Bose-Einstein Gases
Chapter 18
Min Soo Kim
Seoul National University
Advanced Thermodynamics (M2794.007900)
18.1 Black Body Radiation
โข Black body
Black body is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence.
โข Black body radiation
A black body in thermal equilibrium emit black body
radiation(electromagnetic waves) whose spectrum is only regarded with temperature.
18.1 Black Body Radiation
โข Black body and Photon gas
Consider a volume, V enclosed by insulated wall with small hole.
Photons injected from the hole nearly re-emitted so that the inner surface of the volume can be regarded as a black body while inner space is treated to be filled with photon gas.
V, T, U
ฯ ๐๐ โ ๐, because photons continue to be absorbed and emitted.
ฯ ๐๐๐๐ = ๐, because the wall is isolated.
18.1 Black Body Radiation
โข Photon gas with Bose Einstein statistics
Photon gas enclosed with black body surface follows Boson statistics while having no constraint about particle numbers.
Photons are bosons of spin 1 and obey Bose-Einstein statistics.
T, U, V
18.1 Black Body Radiation
โข The number of photons per quantum state
โข The number of quantum states with frequencies in the range ๐ ๐ก๐ ๐ + ๐๐
โข The energy in the range ๐ ๐ก๐ ๐ + ๐๐
๐๐ = ๐๐
๐๐ = 1 ๐๐๐ฮค๐๐ โ 1 ๐(๐) = ๐(๐)
๐(๐) = 1 ๐๐ ๐๐ฮค โ 1 ๐(๐) = ๐(๐)
๐(๐) = 1 ๐โ๐ ๐๐ฮค โ 1
๐ ๐ ๐๐ = 2 ร4๐๐
๐3 ๐2๐๐ ๐ โถ ๐กโ๐ ๐ ๐๐๐๐ ๐๐ ๐๐๐โ๐ก
๐ข ๐ ๐๐ = ๐ ๐ ๐๐ ร โ๐
= ๐ ๐ ๐ ๐ ๐๐ ร โ๐
= ๐๐ ๐ฝ๐๐๐ ๐
๐๐ โ ๐๐
๐๐๐ ๐๐ปโ๐ฮค Plank radiation formula
18.1 Black Body Radiation
โข The blackbody spectrum is often expressed in terms of the wavelength.
Then, ๐ข(๐)d ๐ โ ๐ข ๐ ๐๐ ๐ = ๐
๐ ๐๐ = โ ๐
๐2๐๐ ๐๐ = ๐ ๐2 ๐๐ ๐ข ๐ ๐๐ = 8๐๐๐2
๐2 ๐ ๐2๐๐ ๐3
โ๐ ๐
๐โ๐ ๐๐๐ฮค โ 1 = 8๐โ๐๐ ๐๐
๐5(๐โ๐ ๐๐๐ฮค โ1)
The energy per unit wavelength in the range ๐ ๐ก๐ ๐ + ๐๐ (wavelength spectrum)
Black body radiation spectrum (http://alfalfasurvey.wordpress.com) Rayleigh-Jeans law
18.1 Black Body Radiation
โข The total energy density
โข The energy flux
๐ = เถฑ
0
โ
๐ข ๐ ๐๐ ๐
๐ = 8๐โ๐ เถฑ
0
โ ๐๐
๐5 ๐โ๐ ๐๐๐ฮค โ 1 ๐ฅ = โ๐
๐๐๐ ๐
๐ = 8๐โ
โ3๐3 ๐๐ 4เถฑ
0
โ ๐ฅ3๐๐ฅ ๐๐ฅ โ 1
= ๐4 15 ๐โ๐ข๐ , ๐ผ
๐ฝ = ๐๐ป๐ ๐ = 8๐5๐4
15โ3๐3 = 7.55 ร 10โ16J (mฮค 3K4)
๐ = ๐ ๐
๐ผ
๐ฝ = ๐๐ป๐ ๐ = ๐๐
๐ = ๐. ๐๐ ร ๐๐โ๐W mฮค 2K4 ๐บ๐๐๐๐๐ โ ๐ฉ๐๐๐๐๐๐๐๐ ๐๐๐
18.1 Black Body Radiation
โข The wavelength ๐๐๐๐ฅ at which ๐ข(๐) is a maximum satisfies a relation known as Wienโs displacement law.
๐ข ๐ = 8๐โ๐๐ 1
๐5 ๐โ๐ ๐๐๐ฮค โ 1 ๐
๐๐ ๐5 ๐โ๐ ๐๐๐ฮค โ 1 = 0
๐ฅ = โ๐ ๐๐๐
๐ฅ
5 = 1 โ ๐โ๐ฅ 1
๐ฅ2 ๐
๐๐ฅ ๐ฅโ5 ๐๐ฅ โ 1 = 1
๐ฅ2 ๐ฅโ5๐๐ฅ โ 5๐ฅโ6 ๐๐ฅ โ 1 = 0
โด ๐ฅ = 4.96 โ๐
๐๐๐๐ฅ๐๐ = 4.96 ๐๐๐๐๐ป = ๐๐
๐. ๐๐๐ = ๐. ๐๐ ร ๐๐โ๐mK ๐พ๐๐๐โฒ๐ ๐ ๐๐๐๐๐๐๐๐๐๐๐ ๐๐๐
18.1 Black Body Radiation
โข For long wavelengths, โ๐
๐๐๐ โช 1
โข For short wavelengths, ๐๐๐๐โ๐ โซ 1
๐โ๐ ๐๐๐ฮค โ 1 + โ๐ ๐๐๐ ๐ข ๐ ๐๐ = 8๐โ๐๐ 1
๐5 โ๐ ๐๐๐
= ๐ฝ๐๐ ๐๐ป ๐๐ ๐ ๐
๐ ๐ ๐ ๐ = ๐๐ ๐๐๐ฝ๐โ๐๐ ๐๐๐ปฮค ๐๐ ๐ ๐
Fig. Sketch of Planckโs law, Wienโs law and the Rayleigh-Jeans law
๐๐๐ฒ๐ฅ๐๐ข๐ ๐ก โ ๐๐๐๐ง๐ฌ ๐ ๐จ๐ซ๐ฆ๐ฎ๐ฅ๐
๐๐ข๐๐งโฒ๐ฌ ๐ฅ๐๐ฐ Taylor series
18.2 Properties of a Photon Gas
โข The heat capacity
โข The absolute entropy
โข The Helmholtz function ๐ป = ๐ โ ๐๐
๐
๐ = ๐๐4 = 8๐5๐4
15โ3๐3๐4 (๐ = 8๐5๐4 15โ3๐3) ๐ถ๐ = ๐๐แ
๐๐ ๐
= 32๐5๐4 15โ3๐3 ๐3๐
๐ = เถฑ
0 ๐๐ถ๐
๐ ๐๐ = 32๐5๐4๐ 15โ3๐3 โ1
3๐3
๐๐. ๐ผ๐๐๐๐ ๐๐๐ ๐ = 2 3
๐ ๐ ๐น = ๐ โ ๐๐ = ๐๐4๐ โ4
3๐๐4V = โ1
3๐๐4V ๐ = โ ๐๐น
๐๐ ๐,๐ = 1
3๐๐4 = 1 3
๐ ๐
18.3 Bose Einstein Condensation
โข The gas of noninteracting particles of large mass such that quantum effects only become important at very low temperatures. โ Ideal Bose-Einstein gas
โข 4He undergoes a remarkable phase transition known as Bose-Einstein condensation.
โข The Bose Einstein continuum distribution
๐ ๐ = ๐(๐)
๐(๐) = 1
๐ ๐โ๐ ๐๐ฮค โ 1 ๐ ๐ =?
Chemical potential
18.3 Bose Einstein Condensation
โข For Maxwell-Boltzmann distribution (Dilute gas)
โข As an example, for 4He at standard temperature and pressure,
๐
๐๐ = โ12.43, ๐
๐๐ = 1.5, ๐โ๐
๐๐ = 13.9 ๐๐๐ ๐ ๐ = 9 ร 10โ7 ๐ ๐ = 1
๐ ๐โ๐ ๐๐ฮค ๐ = โ๐๐ ln๐
๐ ๐ = 2๐๐๐๐
โ2
3 2
๐
โด ๐
๐๐ป = โ ๐ฅ๐ง ๐๐ ๐๐๐ป ๐๐
๐ ๐ ๐ฝ
๐ต
๐ ๐ ๐๐ = 4 2๐๐
โ3 ๐32๐12๐๐ ๐๐๐๐ ๐ธ๐. 12.26 ๐ = ๐0 + ๐๐๐ฅ
๐ต๐๐๐๐๐๐๐ = เถฑ ๐ต ๐บ ๐ ๐บ = ๐ ๐๐ ๐ฝ๐๐๐
๐๐ เถฑ ๐บ๐๐๐ ๐บ ๐ ๐บโ๐ ๐๐ปฮค โ ๐
BE: ๐ ๐ = 1
๐ ๐โ๐ ๐๐ฮค โ1
18.3 Bose Einstein Condensation
โข For the ground state (at very low temperature, this ground state becomes
significant as bosons condense into this lowest state), ๐ โ 0, ๐ = 0 and N ๐ โ ๐
โข For low temperature, ๐๐ฅ๐ โ ๐
๐๐ ~1 ๐๐๐ฅ๐๐๐ก๐๐ = เถฑ ๐ ๐ ๐๐ = 4 2๐๐๐32
โ3 เถฑ ๐12๐๐ ๐ ๐โ๐ ๐๐ฮค โ 1
1
๐โ ฮค๐ ๐๐ โ 1 โ ๐
โ ๐
๐๐ = ln 1 + 1
๐ โ 1 ๐~0
๐ฅ = ๐ ๐๐ ๐ต๐๐ = ๐ฝ ๐
๐
๐๐ ๐๐๐ป ๐๐
๐ ๐
เถฑ
๐
โ ๐๐๐๐ ๐
๐๐ โ ๐ = ๐. ๐๐๐๐ฝ ๐๐ ๐๐๐ป ๐๐
๐ ๐
18.3 Bose Einstein Condensation
โข Bose temperature ๐๐ต is the temperature above which all the bosons should be in excited states. Thus ๐๐๐ฅ = ๐ ๐๐๐ ๐ = ๐๐ต.
โข For ๐ > ๐๐ต, all the bosons are in excited states.
For ๐ < ๐๐ต, increasing number of bosons occupy the ground state until at ๐ = 0.
โ 6.02 ร 1023 ๐๐๐ atoms confined to a volume of 22.4 ร 10โ3m3, ๐ป ~๐. ๐๐๐ K
๐ = 2.612๐ 2๐๐๐๐ โ2
3 2
๐๐ต = โ2 2๐๐๐๐
๐ 2.612๐
2 3
๐ = ๐0 + ๐๐๐ฅ ๐๐๐ฅ
๐ = ๐ ๐๐ต
3
2 ๐0
๐ = 1 โ ๐ ๐๐ต
3 2
18.3 Bose Einstein Condensation
Fig. Variation with temperature of ๐0/๐ and ๐๐๐ฅ/๐ for a boson gas
Fig. Variation with temperature of ฮผ/๐๐๐ต versus ๐/๐๐ต.
18.4 Properties of a boson gas
โข The internal energy
๐ = เท ๐๐๐๐ = ๐0๐0 + ๐๐๐ฅ๐๐๐ฅ
๐น๐๐ ๐ > ๐๐ต, ๐0 = 0 ๐ = 3 2๐๐๐
๐๐ต = โ2 2๐๐๐
๐ 2.612๐
2 3
๐น๐๐ ๐ < ๐๐ต, ๐0 โซ 1, ๐0 = 0 ๐๐๐ฅ
๐ = ๐ ๐๐ต
3 2
๐ =?
18.4 Properties of a boson gas
๐ = เถฑ
0 ๐
๐๐ ๐ ๐๐
= เถฑ
0 ๐
๐ โ 1
๐ ๐โ๐ ๐๐ฮค โ 1โ4 2๐๐
โ3 ๐32๐12๐๐
= 2๐๐ 2๐ โ2
3 2
เถฑ
0
โ ๐32๐๐ ๐ ๐โ๐ ฮค๐๐ โ 1
= โ2๐๐ 2๐ โ2
3 2
เถฑ
0
โ ๐ฅ32๐๐ฅ
๐๐ฅ โ 1 โ ๐๐ 52
= 3
2ร 1.33๐๐ 2๐๐๐๐ โ2
3 2
๐
= ๐. ๐๐๐๐ต๐๐ป ๐ป ๐ป๐ฉ
๐ ๐
๐๐ต = โ2 2๐๐๐
๐ 2.612๐
2 3
= ๐ ๐ ๐๐
=3 ๐
4 ร 1.34 ๐ = ๐ ๐ป < ๐ป๐ฉ , ๐ = ฮค๐บ ๐๐ป
โข For ๐ < ๐๐ต,
18.4 Properties of a boson gas
โข The heat capacity
โข The absolute entropy
โข The Helmholtz function ๐ป = ๐ โ ๐๐
๐ถ๐ = ๐๐
๐๐ = 1.92๐๐ ๐ ๐๐ต
3 2
๐น = ๐ โ ๐๐ = โ0.51๐๐๐ ๐ ๐๐ต
3 2
๐ < ๐๐ต
= โ1.33๐๐ 2๐๐๐๐ โ2
3 2
๐
๐ = 1.33๐๐ 2๐๐๐๐ โ2
3 2
๐ < ๐๐ต ๐ = เถฑ
0
๐๐ถ๐๐๐
๐ = 1.28๐๐ ๐ ๐๐ต
3 2
๐ โ 0, ๐ โ 0
Fig. Variation with temperature of the heat capacity of a boson gas.