Operational Amplifier Operational Amplifier
주요한 단자
(b) The correspondence between the circled pin numbers of the integrated circuit and the nodes of the operational amplifier.
(a) A µA741 integrated circuit has eight connecting pins
Lecture 6 Lecture 6--11 Circuit Theory I
Circuit Theory I
주 자
1. inverting input 2. noninverting input 3. output
4. positive power supply (v+) 5. negative power supply (v–)
•NC : no connection
•Balance(offset null) : compensate for a degradation
Symbol and Circuits Symbol and Circuits
KCL i1 + i2 + io+ i++ i-= 0
Common node : reference
- All voltages rise from the reference node.
- All currents come into the amplifier.
An op amp, including power supplies v+ and v-.
- Op amp가 선형이기 위해서는 다음의 조건을 만족해야 한다.
v0
V Positive saturation
Ideal Operational Amplifier Ideal Operational Amplifier
) ,
) (
( SR SR slewrate dt
t dv
i i
v v
o sat o
sat o
≤
≤
+ ≤ V
−V+
A V+/
− V+/A (v2−v1)
Linear region
Negative saturation
Lecture 6 Lecture 6--33 Circuit Theory I
Circuit Theory I
V/s mA
V, 2 , 500,000 14
, 741
=
=
=
−
SR i
v A For
sat sat
μ
Ideal Operational Amplifier Ideal Operational Amplifier
- Ideal operational amplifier
O i t t는 영이다
The ideal operational amplifier Table. Operating Condition for an Ideal
Operational Amplifier
Variable Ideal Condition
Op amp input current는 영이다.
Input node voltage는 같다.
* Virtual short condition.
0 ,
0 2
1= i =
i
1
2 v
v =
∞
i→
R
∞
→ A
Inverting node input current Noninverting node input current Voltage difference between
inverting node voltage v1 and noninverting node voltage v2
i1= 0 i2= 0 v2- v1=0
Ideal Operational Amplifier Ideal Operational Amplifier
-Ideal OP Amp
Lecture 6 Lecture 6--55 Circuit Theory I
Circuit Theory I
∞
→
→
∞
→ R A
Ri , o 0,
(1) Infinite gain, (2) infinite input resistance, (3) zero output resistance
- 실제 소자 거동(e.g. saturation)을 정확히 묘사하지 못하나, 해석을 단순화.
KCL
i2+ i1+ io+ i++ i-= 0
여기서i2 , i1은 매우 작으므로
Op amp
Op amp 회로의
회로의 간략화 간략화
i2= i1≈ 0 따라서,io= -( i++ i-)
입력전류는 영이지만 출력전류는 상당히 흐른다.
Op amp 회로는 선형 구간에서 그림과 같이 간략화 할 수 있다.
An op amp, including power suppliesv+ andv-.
여기서 이고
i2+ i1+ io= 0 은 성립하지 않는다.
왜냐하면 이 회로는 간략화한 회로이기 때문이다.
<V+
v0
The ideal operational amplifier
Nodal Analysis of Op Amp Circuits Nodal Analysis of Op Amp Circuits
가 미지수
0
, 1 2
1
2 =v i =i =
v
) 2 ( 0 30 0
0 10
1
1 + =
Ω + − Ω
−
k v k
v v b
4
Op amp : virtual short condition Node 2
Lecture 6 Lecture 6--77 Circuit Theory I
Circuit Theory I
v1, vo가 미지수
따라서, vo= -3(vb-ba)
0
, 1 2
1
2 v i i
v
) 1 ( 0 30 0
10
1
1 + =
Ω + − Ω
−
k v v k
v
v a o 0 (2')
3 4
) ' 1 ( 3 0 3
4
1 1
=
−
=
−
−
b o a
v v
v v
Input단자에서KCL적용. v
Node 1
v2= 0이고v2= v1이므로 v1= 0, i1= 0 KCL에서iR1+ iRf= 0.
0 0−v −v
Inverting Amplifier Inverting Amplifier
) :
( 0 0 0
1 1
0
0 1
factor scaling R
v R R v R
R v R
v
f in f
f in
−
=
= +
<V+
v0
v V V R v
i i
f < → < +
이어야 하므로
따라서,vo= -Avin이고 이어야 하므로
vin는 매우 작아야Op amp가 선형 동작한 다.
1
1 v V v R R
R in < +→ in < f
A V vs < +
Rf가 없는open loop인 경우 vo= -Av1이 되고i1≈ 0이므로 v1≈ vin가 된다.
Virtual short condition v2=v1=vb=0, i1=0
vc, vc+vs로 Node voltage정의
Bridge Amplifier Circuits (I) Bridge Amplifier Circuits (I)
vc
c, c s g
Nodeb의KCL
Nodea의KCL
) 1 ( 0 0
) ( 0
4 3
− = + +
−
R v R
v
vc s c
) 2 ( ) 0
(
6 5 2
1
=
− +
− + + +
−
R v R
v v R
v v R
v v
va c s a c a o a
(a) A bridge amplifier, including the bridge circuit
Lecture 6 Lecture 6--99 Circuit Theory I
Circuit Theory I
Supernode2 c, d의5KCL 6
1 R R R
R
) 3 ( 0 0 0
3 1
4 2
− = + +
− + + + −
−
R v v R
v v v R v R
v
vc a c c s a c s
(b) The bridge circuit Supernode
vc, va, vo가 미지수.
Bridge Amplifier Circuits (II) Bridge Amplifier Circuits (II)
) ' 3 ( 1) (1 1) 1 1 (1 1) (1
) ' 2 1 (
1) (1 1) 1 1 (1
) ' 1 ( 1)
(1
3 1 4
3 2 1 2 1
1 0 5 2 1 6 5 2 1
3 4 3
s c
a
s c
a s c
R v v R
R R R v R
R R
R v v v R R v R
R R R R
R v R v R
+
−
= + + + + +
−
=
− +
− + + +
−
= +
(c) Its Thévenin equivalent circuit
(d) The bridge amplifier, including the Thévenin equivalent of the bridge
va, vc를 소거하면vo를 구할 수 있다.
i2≈ 0 이므로Rg에서의 전압강하= 0.
따라서 v2≈ vi이고v1≈ v2이므로
Noninverting Amplifier Noninverting Amplifier
따라서, v2≈ vin이고v1≈ v2이므로 v1= vin
KCL에서
in f f
o
f o in in
R v R R
v
R v v R v
1 ) ( 1
0 0
1 1
+
=
− =
− +
Lecture 6 Lecture 6--1111 Circuit Theory I
Circuit Theory I
in f
o
f f
R v v (R 1)
1 1
+
=
vp= vn= 0 이고 KCL을 적용.
Summing Amplifier Summing Amplifier
3 2
1
3 3 2
2 1
1
) ( ) ( ) (
0
R v R v
R v v
R v v R
v v R
v v R
v v
f f
f o
n n
n f
o n
− +
− +
−
=
− =
− +
− +
− +
3 3 2
2 1
1
) ( ) ( ) (
R R
o R
따라서,vo는scale된n개의 입력 전압의 합이고 부호는 역전되어 있다.
vp= vn 이고 KCL을 적용.
0 v v0 0
vn n
⇒
− =
− +
Noninverting Summing Amplifier Noninverting Summing Amplifier
)) (
1 (
)) 0 (
1 /(
0 /
/ /
) 1 ( ) 1 (
) 0 1 (
3 3 2 2 1 1 3
2 1 3
2 1
3 2 1 3
3 2
2 1
1
4 0 4
0 4
4 4
v K v K v K v K K K v
K v K v K
K K K R
v K
R v v K R
v v K R
v v
K v v R K
v R
K v K
R K R
a n a
n a
n a
n
n b b
n
b b
+ + +
+
+ +
−
⇒
− = + − + −
+ −
−
=
− ⇒
− =
− ⇒ +
Lecture 6 Lecture 6--1313 Circuit Theory I
Circuit Theory I
) (
)) (
1 (
3 3 2 2 1 1 4
3 3 2 2 1 1
3 3 2 2 1 1 3
2 1 3
2 1
v K v K v K K v
v K v K v K v
R v K v K v K R
v K K K R
v K R
v K R
v K
o n
a a
n a
n a
n a
n
+ + + +
+ + +
+
=
=
= +
+ +
따라서,
v-= vin= vout
Ci i #1의 출력은 Ci i #2
Voltage follower (buffer amplifier)
Voltage Follower and Loading Effect Voltage Follower and Loading Effect
Circuit #1의 출력은 Circuit #2 를 연결하는 순간 변하고 만다.이 를Loading effect라고 한다.
그림(b)와 같은 전압은 바뀌게 된 다. Op amp의voltage follower
(b) After Circuit#2 is connected (a) Circuit#1 before
를 이용하면 출력전압을 그대로 유 지할 수 있다.
(c) Preventing loading using a voltage follower
(a) A voltage divider before a 30 kΩ resistor is added
in in
a v v
v 4
3 60 20
60 =
= + 그림(a)의 경우
그림(b)의 경우.
30 kΩ의 저항을 연결했으므로
Voltage Follower (Buffer or Isolation Amplifier) Voltage Follower (Buffer or Isolation Amplifier)
(b) A voltage divider after a 30-kΩresistor is added
그림(c)와 같이voltage follower를 삽입.
Nodea의KCL
= Ω + Ω
⇒ Ω Ω= + − Ω
−
k v v k k k
v k
v
v in
a a
in a
) 20 60
1 20
( 1 60 0
0 20
in
b v
v 2
1 30 //
60 20
30 //
60 =
= +
30 kΩ의 저항을 연결했으므로
Lecture 6 Lecture 6--1515 Circuit Theory I
Circuit Theory I
Ω
= Ω
=
=
=
k v k v i
v v
v v
in in
c
in out
a out
40 30
4 3
4 3
이므로
(c) A voltage follower is added to prevent loading
in
a v
v =3 4
Gf G1
G2 G2(v+−vs2)+Ggv+=0
i+= 0 이므로
Difference Amplifier Difference Amplifier
V+ G2
Gg V- Vs1
Vs2
2 2
2 1
1
1 (1 ) s
g f
s f
o v
G G
G G
v G G
v G ⎟⎟
⎠
⎞
⎜⎜
⎝
⎛ + + +
−
=
두 식에서 i-= 0 이므로
( 1) ( ) 0
1 v+−vs +Gf v+−vo = G
1 2 2
1 Gf G Gg vo vs vs
G = 이고 = 이면 = − 만약
)
( 2 1
2
1 kGf G kGg vo k vs vs
G = = = −
만약 이고 이면
Saturation & the Active Mode Saturation & the Active Mode
Lecture 6 Lecture 6--1717 Circuit Theory I
Circuit Theory I
(1) Finite gain : typically 104to 106.
(2) Saturation : Output voltage cannot exceed the saturation voltage
≠0
−
=v+ v− vd
Typical Op
Typical Op--AmpAmp
Equivalent Circuit of a 741 Op Amp Equivalent Circuit of a 741 Op Amp
Lecture 6 Lecture 6--1919 Circuit Theory I
Circuit Theory I
Simplified Internal Circuitry of a Basic Op Amp Simplified Internal Circuitry of a Basic Op Amp
Ideal op amp.
i1= 0, i2= 0, v1-v2= 0 Practical op amp.
-nonzero bias currents (ib1, ib2)
Practical Op
Practical Op--AmpAmp
nonzero bias currents (ib1, ib2) -nonzero input offset voltage(vos) - finite input resistance(Ri) -nonzero output resistance(Ro) - finite voltage gain(A)
i1= ib 1, i2= ib2, v1-v2= vos
ios = ib1- ib2 (b) The offsets model of an
operational amplifier
Lecture 6 Lecture 6--2121 Circuit Theory I
Circuit Theory I
For µA 741,
mV nA
nA nA
5 200
500 ,
500
2 1
2 1
≤
≤
≤
≤
− os
b b
b b
v i i
i i
operational amplifier
Practical Op
Practical Op--AmpAmp
Ideal op amp.
i1= 0, i2= 0, v1-v2= 0 Practical op amp.
-nonzero bias currents (ib1, ib2)
(c) The finite gain model of and operational amplifier
(b1, b2) -nonzero input offset voltage(vos) - finite input resistance(Ri) -nonzero output resistance(Ro) - finite voltage gain(A)
(d) The offsets and finite gain model of an operational amplifier
Realistic Model
Realistic Model -- Inverting Amp(I)Inverting Amp(I)
(a) An inverting amplifier (b) An equivalent circuit that accounts for the input offset voltage and bias currents of the operational amplifier - Op amp는µA 741임.
Lecture 6 Lecture 6--2323 Circuit Theory I
Circuit Theory I
-실제Op amp는bias current source 두 개와 offset voltage source 한 개가ideal Op amp에 더해져 있는 것으로 간주(그림(b)).
Realistic Model
Realistic Model -- Inverting Amp (II)Inverting Amp (II)
o
in v
v 0
50 0 10
0− + − =
kΩ kΩ
-그림(c)는ideal Op amp.
in
o v
v 5
50 10
−
= kΩ kΩ
(c) Analysis using superposition
-그림(d) : Offset voltage source
o os
os v v
v −0 − 0 6
os o o
os
os 0 v 6v
50
10 + = ⇒ =
kΩ kΩ
Realistic Model
Realistic Model -- Inverting Amp (III)Inverting Amp (III)
1
1 0 50
50 0 10
0 0
b o
o
b v v i
i + − + − = ⇒ = kΩ⋅
kΩ kΩ
-그림(e) : Bias current source, ib1
-그림(f) : Bias current source, ib2 in= 0, vp= vn= 0 이므로 10 kΩ에 흐르는 전류=0이고 50 kΩ에 흐르는 전류=0. v0= 0
50 1
6
5 in os b
o v v k i
v =− + + Ω⋅ Superposition에 의해서
Lecture 6 Lecture 6--2525 Circuit Theory I
Circuit Theory I
1 b os
in
o output offset voltage Output offset voltage forµA 741
= 6×5 mV+ 50 kΩ· 500 nA= 55 mV
최대 최대
5vin> 500 mV인 영역에서offset voltage를 무시.
Offset Voltage
Offset Voltage -- Inverting AmpInverting Amp
20 kΩ의 역할
(a) Bias current 에 의해offset 전압이 발생.
(b) Offset current에 의해offset 전압이 발생.
(c) 대개offset current는bias current 의¼ 정도.
n o
n o
f o n s
s n i n
v A v v b v
node
R v v R
v v R a v node
− = + −
−
− =
− +
− +
) 0 0 : (
0 0 :
Real Inverting Op
Real Inverting Op--Amp CircuitAmp Circuit
o o f f s s i i
o f
R G R G
R G R G
R b R
node
=
=
=
=
+
, 1 , 1
, 1 1
0 :
라 하면
0 ) (
) (
) (
= +
+
−
=
− +
+
o o f n f o
s s o f n f s i
v G G v G AG
v G v G v G G G
)
2 Gs(AGo Gf vs
v D − −
Lecture 6 Lecture 6--2727 Circuit Theory I
Circuit Theory I
) (
) )(
0 (
f o f o f f s i
f
G AG G G G G G G v D
− +
+ +
= +
=
Ideal op amp의 경우, A→∞, Gi→0, Go→∞이므로 이를 대입하면 앞의 예와 같 다. 출력 단에 부하저항RL을 연결하면 vo가 바뀌며 이 값도KCL에 의해서 구할 수 있다.
0 )
− g (
n v G
G v d
Real Noninverting Op
Real Noninverting Op--Amp CircuitAmp Circuit
0 ))
( ( ) ( :
0 ) ( :
= +
−
− +
−
=
− + +
+
o L n p o o n o f
o n f g i
g n n s
v G v v A v G v v G b node
v v R G v R
G a node
또한 Ri와Rg에 흐르는 전류가 같으므로
여기서,vp, vn, vo가 미지수이고 식이 세 개이므로 vo를 구할 수 있다.
g g p g i
g n
R v v R R
v
v −
+ =
−
Applications
Applications -- D/A Converter D/A Converter Building
Building--Weighted Summing Circuit (I)Weighted Summing Circuit (I) [bn−1,....,b0]
D/A converter
[
0]
01 1 1
12 .. b2 b E
b
vout= n− n− + + +
R I E
0=32
Lecture 6 Lecture 6--2929 Circuit Theory I
Circuit Theory I
Node 1 voltage : E/16 Node 2 voltage : E/8 Node 3 voltage : E/4 Node 4 voltage : E/2
Applications
Applications -- D/A Converter D/A Converter Building
Building--Weighted Summing Circuit (II)Weighted Summing Circuit (II)
[1,0,0,1]=[b3,b2,b1,b0] Switch 0 : up
I0
Switch 1 : down Switch 2 : down
8I0 Switch 3 : up
Switch voltage Rf에9 I0가 흐르므로
Vout= 2R x 9 I0
= 2R X 9 E/32R
= 9 E/16
Transducer Interface Circuit (I) Transducer Interface Circuit (I)
- Pressure sensor 의 출력을PC에 입력을 하려면ADC (analog-digital converter)를 이용해야 한다.
- ADC 는0 ~ 10 V 의 입력을 필요로 하는데pressure sensor의 출력은– 250 mV ~ 250 mV 이다.
-이것을 증폭시켜야 한다.
V 10 V
0
mV 250 mV
250 1
≤
≤
≤
≤
− v
V 5 20
2 1
1
2=a⋅v +b ⇒ v = v+ v
Lecture 6 Lecture 6--3131 Circuit Theory I
Circuit Theory I
V 10 V
0
≤v2≤
Transducer Interface Circuit (II) Transducer Interface Circuit (II)
- Inverting amplifier, voltage follower, summing amplifier를 이용하여 회로를 완성한다.