• Tidak ada hasil yang ditemukan

Bose-Einstein Gases

N/A
N/A
Protected

Academic year: 2024

Membagikan "Bose-Einstein Gases"

Copied!
18
0
0

Teks penuh

(1)

Bose-Einstein Gases

Chapter 18

Min Soo Kim

Seoul National University

Advanced Thermodynamics (M2794.007900)

(2)

18.1 Black Body Radiation

โ€ข Black body

Black body is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence.

โ€ข Black body radiation

A black body in thermal equilibrium emit black body

radiation(electromagnetic waves) whose spectrum is only regarded with temperature.

(3)

18.1 Black Body Radiation

โ€ข Black body and Photon gas

Consider a volume, V enclosed by insulated wall with small hole.

Photons injected from the hole nearly re-emitted so that the inner surface of the volume can be regarded as a black body while inner space is treated to be filled with photon gas.

V, T, U

ฯƒ ๐‘๐‘– โ‰  ๐‘, because photons continue to be absorbed and emitted.

ฯƒ ๐‘๐‘–๐œ–๐‘– = ๐‘ˆ, because the wall is isolated.

(4)

18.1 Black Body Radiation

โ€ข Photon gas with Bose Einstein statistics

Photon gas enclosed with black body surface follows Boson statistics while having no constraint about particle numbers.

Photons are bosons of spin 1 and obey Bose-Einstein statistics.

T, U, V

(5)

18.1 Black Body Radiation

โ€ข The number of photons per quantum state

โ€ข The number of quantum states with frequencies in the range ๐œˆ ๐‘ก๐‘œ ๐œˆ + ๐‘‘๐œˆ

โ€ข The energy in the range ๐œˆ ๐‘ก๐‘œ ๐œˆ + ๐‘‘๐œˆ

๐‘“๐‘— = ๐‘๐‘—

๐‘”๐‘— = 1 ๐‘’๐œ€๐‘—ฮค๐‘˜๐‘‡ โˆ’ 1 ๐‘“(๐œ€) = ๐‘(๐œ€)

๐‘”(๐œ€) = 1 ๐‘’๐œ€ ๐‘˜๐‘‡ฮค โˆ’ 1 ๐‘“(๐œˆ) = ๐‘(๐œˆ)

๐‘”(๐œˆ) = 1 ๐‘’โ„Ž๐œˆ ๐‘˜๐‘‡ฮค โˆ’ 1

๐‘” ๐œˆ ๐‘‘๐œˆ = 2 ร—4๐œ‹๐‘‰

๐‘3 ๐œˆ2๐‘‘๐œˆ ๐‘ โˆถ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘๐‘’๐‘’๐‘‘ ๐‘œ๐‘“ ๐‘™๐‘–๐‘”โ„Ž๐‘ก

๐‘ข ๐œˆ ๐‘‘๐œˆ = ๐‘ ๐œˆ ๐‘‘๐œˆ ร— โ„Ž๐œˆ

= ๐‘” ๐œˆ ๐‘“ ๐œˆ ๐‘‘๐œˆ ร— โ„Ž๐œˆ

= ๐Ÿ–๐…๐‘ฝ๐‚๐Ÿ๐’…๐‚

๐’„๐Ÿ‘ โˆ™ ๐’‰๐‚

๐’†๐’‰๐‚ ๐’Œ๐‘ปโˆ’๐Ÿฮค Plank radiation formula

(6)

18.1 Black Body Radiation

โ€ข The blackbody spectrum is often expressed in terms of the wavelength.

Then, ๐‘ข(๐œˆ)d ๐œˆ โˆ ๐‘ข ๐œ† ๐‘‘๐œ† ๐œˆ = ๐‘

๐œ† ๐‘‘๐œˆ = โˆ’ ๐‘

๐œ†2๐‘‘๐œ† ๐‘‘๐œˆ = ๐‘ ๐œ†2 ๐‘‘๐œ† ๐‘ข ๐œ† ๐‘‘๐œ† = 8๐œ‹๐‘‰๐‘2

๐œ†2 ๐‘ ๐œ†2๐‘‘๐œ† ๐‘3

โ„Ž๐‘ ๐œ†

๐‘’โ„Ž๐‘ ๐œ†๐‘˜๐‘‡ฮค โˆ’ 1 = 8๐œ‹โ„Ž๐‘๐‘‰ ๐‘‘๐œ†

๐œ†5(๐‘’โ„Ž๐‘ ๐œ†๐‘˜๐‘‡ฮค โˆ’1)

The energy per unit wavelength in the range ๐œ† ๐‘ก๐‘œ ๐œ† + ๐‘‘๐œ† (wavelength spectrum)

Black body radiation spectrum (http://alfalfasurvey.wordpress.com) Rayleigh-Jeans law

(7)

18.1 Black Body Radiation

โ€ข The total energy density

โ€ข The energy flux

๐‘ˆ = เถฑ

0

โˆž

๐‘ข ๐œ† ๐‘‘๐œ† ๐‘ˆ

๐‘‰ = 8๐œ‹โ„Ž๐‘ เถฑ

0

โˆž ๐‘‘๐œ†

๐œ†5 ๐‘’โ„Ž๐‘ ๐œ†๐‘˜๐‘‡ฮค โˆ’ 1 ๐‘ฅ = โ„Ž๐‘

๐œ†๐‘˜๐‘‡ ๐‘ˆ

๐‘‰ = 8๐œ‹โ„Ž

โ„Ž3๐‘3 ๐‘˜๐‘‡ 4เถฑ

0

โˆž ๐‘ฅ3๐‘‘๐‘ฅ ๐‘’๐‘ฅ โˆ’ 1

= ๐œ‹4 15 ๐‘‡โ„Ž๐‘ข๐‘ , ๐‘ผ

๐‘ฝ = ๐’‚๐‘ป๐Ÿ’ ๐‘Ž = 8๐œ‹5๐‘˜4

15โ„Ž3๐‘3 = 7.55 ร— 10โˆ’16J (mฮค 3K4)

๐’† = ๐’„ ๐Ÿ’

๐‘ผ

๐‘ฝ = ๐ˆ๐‘ป๐Ÿ’ ๐ˆ = ๐’„๐’‚

๐Ÿ’ = ๐Ÿ“. ๐Ÿ”๐Ÿ• ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ–W mฮค 2K4 ๐‘บ๐’•๐’†๐’‡๐’‚๐’ โˆ’ ๐‘ฉ๐’๐’๐’•๐’›๐’Ž๐’‚๐’๐’ ๐’๐’‚๐’˜

(8)

18.1 Black Body Radiation

โ€ข The wavelength ๐œ†๐‘š๐‘Ž๐‘ฅ at which ๐‘ข(๐œ†) is a maximum satisfies a relation known as Wienโ€™s displacement law.

๐‘ข ๐œ† = 8๐œ‹โ„Ž๐‘๐‘‰ 1

๐œ†5 ๐‘’โ„Ž๐‘ ๐œ†๐‘˜๐‘‡ฮค โˆ’ 1 ๐‘‘

๐‘‘๐œ† ๐œ†5 ๐‘’โ„Ž๐‘ ๐œ†๐‘˜๐‘‡ฮค โˆ’ 1 = 0

๐‘ฅ = โ„Ž๐‘ ๐œ†๐‘˜๐‘‡

๐‘ฅ

5 = 1 โˆ’ ๐‘’โˆ’๐‘ฅ 1

๐‘ฅ2 ๐‘‘

๐‘‘๐‘ฅ ๐‘ฅโˆ’5 ๐‘’๐‘ฅ โˆ’ 1 = 1

๐‘ฅ2 ๐‘ฅโˆ’5๐‘’๐‘ฅ โˆ’ 5๐‘ฅโˆ’6 ๐‘’๐‘ฅ โˆ’ 1 = 0

โˆด ๐‘ฅ = 4.96 โ„Ž๐‘

๐œ†๐‘š๐‘Ž๐‘ฅ๐‘˜๐‘‡ = 4.96 ๐€๐’Ž๐’‚๐’™๐‘ป = ๐’‰๐’„

๐Ÿ’. ๐Ÿ—๐Ÿ”๐’Œ = ๐Ÿ. ๐Ÿ—๐ŸŽ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ‘mK ๐‘พ๐’Š๐’†๐’โ€ฒ๐’” ๐’…๐’Š๐’”๐’‘๐’๐’‚๐’„๐’†๐’Ž๐’†๐’๐’• ๐’๐’‚๐’˜

(9)

18.1 Black Body Radiation

โ€ข For long wavelengths, โ„Ž๐‘

๐œ†๐‘˜๐‘‡ โ‰ช 1

โ€ข For short wavelengths, ๐‘’๐œ†๐‘˜๐‘‡โ„Ž๐‘ โ‰ซ 1

๐‘’โ„Ž๐‘ ๐œ†๐‘˜๐‘‡ฮค โ‰ˆ 1 + โ„Ž๐‘ ๐œ†๐‘˜๐‘‡ ๐‘ข ๐œ† ๐‘‘๐œ† = 8๐œ‹โ„Ž๐‘๐‘‰ 1

๐œ†5 โ„Ž๐‘ ๐œ†๐‘˜๐‘‡

= ๐‘ฝ๐Ÿ–๐…๐’Œ๐‘ป ๐€๐Ÿ’ ๐’…๐€

๐’– ๐€ ๐’…๐€ = ๐Ÿ–๐…๐’‰๐’„๐‘ฝ๐’†โˆ’๐’‰๐’„ ๐€๐’Œ๐‘ปฮค ๐€๐Ÿ“ ๐’…๐€

Fig. Sketch of Planckโ€™s law, Wienโ€™s law and the Rayleigh-Jeans law

๐‘๐š๐ฒ๐ฅ๐ž๐ข๐ ๐ก โˆ’ ๐‰๐ž๐š๐ง๐ฌ ๐…๐จ๐ซ๐ฆ๐ฎ๐ฅ๐š

๐–๐ข๐ž๐งโ€ฒ๐ฌ ๐ฅ๐š๐ฐ Taylor series

(10)

18.2 Properties of a Photon Gas

โ€ข The heat capacity

โ€ข The absolute entropy

โ€ข The Helmholtz function ๐ป = ๐‘ˆ โˆ’ ๐‘‡๐‘†

๐‘ˆ

๐‘‰ = ๐‘Ž๐‘‡4 = 8๐œ‹5๐‘˜4

15โ„Ž3๐‘3๐‘‡4 (๐‘Ž = 8๐œ‹5๐‘˜4 15โ„Ž3๐‘3) ๐ถ๐‘‰ = ๐œ•๐‘ˆแ‰‡

๐œ•๐‘‡ ๐‘‰

= 32๐œ‹5๐‘˜4 15โ„Ž3๐‘3 ๐‘‡3๐‘‰

๐‘† = เถฑ

0 ๐‘‡๐ถ๐‘‰

๐‘‡ ๐‘‘๐‘‡ = 32๐œ‹5๐‘˜4๐‘‰ 15โ„Ž3๐‘3 โˆ™1

3๐‘‡3

๐‘๐‘“. ๐ผ๐‘‘๐‘’๐‘Ž๐‘™ ๐‘”๐‘Ž๐‘  ๐‘ƒ = 2 3

๐‘ˆ ๐‘‰ ๐น = ๐‘ˆ โˆ’ ๐‘‡๐‘† = ๐‘Ž๐‘‡4๐‘‰ โˆ’4

3๐‘Ž๐‘‡4V = โˆ’1

3๐‘Ž๐‘‡4V ๐‘ƒ = โˆ’ ๐œ•๐น

๐œ•๐‘‰ ๐‘‡,๐‘ = 1

3๐‘Ž๐‘‡4 = 1 3

๐‘ˆ ๐‘‰

(11)

18.3 Bose Einstein Condensation

โ€ข The gas of noninteracting particles of large mass such that quantum effects only become important at very low temperatures. โ†’ Ideal Bose-Einstein gas

โ€ข 4He undergoes a remarkable phase transition known as Bose-Einstein condensation.

โ€ข The Bose Einstein continuum distribution

๐‘“ ๐œ€ = ๐‘(๐œ€)

๐‘”(๐œ€) = 1

๐‘’ ๐œ€โˆ’๐œ‡ ๐‘˜๐‘‡ฮค โˆ’ 1 ๐œ‡ ๐‘‡ =?

Chemical potential

(12)

18.3 Bose Einstein Condensation

โ€ข For Maxwell-Boltzmann distribution (Dilute gas)

โ€ข As an example, for 4He at standard temperature and pressure,

๐œ‡

๐‘˜๐‘‡ = โˆ’12.43, ๐œ€

๐‘˜๐‘‡ = 1.5, ๐œ€โˆ’๐œ‡

๐‘˜๐‘‡ = 13.9 ๐‘Ž๐‘›๐‘‘ ๐‘“ ๐œ€ = 9 ร— 10โˆ’7 ๐‘“ ๐œ€ = 1

๐‘’ ๐œ€โˆ’๐œ‡ ๐‘˜๐‘‡ฮค ๐œ‡ = โˆ’๐‘˜๐‘‡ ln๐‘

๐‘ ๐‘ = 2๐œ‹๐‘š๐‘˜๐‘‡

โ„Ž2

3 2

๐‘‰

โˆด ๐

๐’Œ๐‘ป = โˆ’ ๐ฅ๐ง ๐Ÿ๐…๐’Ž๐’Œ๐‘ป ๐’‰๐Ÿ

๐Ÿ‘ ๐Ÿ ๐‘ฝ

๐‘ต

๐‘” ๐œ€ ๐‘‘๐œ€ = 4 2๐œ‹๐‘‰

โ„Ž3 ๐‘š32๐œ€12๐‘‘๐œ€ ๐‘“๐‘Ÿ๐‘œ๐‘š ๐ธ๐‘ž. 12.26 ๐‘ = ๐‘0 + ๐‘๐‘’๐‘ฅ

๐‘ต๐’†๐’™๐’„๐’Š๐’•๐’†๐’… = เถฑ ๐‘ต ๐œบ ๐’…๐œบ = ๐Ÿ’ ๐Ÿ๐…๐‘ฝ๐’Ž๐Ÿ‘๐Ÿ

๐’‰๐Ÿ‘ เถฑ ๐œบ๐Ÿ๐Ÿ๐’…๐œบ ๐’† ๐œบโˆ’๐ ๐’Œ๐‘ปฮค โˆ’ ๐Ÿ

BE: ๐‘“ ๐œ€ = 1

๐‘’ ๐œ€โˆ’๐œ‡ ๐‘˜๐‘‡ฮค โˆ’1

(13)

18.3 Bose Einstein Condensation

โ€ข For the ground state (at very low temperature, this ground state becomes

significant as bosons condense into this lowest state), ๐‘‡ โ†’ 0, ๐œ€ = 0 and N ๐œ€ โ†’ ๐‘

โ€ข For low temperature, ๐‘’๐‘ฅ๐‘ โˆ’ ๐œ‡

๐‘˜๐‘‡ ~1 ๐‘๐‘’๐‘ฅ๐‘๐‘–๐‘ก๐‘’๐‘‘ = เถฑ ๐‘ ๐œ€ ๐‘‘๐œ€ = 4 2๐œ‹๐‘‰๐‘š32

โ„Ž3 เถฑ ๐œ€12๐‘‘๐œ€ ๐‘’ ๐œ€โˆ’๐œ‡ ๐‘˜๐‘‡ฮค โˆ’ 1

1

๐‘’โˆ’ ฮค๐œ‡ ๐‘˜๐‘‡ โˆ’ 1 โ‰… ๐‘

โˆ’ ๐œ‡

๐‘˜๐‘‡ = ln 1 + 1

๐‘ โ‰… 1 ๐‘~0

๐‘ฅ = ๐œ€ ๐‘˜๐‘‡ ๐‘ต๐’†๐’™ = ๐‘ฝ ๐Ÿ

๐…

๐Ÿ๐…๐’Ž๐’Œ๐‘ป ๐’‰๐Ÿ

๐Ÿ‘ ๐Ÿ

เถฑ

๐ŸŽ

โˆž ๐’™๐Ÿ๐Ÿ๐’…๐’™

๐’†๐’™ โˆ’ ๐Ÿ = ๐Ÿ. ๐Ÿ”๐Ÿ๐Ÿ๐‘ฝ ๐Ÿ๐…๐’Ž๐’Œ๐‘ป ๐’‰๐Ÿ

๐Ÿ‘ ๐Ÿ

(14)

18.3 Bose Einstein Condensation

โ€ข Bose temperature ๐‘‡๐ต is the temperature above which all the bosons should be in excited states. Thus ๐‘๐‘’๐‘ฅ = ๐‘ ๐‘Ž๐‘›๐‘‘ ๐‘‡ = ๐‘‡๐ต.

โ€ข For ๐‘‡ > ๐‘‡๐ต, all the bosons are in excited states.

For ๐‘‡ < ๐‘‡๐ต, increasing number of bosons occupy the ground state until at ๐‘‡ = 0.

โ†’ 6.02 ร— 1023 ๐Ÿ’๐‡๐ž atoms confined to a volume of 22.4 ร— 10โˆ’3m3, ๐‘ป ~๐ŸŽ. ๐ŸŽ๐Ÿ‘๐Ÿ” K

๐‘ = 2.612๐‘‰ 2๐œ‹๐‘š๐‘˜๐‘‡ โ„Ž2

3 2

๐‘‡๐ต = โ„Ž2 2๐œ‹๐‘š๐‘˜๐‘‡

๐‘ 2.612๐‘‰

2 3

๐‘ = ๐‘0 + ๐‘๐‘’๐‘ฅ ๐‘๐‘’๐‘ฅ

๐‘ = ๐‘‡ ๐‘‡๐ต

3

2 ๐‘0

๐‘ = 1 โˆ’ ๐‘‡ ๐‘‡๐ต

3 2

(15)

18.3 Bose Einstein Condensation

Fig. Variation with temperature of ๐‘0/๐‘ and ๐‘๐‘’๐‘ฅ/๐‘ for a boson gas

Fig. Variation with temperature of ฮผ/๐‘˜๐‘‡๐ต versus ๐‘‡/๐‘‡๐ต.

(16)

18.4 Properties of a boson gas

โ€ข The internal energy

๐‘ˆ = เท ๐‘๐‘—๐œ€๐‘— = ๐‘0๐œ€0 + ๐‘๐‘’๐‘ฅ๐œ€๐‘’๐‘ฅ

๐น๐‘œ๐‘Ÿ ๐‘‡ > ๐‘‡๐ต, ๐‘0 = 0 ๐‘ˆ = 3 2๐‘๐‘˜๐‘‡

๐‘‡๐ต = โ„Ž2 2๐œ‹๐‘š๐‘˜

๐‘ 2.612๐‘‰

2 3

๐น๐‘œ๐‘Ÿ ๐‘‡ < ๐‘‡๐ต, ๐‘0 โ‰ซ 1, ๐œ€0 = 0 ๐‘๐‘’๐‘ฅ

๐‘ = ๐‘‡ ๐‘‡๐ต

3 2

๐‘ˆ =?

(17)

18.4 Properties of a boson gas

๐‘ˆ = เถฑ

0 ๐œ€

๐œ€๐‘ ๐œ€ ๐‘‘๐œ€

= เถฑ

0 ๐œ€

๐œ€ โˆ™ 1

๐‘’ ๐œ€โˆ’๐œ‡ ๐‘˜๐‘‡ฮค โˆ’ 1โˆ™4 2๐œ‹๐‘‰

โ„Ž3 ๐‘š32๐œ€12๐‘‘๐œ€

= 2๐œ‹๐‘‰ 2๐‘š โ„Ž2

3 2

เถฑ

0

โˆž ๐œ€32๐‘‘๐œ€ ๐‘’ ๐œ€โˆ’๐œ‡ ฮค๐‘˜๐‘‡ โˆ’ 1

= โˆ’2๐œ‹๐‘‰ 2๐‘š โ„Ž2

3 2

เถฑ

0

โˆž ๐‘ฅ32๐‘‘๐‘ฅ

๐‘’๐‘ฅ โˆ’ 1 โˆ™ ๐‘˜๐‘‡ 52

= 3

2ร— 1.33๐‘˜๐‘‡ 2๐œ‹๐‘š๐‘˜๐‘‡ โ„Ž2

3 2

๐‘‰

= ๐ŸŽ. ๐Ÿ•๐Ÿ•๐ŸŽ๐‘ต๐’Œ๐‘ป ๐‘ป ๐‘ป๐‘ฉ

๐Ÿ‘ ๐Ÿ

๐‘‡๐ต = โ„Ž2 2๐œ‹๐‘š๐‘˜

๐‘ 2.612๐‘‰

2 3

= ๐‘” ๐œ€ ๐‘‘๐œ€

=3 ๐œ‹

4 ร— 1.34 ๐ = ๐ŸŽ ๐‘ป < ๐‘ป๐‘ฉ , ๐’™ = ฮค๐œบ ๐’Œ๐‘ป

โ€ข For ๐‘‡ < ๐‘‡๐ต,

(18)

18.4 Properties of a boson gas

โ€ข The heat capacity

โ€ข The absolute entropy

โ€ข The Helmholtz function ๐ป = ๐‘ˆ โˆ’ ๐‘‡๐‘†

๐ถ๐‘‰ = ๐‘‘๐‘ˆ

๐‘‘๐‘‡ = 1.92๐‘๐‘˜ ๐‘‡ ๐‘‡๐ต

3 2

๐น = ๐‘ˆ โˆ’ ๐‘‡๐‘† = โˆ’0.51๐‘๐‘˜๐‘‡ ๐‘‡ ๐‘‡๐ต

3 2

๐‘‡ < ๐‘‡๐ต

= โˆ’1.33๐‘˜๐‘‡ 2๐œ‹๐‘š๐‘˜๐‘‡ โ„Ž2

3 2

๐‘‰

๐‘ƒ = 1.33๐‘˜๐‘‡ 2๐œ‹๐‘š๐‘˜๐‘‡ โ„Ž2

3 2

๐‘‡ < ๐‘‡๐ต ๐‘† = เถฑ

0

๐‘‡๐ถ๐‘‰๐‘‘๐‘‡

๐‘‡ = 1.28๐‘๐‘˜ ๐‘‡ ๐‘‡๐ต

3 2

๐‘‡ โ†’ 0, ๐‘† โ†’ 0

Fig. Variation with temperature of the heat capacity of a boson gas.

Referensi

Dokumen terkait