Min Soo KIM
Department of Mechanical and Aerospace Engineering Seoul National University
Optimal Design of Energy Systems
Chapter 16 Calculus Methods of Optimization
Chapter 16. Calculus Methods of Optimization
16.1 Continued exploration of calculus methods
- A major portion of this chapter deals with principles of calculus method - Substantiation for the Largrange multiplier equations will be provided
- Physical interpretation of λ, and test for maxima-minima are also provided
Chapter 16. Calculus Methods of Optimization
16.1 Continued exploration of calculus methods
- Lagrange multipliers (from Chap.8)
1 2
( , , ,
n) y y x x x
1 1 2
1 2
( , , , ) 0
( , , , ) 0
n
m n
x x x
x x x
1
0
m
i i
i
y
1 1 2
1 2
( , , , ) 0
( , , , ) 0
n
m n
x x x
x x x
n+m scalar equations
Chapter 16. Calculus Methods of Optimization
16.2 The nature of the gradient vector ( )
1. normal to the surface of constant y
1 1
ˆ
2 2ˆ
3 3ˆ dx i dx i dx i
1 2 3
1 2 3
y y y 0
dy dx dx dx
x x x
2 2 3 3
1
1
( / ) ( / )
/
y x dx y x dx
dx y x
2 2 3 3
1 2 2 3 3
1
( / ) ( / ) ˆ ˆ ˆ
/
y x dx y x dx
T i dx i dx i
y x
0 T y
1 2 3
1 2 3
ˆ ˆ ˆ
y y y
y i i i
x x x
For arbitrary vector :
To be tangent to the surface :
Tangent vector :
Gradient vector :
→ gradient vector is normal to all tangent vectors
→ gradient vector normal to the surface
y
Chapter 16. Calculus Methods of Optimization
16.2 The nature of the gradient vector ( )
2. indicate direction of maximum rate of change of y with respect to x
1 2
1 2
n n
y y y
dy dx dx dx
x x x
2 2 2 2
1 2
( dx ) ( dx ) ( dx
n) r
constraints :
to find maximum dy :
y
The constraint indicates a circle of radious for 2 dimensions, and a sphere for 3 dimensions
Chapter 16. Calculus Methods of Optimization
16.2 The nature of the gradient vector ( )
2 0 1
i i
2
i i
y y
dx dx
x x
using Lagrange multipliers :
1 1 2 2 1 2
1 2
1 1
ˆ ˆ ˆ ˆ ˆ ˆ
2 2
n n n
n
y y y
dx i dx i dx i i i i y
x x x
y
In vector form :
→ indicates the direction of maximum change for a given distance in the space
y
Chapter 16. Calculus Methods of Optimization
16.2 The nature of the gradient vector ( )
3. points in the direction of increasing y
y
small move in the x1-x2 space : 1 2
1 2
y y
dy dx dx
x x
2 2
1 2
y y 0
dy c
x x
If the move is made in the direction of :y
1
( /
1),
2( /
2)
/
i i
dx c dx c y x dx c y x
y x
→ dy is equal or greater than zero
→ y always increase in the direction of
y
Optimize subject to
Chapter 16. Calculus Methods of Optimization
16.5 Two variables and one constraint
(prove Lagrange multiplier method)1 2
1 2
y y
y x x
x x
2
1 2 1 2
1 2 1
0 /
/
d x x x x x
x x x
2
2
1 1 2
/ /
x
y y
y x
x x x
1 2
( , )
y x x ( x x
1,
2) 0
Taylor expansion :
substituting the result for ∆𝑥1
In order for no improvements of Δy,
Chapter 16. Calculus Methods of Optimization
16.5 Two variables and one constraint
(prove Lagrange multiplier method)2 2
y 0
x x
y
1 10
x x
∆𝑦 = − 𝜕𝑦
𝜕𝑥
1𝜕𝜙 𝜕𝑥
2𝜕𝜙 𝜕𝑥
1+ 𝜕𝑦
𝜕𝑥
2Δ𝑥
2= 0 − 𝜕𝑦
𝜕𝑥
1𝜕𝜙 𝜕𝑥
2𝜕𝜙 𝜕𝑥
1+ 𝜕𝑦
𝜕𝑥
2= 0
If λ is defined as
𝜕𝑦
𝜕𝑥
1𝜕𝜙
𝜕𝑥
1Chapter 16. Calculus Methods of Optimization
16.6 Three variables and one constraint
As a same manner with 2 variables, 𝑦 𝑥1, 𝑥2, 𝑥3 is need to be optimized subject to the constraint, 𝜙 𝑥1, 𝑥2, 𝑥3
The first degree terms in the Taylor seriers are
𝜕𝑦
𝜕𝑥
1Δ𝑥
1+ 𝜕𝑦
𝜕𝑥
2Δ𝑥
2+ ( 𝜕𝑦
𝜕𝑥
3)Δ𝑥
3𝜕𝜙
𝜕𝑥
1Δ𝑥
1+ 𝜕𝜙
𝜕𝑥
2Δ𝑥
2+ ( 𝜕𝜙
𝜕𝑥
3)Δ𝑥
3Chapter 16. Calculus Methods of Optimization
16.6 Three variables and one constraint
Any two of the three variables can be moved independently, but the motion of the third variables must abide by the constraint. Arbitraily choosing 𝑥2 as a dependant one,
∆𝑦 = 𝜕𝑦
𝜕𝑥
1Δ𝑥
1− 𝜕𝑦
𝜕𝑥
2𝜕𝜙 𝜕𝑥
1𝜕𝜙 𝜕𝑥
2Δ𝑥
1+ 𝜕𝜙 𝜕𝑥
3𝜕𝜙 𝜕𝑥
2Δ𝑥
3+ 𝜕𝑦
𝜕𝑥
3Δ𝑥
3= 0
In order for no improvement to be possible
𝜕𝑦
𝜕𝑥
1− 𝜕𝑦
𝜕𝑥
2𝜕𝜙
𝜕𝑥
1𝜕𝜙
𝜕𝑥
2= 0 𝜕𝑦
𝜕𝑥
3− 𝜕𝑦
𝜕𝑥
2𝜕𝜙
𝜕𝑥
3𝜕𝜙
𝜕𝑥
2= 0
Chapter 16. Calculus Methods of Optimization
16.6 Three variables and one constraint
Define 𝜆 as
𝜕𝑦
𝜕𝑥
1𝜕𝜙
𝜕𝑥
1𝜕𝑦
𝜕𝑥
1− 𝜆 𝜕𝜙
𝜕𝑥
1= 0
Then
𝜕𝑦
𝜕𝑥
2− 𝜆 𝜕𝜙
𝜕𝑥
2= 0 𝜕𝑦
𝜕𝑥
3− 𝜆 𝜕𝜙
𝜕𝑥
3= 0
Chapter 16. Calculus Methods of Optimization
16.6 Three variables and one constraint
Define 𝜆 as
𝜕𝑦
𝜕𝑥
1𝜕𝜙
𝜕𝑥
1𝜕𝑦
𝜕𝑥
1− 𝜆 𝜕𝜙
𝜕𝑥
1= 0
Then
𝜕𝑦
𝜕𝑥
2− 𝜆 𝜕𝜙
𝜕𝑥
2= 0 𝜕𝑦
𝜕𝑥
3− 𝜆 𝜕𝜙
𝜕𝑥
3= 0
Chapter 16. Calculus Methods of Optimization
16.8 Alternate expression of constrained optimization problem
optimize y x x (
1,
2)
1 2
( x x , ) b
subject to
1 2 1 2 1 2
( , ) ( , ) [ ( , ) ]
L x x y x x x x b unconstrained function
optimum occurs where L 0
1 1 1
2 2 2
1 2
0
0
( , ) 0
L y
x x x
L y
x x x
x x b
find optimum point
Chapter 16. Calculus Methods of Optimization
16.9 Interpretation λ of as the sensitivity coefficient
* * *
1 2
1 2
1 2
( , ) y y x y x (1)
y x x SC
b x b x b
1 2
1 2
1 2
( , ) x x 1 0 (2)
x x b
b x b x b
* * * *
1 2
* *
1 2
( / ) ( / )
( / ) ( / )
y x y x
x x
1 2
1 2
(2) y x y x 0
x b x b
sensitivity coefficient (SC) :
(1) SC