equivalent circuit that accounts for the input offset voltage and bias currents of the operational amplifier - Op ampµA 741.

Lecture 6 Lecture 6--2323 Circuit Theory I

Circuit Theory I

-실제Op ampbias current source 두 개와 offset voltage source 한 개가ideal Op amp 더해져 있는 것으로 간주(그림(b)).

Realistic Model

Realistic Model -- Inverting Amp (II)Inverting Amp (II)

o

in v

v 0

50 0 10

0 + =

kΩ kΩ

-그림(c)ideal Op amp.

in

o v

v 5

50 10

= kΩ kΩ

(c) Analysis using superposition

-그림(d) : Offset voltage source

o os

os v v

v 0 0 6

os o o

os

os 0 v 6v

50

10 + = =

kΩ kΩ

(13)

Realistic Model

Realistic Model -- Inverting Amp (III)Inverting Amp (III)

1

1 0 50

50 0 10

0 0

b o

o

b v v i

i + + = = kΩ

kΩ kΩ

-그림(e) : Bias current source, ib1

-그림(f) : Bias current source, ib2 in= 0, vp= vn= 0 이므로 10 kΩ에 흐르는 전류=0이고 50 kΩ에 흐르는 전류=0. v0= 0

50 1

6

5 in os b

o v v k i

v = + + Ω Superposition에 의해서

Lecture 6 Lecture 6--2525 Circuit Theory I

Circuit Theory I

1 b os

in

o output offset voltage Output offset voltage forµA 741

= 6×5 mV+ 50 kΩ· 500 nA= 55 mV

최대 최대

5vin> 500 mV인 영역에서offset voltage를 무시.

Offset Voltage

Offset Voltage -- Inverting AmpInverting Amp

20 kΩ의 역할

(a) Bias current 에 의해offset 전압이 발생.

(b) Offset current에 의해offset 전압이 발생.

(c) 대개offset currentbias current ¼ 정도.

(14)

n o

n o

f o n s

s n i n

v A v v b v

node

R v v R

v v R a v node

= +

=

+

+

) 0 0 : (

0 0 :

Real Inverting Op

Real Inverting Op--Amp CircuitAmp Circuit

o o f f s s i i

o f

R G R G

R G R G

R b R

node

=

=

=

=

+

, 1 , 1

, 1 1

0 :

라 하면

0 ) (

) (

) (

= +

+

=

+

+

o o f n f o

s s o f n f s i

v G G v G AG

v G v G v G G G

)

2 Gs(AGo Gf vs

v D

Lecture 6 Lecture 6--2727 Circuit Theory I

Circuit Theory I

) (

) )(

0 (

f o f o f f s i

f

G AG G G G G G G v D

+

+ +

= +

=

Ideal op amp의 경우, A→∞, Gi0, Go→∞이므로 이를 대입하면 앞의 예와 같 다. 출력 단에 부하저항RL을 연결하면 vo가 바뀌며 이 값도KCL에 의해서 구할 수 있다.

0 )

g (

n v G

G v d

Real Noninverting Op

Real Noninverting Op--Amp CircuitAmp Circuit

0 ))

( ( ) ( :

0 ) ( :

= +

+

=

+ +

+

o L n p o o n o f

o n f g i

g n n s

v G v v A v G v v G b node

v v R G v R

G a node

또한 RiRg에 흐르는 전류가 같으므로

여기서,vp, vn, vo가 미지수이고 식이 세 개이므로 vo를 구할 수 있다.

g g p g i

g n

R v v R R

v

v

+ =

(15)

Applications

Applications -- D/A Converter D/A Converter Building

Building--Weighted Summing Circuit (I)Weighted Summing Circuit (I) [bn1,....,b0]

D/A converter

[

0

]

0

1 1 1

12 .. b2 b E

b

vout= n n + + +

R I E

0=32

Lecture 6 Lecture 6--2929 Circuit Theory I

Circuit Theory I

Node 1 voltage : E/16 Node 2 voltage : E/8 Node 3 voltage : E/4 Node 4 voltage : E/2

Applications

Applications -- D/A Converter D/A Converter Building

Building--Weighted Summing Circuit (II)Weighted Summing Circuit (II)

[1,0,0,1]=[b3,b2,b1,b0] Switch 0 : up

I0

Switch 1 : down Switch 2 : down

8I0 Switch 3 : up

Switch voltage Rf9 I0가 흐르므로

Vout= 2R x 9 I0

= 2R X 9 E/32R

= 9 E/16

(16)

Transducer Interface Circuit (I) Transducer Interface Circuit (I)

- Pressure sensor 의 출력을PC에 입력을 하려면ADC (analog-digital converter)를 이용해야 한다.

- ADC 0 ~ 10 V 의 입력을 필요로 하는데pressure sensor의 출력은– 250 mV ~ 250 mV 이다.

-이것을 증폭시켜야 한다.

V 10 V

0

mV 250 mV

250 1

v

V 5 20

2 1

1

2=av +b v = v+ v

Lecture 6 Lecture 6--3131 Circuit Theory I

Circuit Theory I

V 10 V

0

v2

Transducer Interface Circuit (II) Transducer Interface Circuit (II)

- Inverting amplifier, voltage follower, summing amplifier 이용하여 회로를 완성한다.

Referensi

Dokumen terkait