Organic Semiconductor EE 4541.617A 2009. 1stSemester
2009 5 28
Changhee Lee, SNU, Korea Changhee Lee
School of Electrical Engineering and Computer Science Seoul National Univ.
[email protected] 2009. 5.28.
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Advantages of OLEDs
• Superior viewing performance:
emissive bright colors, wide viewing angle, fast response time, and high contrast
• Simple fabrication processes:
vacuum deposition, inkjet printing, spin coating, roll-to-roll (web) processing
Substrate Vacuum Deposition
Ink-jet cartridge Inkjet Printing
• Excellent operating characteristics:
low operating voltage, power efficient, and wide temperature range
• Good form factor:
Thin, light-weight, rugged, and flexible Æ Ultimate Portable Communication Devices
Fine Metal Shadow Mask
Source
Red ink Green ink Blue ink
http://www.universaldisplay.com/
OLED vs LCD (http://www.oled- display.net/oled-television)
http://amoled.samsungsdi.com/
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Development of OLED technology
1998 19991999 2000 200
1
200
2 2003 2004 2005
Pioneer
S K d k Pioneer,
PM Sony SDI 15.1” Sanyo IDTech S
1982 1990 • • • 2006
Samsung SDI AMOLED 양산 2007
5.2” PM-OLED Sanyo-Kodak 5.5” AM-OLED 4 Area
Color OLED
Sony 13”
AMOLED AM-OLED
XGA
LG, 8”-Full color
LGE 1.8”PMOLED Motolora Area color
Toshiba 2.8”고분 자LED
TMD 17” AM-PLED
XGA Sanyo 14.7”AMOL EDWhite EL
5cd/A IDTech 20”a-Si AMOLED
Sanyo-Kodak 2.2” AMOLED
Samsung SDI 17” UXGA AMOLED
LGE-LPL 20.1” XGA AMOLED
SEC 40” WXGA
a-Si AMOLED
Samsung SDI 2.6” AMOLED
Sony 3.8”
PDA Top- 1stOLED
ITO/Diamine/
Alq3/MgAg USP 4,356,429 Ching W. Tang Eastman Kodak
Samsung SDI 31” AMOLED TV 개발
Sony TMD (‘06) 25” LTPS AMOLED TV
Changhee Lee, SNU, Korea
ETRI 2” PM-OLED
UDC OLED
Pioneer OLED DNP OLED
Flexible OLED
Seiko-Epson 40” WXGA
AMOLED (tiled, Ink-jet) emission AMOLED
1stPolymer LED ITO/PPV/Al USP 5,247,190 Sir Richard Friend, FRS
Cambridge University
Sony 11”
AMOLED TV(XEL-1) 판매 AMOLED TV
LGE (‘07) 3.5” AMOLED
Oxide TFT
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Progress in the efficiency of white OLEDs
N. Ide (Matsushita Electric Works, Ltd.), et al., SPIE (2008)
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Organic LEDs (polymers or small molecules)
Electron-transporting materials
N O N O N
O Al
Alq3
N N (H3C)3C O
PBD Emitting materials
NC CN
ETL Cathode
EML
-
Exciton
- LUMOETL
LUMOHTL Electron
injection -
LUMOEML N N
Hole-transporting materials
N N
CH H3C
TPD NPD
DPVBi
Alq3
N O
N O N OAl
N O NC CN
Ir(ppy)3 N
3 Ir
DCJTB
Glass
ITO HIL HTL
+
Changhee Lee, SNU, Korea
+ +
+
- - Φe
light
Φmetal HOMOETL HOMOHTL
ΦITO
Hole injection
+
+ -
HOMOEML
CH3TPD α-NPD Hole-injecting materials
PEDOT:PSS
n
S O3- S O3- S O3H S O3H S O3H S O3H
S S S S S S
O O
O O
O O
O
O O O
n
CuPC
Cu N N
N
N N
N
N N
CH3
H3C CH3
m-MTDATA
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Kodak
B G Y R
R=H, t-Bu ADN Kodak Ar Ar
R
N O O N
O Si
Me
Fluorescent emitters
DPVBi
Idemitsu Kosan Alq3
Host
Almq3
TBP Kodak
R=H Coumarin-545
Al N N O O Al N
N O O
N S
O O
N R R R
Si Me
2PSP Chisso
rubrene rubrene
Dopant
Mitsubishi
R1=R2=R3=R4=H, R5=Me DCM-2
R1=R2=R3=R4=Me, R5=t-Bu DCJTB
Kodak Me-QA
Pioneer BCzBi
Idemitsu Kosan
R=H, Coumarin-545 Pioneer
R=CH3, Coumarin-545T Kodak
N
N
DPAVBi Idemitsu Kosan
R R
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Blue Green Red
Dopant
FI i
Ir(ppy)
3Ir(ppy)
2acac
Btp
2Ir(acac)
N Ir
O
2 N O
F
F Ir
N O O
2 N
Ir N O O CF3 F3C
2 N N
N Ir
O
2 O S N
Ir
3 N H3C
Host and Phosphorescent Dopant Materials
Host
CN-PPV CBP
mCP
UGH2 TAZ
PVK FIrpic
(CF
3ppy)
2Ir(pic) Ir(mpp)
3PtOEP
n O
CN
CHCH2n N
N N
N N
N
N N
N N Pt 2
Si CH3 H3C
N Ir
2
Changhee Lee, SNU, Korea Hole/Exciton
Blocking Materials
BCP C
60F
42mCP V
N N H3C CH3
F F F F F
F F
F F
F F
F F
F F
FF F
F F
F
F F
FF F F F F F
FF
F F F F
FF F F
F F
Dr. H. N. Cho (InkTek)
N O N OAl
O
BAlq
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Fluorescence Phosphorescence
Host Alq3, ... CBP, TCTA, mCP, …
Excited state Singlet Triplet
Comparison of fluorescent and phosphorescent OLEDs
Excited state Singlet Triplet
Exciton diffusion length 50 ~ 100 Å > 1000 Å
Exciton blocking layer - BCP, Balq, etc.
Dopant concentration 0.1 ~ 3 % 5 – 15 %
Maximum quantum efficiency 25 % 100 %
Luminous efficacy
Red: ~6 cd/A Green: ~20 cd/A Blue: ~6 cd/A
Red: 6~20 cd/A Green: 17~50 cd/A Blue: ~ 10 cd/A
Lifetime ~ 50,000 hour ~10,000 hour
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Color CIE (x,y) Efficiency (cd/A) Half-Life (hr)
저 형 광
Red 0.65, 0.35 5.5 >80,000 @ 1000 cd/m2
Green 0.32, 0.62 19 40,000 @ 1000 cd/m2
Light blue 0.17, 0.30 12 21,000 @ 1000 cd/m2
Blue 0.15, 0.15 5.9 7,000 @ 1000 cd/m2
White 0 30 0 34 12 23 000 @ 1000 cd/m2
OLED Performance
저 분 자
White 0.30, 0.34 12 23,000 @ 1000 cd/m2
인 광
Red 0.65, 0.35 15 >22,000 @ 500 cd/m2
Orange 0.61, 0.38 22 15,000 @ 300 cd/m2
Green 0.31, 0.64 27 25,000 @ 600 cd/m2
Light blue 0.14, 0.23 8 -
White 0.39, 0.39 38 -
Red 0.68, 0.32 1.7 1790 @ 1000 cd/m2
Orange 0.58, 0.42 0.9 8138 @ 1000 nit
Changhee Lee, SNU, Korea
고 분 자
형 광
Yellow 0.50, 0.49 2.1 2420 @ 4000 cd/m2
Green 0.43, 0.55 7.7 2912 @ 2000 cd/m2
Blue 0.16, 0.22 6.9 >1147 @ 800 cd/m2
White 0.30, 0.33 3.8 235 @ 800 cd/m2
인 광
Red 0.67, 0.28 1.3 >8350 @ 100 cd/m2
Green 0.36, 0.59 22.8 2649 @ 400 cd/m2
Organic Semiconductor EE 4541.617A 2009. 1stSemester
• Electron-Hole Balance Æ improved efficiency & Lifetime η
φ= χγβφ L
Electron-Hole Balance
1 0
balanced recombine all
Charge balance factor
η
φχγβφ L
χ:coupling-out factor γ:charge balance factor
β:probability of production of emissive species φL
:quantum efficiency of luminescence
To maximize the charge balance factor γ : γ=1.0
γ=0.5
- Equal amount of electrons and holes are injected.
- All the injected electrons and holes recombine.
Æ Ambipolar emitting layer
Æ Mixed emitting layer (co-doped host)
Æ p-type or n-type doping at the electrode interface J. C. Scott et al., SPIE Proc., 3476, 111 (1998)
γ=0
hole only electron only
balanced escape all
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Al
Al
Metal-doped organic layer (n-doping)
Control of:
• Dopant concentration (Extent of reaction)
Electron injection layer
Enhanced electron injection in OLEDs using an Al/LiF electrode
Al
p ( )
• Thickness of doped layer
• Realize ohmic contact
• Increase conductivity
Changhee Lee, SNU, Korea
J.Kido et al., Appl.Phys.Lett.(1998) L. S. Hung, C. W. Tang, and M. G. Mason, APL 70, 152, (1997)
Organic Semiconductor EE 4541.617A 2009. 1stSemester
ZnPC
Vacuum level
3.34 eV 5.28 eV
5.24 eV 8.34 eV
E
LUMO
LUMO
e
−Hole injection layer (p-doped organic layer)
F4TCNQ
E
FE
FHOMO
LUMO
HOMO
e
p-type doping
(a) (b)
(a) undoped (b) p-type doped
M. Pfeiffer , K. Leo, X. Zhou, J.S. Huang, M. Hofmann, A. Werner, J. Blochwitz-Nimoth, Organic Electronics 4 (2003) 89–103 Weiying Gao and Antoine Kahn, Appl. Phys. Lett. 79, 4040 (2001) zinc phthalocyanine (ZnPc) doped with tetrafluorotetracyanoquinodimethaneOrganic Semiconductor EE 4541.617A 2009. 1stSemester
Alq3(30 nm) BCP:Cs(21 nm, 1:1)
Al
N-type
Insulator
- -
- -
- -
--- - -
- +
+ + +
+ +
+ +
+
+ BCP
Cs+
Alq3
N O O AlN
p-i-n OLED
101 102 103
cm2 ) 104
105
L
ITO
aNPD:F4TCNQ aNPD(30 nm)
p-i-n structure
Insulator
P-type
+ +
+ +
+ ++
+ + ++ + + - -
- - -
- -
- - -
α-NPD
F4TCNQ- +-
Alq3 N
O N
N N
α-NPD
10-4 10-3 10-2 10-1 100 10
Current Density (mA/c
100 101 102 103
Luminance (cd/m 2)
Current Density Luminance
Changhee Lee, SNU, Korea
10-510 8 6 4 2 0
Voltage (V)
10-1
M. Pfeiffer , K. Leo, X. Zhou, J.S. Huang, M. Hofmann, A. Werner, J. Blochwitz- Nimoth, Organic Electronics 4 (2003) 89–103
Organic Semiconductor EE 4541.617A 2009. 1stSemester US 20080030131 (2008.02.07) Francisco J. Duarte, Kathleen M. Vaeth, Liang-Sheng
Liao, Eastman Kodak Company
A light-emitting device, comprising: a multi-layer stack of materials supported on an optically transparent support member, a first spatial filter, and a second spatial filter spaced from the first spatial filter. The multi-layer stack including at least one organic light- emitting layers, an anode layer, and a cathode layer. The first spatial filter is disposed intermediate the multi-layer stack of materials and the second spatial filter.
Tandem OLED
2 2
3
3
OLED 2 Unit P-N junction CBP:Ir(ppy)3 doped
OLED 3 OLED 3 Unit
cathode Mg:Ag
CBP:Ir(ppy)3 doped OLED 2 aNPD:FeCl3(48nm, 1 %) Alq3:Li(24nm, 1.2%)
1
1
Glass ITO
P-N junction
anode OLED 1 Unit aNPD:FeCl3(48nm, 1 %)
Alq3:Li(24nm, 1.2%) CBP:Ir(ppy)3 doped OLED 1
3배의 빛
L. S. Liao, K. P. Klubek, and C. W. Tang, Appl. Phys. Lett.84, 167 (2004)Organic Semiconductor EE 4541.617A 2009. 1stSemester
I-V characteristics of organic semiconductors
Injection limited
Thermionic emission ] 1 )
[exp( −
= k T
J eV J
B
s * 2
exp( )
T k T e
A J
B bn s
φ
= −
Current
Bulk Limited
Ohmic (Doped semiconductor) E
ep J = μ Tunneling
)
2
exp(
E E b
J ≈ −
qh q b m
3 ) ( 2
8 π
*φ
3/2=
Changhee Lee, SNU, Korea SCLC (undoped semicond. or Insulator)
3 2
8 9
d J
SCLC= ε
oε
rμ V
Organic Semiconductor EE 4541.617A 2009. 1stSemester
2.9 eV
Al 4.3 eV ITO
O
O
MEH PPV
Thermionic Emission into low mobility organic semiconductor
E
F4.8 eV
5.3 eV
MEH-PPV
P. S. Davids, I. H. Campbell, and D. L. Smith, J. Appl. Phys.82, 6319 (1997).
Organic Semiconductor EE 4541.617A 2009. 1stSemester
(a) (b)
Tunneling mechanism
(c) (d)
Changhee Lee, SNU, Korea
I. D. Parker, J. Appl. Phys. 75, 1656 (1994).
Organic Semiconductor EE 4541.617A 2009. 1stSemester
0<V<VΩ +
Organic Semiconductor
electrode
electrode + + + + + +
d
Space-charge-limited (SCL) current
ITO Au
OC1C10-PPV
+
d
t
τ
τ >
(a) (Ohmic current)
VΩ<V
electrode +
+ + +
Organic Semiconductor
9 V
20.3 μm d=0.13
μm
0.7 μm
electrode
++ + + + ++++
d
t
τ
τ <
(b) (SCL current)
+ +t.
predominan is
conduction SCLC
, At
t.
predominan is
conduction ohmic
, At
d t
d t
τ τ
τ τ
<
>
8
39 d J
SCLC= ε
oε
rμ V
P. W. M. Blom M. J. M. de Jong, and J. J. M. Vleggaar, Appl. Phys. Lett. 68, 3308 (1996).
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Field-dependent mobility in SCL current
] ) 891 (
. exp[ 0 8
9
1/23 2
d V T
k d
J V
PFB r
o
SCLC
= ε ε μ β
P. N. Murgatroyd, J. Phys. D: Appl. Phys.
3, 151 (1970).
OC
1C
10-PPV
Changhee Lee, SNU, Korea
P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster, Phys. Rev. B 55, R656 (1997).
ITO
+
AuOrganic Semiconductor EE 4541.617A 2009. 1stSemester
Space-charge-limited (SCL) current
ITO Au
OC1C10-PPV
+
Poly(dialkoxy-p-phenylene vinylene) (OC1C10-PPV)
P. W. M. Blom M. J. M. de Jong, and J. J. M. Vleggaar, Appl. Phys. Lett. 68, 3308 (1996).
Organic Semiconductor EE 4541.617A 2009. 1stSemester
. , SCLC limited - Trap
1 2
1
T m T d N V N
J
m tm m t
v
=
∝ μ
− ++3 18
eV 15 .
≈ 0 E
tSCL current with an exponential trap distribution
3 -
18
cm
≈ 10 N
tChanghee Lee, SNU, Korea
P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin and M. E. Thompson, J. Appl. Phys. 79, 7991 (1996).
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Interface-limited injection model
M. A. Baldo and S. R. Forrest, Phys. Rev. B 64, 085201 (2001)
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Carrier Recombination
Recombination of electron hole pairs Singlet exciton S=0
↑↑
2 =
1χ χ
Triplet exciton S=1
Spin-allowed transition
fast efficient Spin-forbidden transition
) (
2 1
2
1χ = ↑↓−↓↑
χ ( )
2 1
2
1χ = ↑↓ +↓↑
χ
↓↓
2 =
1χ χ
Changhee Lee, SNU, Korea
M. Segel, M. A. Baldo, R. J. Holmes, S. R. Forrest, Z. G. Soos, Phys.
Rev. B 68, 075211 (2003)
Singlet exciton S=0 fast, efficient Fluorescence
Triplet exciton S=1 slow, inefficient Phosphorescence
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Exciton Recombination Zone
- Electron -
e-h Recombination
Zone ~ 10 nm
+
Φ
meta lΦ
ITO holeEML ETL
+
C. Adachi, T. Tsutsui, and S. Saito,Optoelectron. Devices Technol. 6, 25 (1991).
Organic Semiconductor EE 4541.617A 2009. 1stSemester
TPD
(65 nm) Alq
3(50 nm) 2.5 eV
3 eV
N N
CH3 H3C
TPD Alq3
N O O N N O Al
(a) (c)
Electron-hole and electric field distribution
5.4 eV 5.7 eV
(b) (d)
Changhee Lee, SNU, Korea
B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess, and J. C. Scott, J. Appl. Phys.89, 4575 (2001).
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Quantum efficiency roll-off at high current
(2002) 1465 80, Lett.
Phys.
Appl.
Kafafi, H.
Z.
and Kalinowski J.
Stampor, W.
i, Szmytkowsk J.
- field
E 1
1
, T X , X
S
: excitons of on dissociati field
Electric
+
−
⎯
⎯ →
⎯
∗
(2002) 874 80, Lett.
Phys.
Appl.
Marchetti, P.
Alfred and Tang, W.
Ching Young, H.
Ralph
0 X or X 1
1
, T S
S
: quenching exciton
- Polaron
⎯
-⎯
⎯ →
⎯
∗
+
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Quantum Efficiency vs Current of phosphorescent OLEDs
Triplet – Triplet (T – T) Annihilation
⎥ ⎦
⎢ ⎤
⎣
⎡ − + +
⎥ =
⎦
⎢ ⎤
⎣
⎡ − + +
=
T T
T
T
J
J J
J J
J J
k
qd 8
1 4 1
1 8 2
21
0
τ
η η
Changhee Lee, SNU, Korea
Ref. M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev. B 62, 10967 (2000)
Organic Semiconductor EE 4541.617A 2009. 1stSemester
= 0 dt dn
T2 0
1
2+ − =
gd J n n
k
T T Tτ
( 근의 공식 )
⎤
⎤ ⎡ + ⎡
+
−
TJ qd Jk
Jk
8 1
2 1
) 2 ( 1 1
2 2
τ τ
τ k
2T – T Annihilation: Steady-state solution
⎥ ⎦
⎢ ⎤
⎣
⎡ − + +
⎥ =
⎥ ⎦
⎤
⎢ ⎢
⎣
⎡ − + +
=
=
T T
T T
T
T
J
J k
qd Jk k
k
n qd 8
1 1 1
1 2 1 1
τ τ
τ τ
τ )
( 4
12
=
T−T
J
qd k τ Q
τ
TL = n QE : η τ
J n J L =
T=
n
L
T1
η
0: k
T= 0 인 경우 , 즉 , T-T annihilation 이 없는 경우이므로
gd J n
T=
τ Light emission intensity
qd J J
L 1
0
= = =
∴ η τ
⎥ ⎦
⎢ ⎤
⎣
⎡ − + +
⎥ =
⎦
⎢ ⎤
⎣
⎡ − + +
=
T T
T
T
J
J J
J J
J J
k
qd 8
1 4 1
1 8
2
1
0
τ
η η
M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev. B62,10967 (2000)
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Triplet exciton – polaron quenching
Changhee Lee, SNU, Korea
S. Reineke, K. Walzer, and K. Leo, Phys. Rev. B75, 125328 (2007)
Organic Semiconductor EE 4541.617A 2009. 1stSemester
1 1 2 1
2
ρ ρ ρ P
τ τ
2ρ
1ρ
2P
2τ
2ρ
1P
1τ
2P
2P
2P
1고 반사
전극
투명 유기 박막 전극
Spontaneous emission from planar microcavity
L
-z 0 z’=L-z
ρ
1ρ
2, τ
22 c L
2 ) ( 2 )
( )
( )
(
2 2 1 1 2 1 22
c
t L c WP
t z WP t
WP t
E
L= τ + τ ρ − + τ ρ ρ −
2 ) ( 2
12 1 1
2
c
L c
t z
WP − −
+ τ ρ ρ ρ
D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, J. Modern Optics 41, 325 (1994)
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Spontaneous emission from planar microcavity
∫
∫
−∞∞∞
∞
−
+ −
= i t dt
c t z WP dt
t i t WP
E
L2 ) exp( )
2 ( ) exp(
) 2 (
)
(
2 2 1 12
ω
π ρ ω τ
π ω τ
dt t c i
t L
∫
−∞∞WP −
+ 2 ) exp( )
2 (
2 1
2
ω
π ρ ρ τ
(ω ) WP
....
) exp(
2 ) ( 2
2
1 2
1 1
2
− − +
+ ∫
−∞∞i t dt
c L c t z
WP ω
π ρ ρ ρ τ
...
1 )[
(
...
) ( )
(
) ( )
( )
( )
(
2 2 1 2 1 2 1 2
4 2 1 2 1 2 2 2
1 2 1 2
2 2 1 2 2
1 2 2
2
1 1
1 1
+ +
+
=
+ +
+
+ +
=
+ +
c i L c i z c
i z
c i L c
i L c i z
c i L c
i z L
e e
WP
WP e WP
e
WP e WP
e WP
E
ω ω ω
ω ω
ω
ω ω
ρ ρ ρ ρ
ω τ
ω ρ
ρ ρ ρ τ ω ρ
ρ ρ τ
ω ρ
ρ τ ω ρ
τ ω τ ω
Changhee Lee, SNU, Korea ]
...
4 2 1 2 1 2 2 1
1 2 1 1
2
+ +
+ e
i cLe
i cLω ω
ρ ρ ρ ρ ρ
ρ
}]
...
1 {
...}
1 { 1
)[
( ) (
2 2 1 2 2 1
2 1 2 2
1 2
2
1
+ +
+
+ +
+
=
c i L c
i L
c i L c
i z L
e e
e e
WP E
ω ω
ω ω
ρ ρ ρ
ρ
ρ ρ ρ
ω τ ω
c i L c
i L
e
e
ωω
ρ ρ ρ
ρ
21 2 2
1 2
1 ... 1 1
−
= + +
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Spontaneous emission from planar microcavity
c i L
c i z
L
e WP e
E
ωω
ρ ρ ω ρ τ
ω
22 1
2 1 2
2
1 ) 1 ( )
(
1
−
= +
2
2 1 2
1
1 1
1 2 2
2
4
) ( 2 )
cos(
2 1
2 )]
cos(
2 1
)[
1 ( ) (
π ω ω ω ω
nz
WP c
R L R R
R
c R nz
R R
E
L− +
+ +
= −
Emission spectrum in the forward direction
Interference effect
Fabry-Perot Resonator
2
2 1 2
1
1 1
1 2
) ( 4 )
cos(
2 1
4 )]
cos(
2 1
)[
1 (
ω
λ π λ
π nL WP R
R R
R
R nz R
R
− +
+ +
= −
2 2
2 2 2 2 1 2
1
| , | | , | | 1
| ρ = R ρ = R τ = − R
D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, J. Modern Optics 41, 325 (1994)
Organic Semiconductor EE 4541.617A 2009. 1stSemester
ρ
2θ θ
Semitranspar ent cathode Radiation mode in top-emitting OLED
L
z ρ
1o
Emitting layer
Reflective anode cos )
exp( 4 1
2 )
,
(sp
π nz θ
oi + r
Changhee Lee, SNU, Korea
32
C. Qiu, H. Peng, H. Chen, Z. Xie, M. Wong, and H. S. Kwok, IEEE Trans. on Electron Dev. 51, 1207 (2004).
) ( cos )
exp( 4 1
) exp(
1 ) ,
(
2 2( , ) int( , )) , ( 2 ) , ( 1
) , ( 1 )
,
(
λ
λ θ π
λ λ
θ
sp spp o s p s
p o p
s
ext
T I
i nL r
r
i r
I
− +
=
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Resonant emission from microcavity
A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, J. Appl. Phys. 80, 6954 (1996).
Blue Green Red
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Radiation mode in top-emitting OLED
Conventional OLED
Top-emission OLED Conventional
Top-emission Lambertian Simulation (TE)
C ti l OLEDT i i OLED
Simulation (TE)
Conventional Top-emission
Changhee Lee, SNU, Korea
C. Qiu, H. Peng, H. Chen, Z. Xie, M. Wong, and H. S. Kwok, IEEE Trans. on Electron Dev. 51, 1207 (2004).
Conventional OLEDTop-emission OLED
Organic Semiconductor EE 4541.617A 2009. 1stSemester
% 51
~ : )
(
sin
−1= θ
c2≤ θ
organic substrate
n n
External quantum efficiency of OLED
% . n ~ n η
n
C org organic
air
c
17 5
2 : 1 ) (
sin
1 21
= ≈
≤ θ
−θ
organic
% 31.5
~
2
:
1 c
c
θ θ
θ ≤ ≤ θ
Metal/Alq3(x)/PVK (40 nm)/ITO (150 nm) Metal/Alq3(80 nm)/PVK (40 nm)/ITO (x)
G. Gu, DZ Garbuzov, PE Burrows, S. Venkatesh, SR Forrest, ME Thompson, Opt. Lett. 22, 396 (1997)
(b)
A. Chutinan, K. Ishihara, T. Asano, M. Fujita, S. Noda, Org. Electron. 6, 3 (2005).
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Standard OLED structure OLED with aerogel interlayer OLED with integrated DFB grating
Methods of improving out-coupling efficiency
2
21
org
C
n
η ≈
OLED with scattering microspheres OLED with microlenses OLED built atop a mesa structure
Changhee Lee, SNU, Korea
K. Meerholz and D. C. Müller, Adv. Funct. Mater. 11, 251 (2001).
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Doubling Coupling-Out Efficiency in Organic Light-Emitting Devices Using a Thin Silica Aerogel Layer T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, M. Yokoyama, Adv. Mater. 13, 1149-1152 (2001).
Index matching using a thin aerogel layer
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Photonic crystal
Changhee Lee, SNU, Korea
Yong-Jae Lee, Se-Heon Kim, Joon Huh, Guk-Hyun Kim, and Yong-Hee Lee, Sang-Hwan Cho, Yoon-Chang Kim, and Young Rag Do, Appl. Phys. Lett. 82, 3779 (2003).
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Degradation Processes
Cathode
Cathode
- Delamination of metal (Peel-off) - Corrosion & oxidation; O2, H2O
•Encapsulation
- Permeation of H2O and O2, etc.
•Ambient environment:
- Temperature, moisture, and UV light, etc.
•Joule heating, etc.
H2O, O2
ETL
HIL HTL EML
- EIL
Exciton
- Diffusion of metals such as Ca, Al, etc.
Electrode Interfaces - Interfacial degradation
ÆChanges in injection efficiency - Formation of oxide layer: injection barrier - Electrochemical reaction with organic layers - Degradation of PEDOT:PSS
- Degradation of p-, n-doped layers, etc.
Organic layers
- Degradation of organic materials - Photo-oxidation
두께: 100~200 nm
39
Substrate (Glass, plastics, etc.)
ITO + HIL
Anode
- ITO inhomogeneity: injection barrier
- Oxygen or In diffusion ÆDegradation of organic layers - Dust, particles, etc.
- Morphological changes (Crystallization):
change of mobility, trap distribution Æchange in e-h balance, etc.
- Interdiffusion between org./org. interfaces - Trap formation at org./org. interfaces
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Real-Time Observation of Temperature Rise and Thermal Breakdown Processes in Organic LEDs Using an IR Imaging and Analysis System
Joule heating
Changhee Lee, SNU, Korea
Xiang Zhou, Jun He, Liang S. Liao, Ming Lu, Xun M. Ding, Xiao Y. Hou, Xiao M. Zhang, Xiao Q. He, and Shuit T. Lee, Adv. Mater. 12, 265 (2000)
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Impact of Joule heating on the brightness homogeneity of OLEDs
Brightness distribution of a device having an active area of 15 cm2at a current density of 33.3 mA/cm2.
C. Gärditz, A. Winnacker, F. Schindler, R. Paetzold, Appl. Phys. Lett. 90, 103506 (2007)
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Coulombic degradation scaling law
Y. Sato, Electroluminescence I, edited by G. Mueller (Acade mic Press, San Diego, 2000) pp. 209-254.
Changhee Lee, SNU, Korea
C. Féry, B. Racine, D. Vaufrey, H. Doyeux, and S. Cinà, Appl. Phys. Lett. 87, 213502 (2005)
constant
; =
∝ − τ τ J n L o n
1.7 n constant.
t
L
0n×
1/2= =
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Degradation due to H 2 O permeation
M. Schaer, F. Nüesch, D. Berner, W. Leo, and L. Zuppiroli, Adv. Funct. Mater. 11, 116 (2001).
(d)
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Encapsulation
Changhee Lee, SNU, Korea
P. E Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, L. Michalski, M. Weaver, J. J.
Brown, D. Fogarty, L. S. Sapochak, Proceedings of SPIE4105, 75 (2001).
Organic Semiconductor EE 4541.617A 2009. 1stSemester
•Inorganic:
•Aluminum oxide deposited by DC reactive sputtering
•Thickness 30-100 nm
•Organic:
•Monomer mixture deposited in vacuum
•Non-conformal deposition: Liquid-Vapor-Liquid- (UV curing)-Solid
•Thickness 0 25 several mm
Thin film encapsulation
Liquid precursor (monomer)
Inorganic barrier deposition Cure
Liquid precursor (monomer) Cure
•Thickness 0.25 – several mm
•4-5 polymer / inorganic pairs (dyads) for encapsulation
L. L. Moro, T. A. Krajewski, N. M. Rutherford, O. Philips, R. J. Visser, M. E. Gross, W. D. Bennett, and G. L. Graff, Proceedings of SPIE 5214, 83 (2004).
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Methods of Full Color Display Fabrication
RGB method Color conversion method Color filter method
ETL
Cathode Cathode
ETL
Cathode ETL
Glass Anode
HTL
Blue emitting layer ETL
Anode
Color conversion filter
HTL
White emitting layer
AnodeColor filter
Changhee Lee, SNU, Korea Red Green Blue
Glass
Red Green Blue
Glass
Red Green Blue
Organic Semiconductor EE 4541.617A 2009. 1stSemester
Items Evaporation
(Precision Shadow Mask)
Ink-Jet Printing
Laser-Induced Thermal Imaging (LITI)
M i l
Molecular Materials Only Polymer (LEP) Polymer (LEP) Molecular Materials Hybrids (Blend)
Comparison of OLED color patterning methods
Materials
Printing
Accuracy ± 15㎛ ± 15㎛ ± 2.5㎛
Resolution ~180ppi ~150ppi ~300ppi
Aperture Ratio
40 50% 60% 70 80%
p
(Top Emission) 40~50% ~60% 70~80%
Materials Usage - Smallest -
Glass Size 730x460mm (~2005) 730x920mm 730x920mm (~2005)
Machine Price Very Expensive Cheapest Middle
Source: Samsung SDI, FPD int. 2004
Organic Semiconductor EE 4541.617A 2009. 1stSemester
PMOLED
Data Line(Anode : ITO)
Changhee Lee, SNU, Korea Scan Line (Cathode : Al)
Organic Semiconductor EE 4541.617A 2009. 1stSemester
AMOLED
IC
TFT
OLED pixel
TFT backplane
ITO HIL HTL ETL Cathode
EML
+
-
COLUMN DRIVERS (DATA VOLTAGE)
DRIVERS LECT SIGNAL)
Metal Cathode Transparent Anode
Translucent Cathode
Transparent Plate Light Emissive
Layer
Buffer Layer
FPC
Driver IC
Light Emission Glass
ITO ROW (PIXEL SEL
Power Line VDD Scan Line Data Line
VDATA
Bottom Emission Top Emission
Al Wiring Light
Metal Anode Emissive
Layer Driving
TR C
Light Switching
TR OLED RGB
Organic Semiconductor EE 4541.617A 2009. 1stSemester
AM OLED Process Map
TFT Backplane Heat Treatment Washing Surface Treatment
Oxygen plasma…etcOrganic Layer Deposition
Hole injection, transport layersRGB material Depoisition Color patterning Shadow Mask
Cleaning Shadow Mask Tension & Align Inspection
Module
Scribing
Changhee Lee, SNU, Korea Organic Layer
Deposition Cathode Deposition ETL…
Sealing Encap.
glass cleaning
g
Source: B. D. Chin (KIST), IMID 2006