• Tidak ada hasil yang ditemukan

Chapter 16 Calculus Methods of Optimization

N/A
N/A
Protected

Academic year: 2024

Membagikan "Chapter 16 Calculus Methods of Optimization"

Copied!
15
0
0

Teks penuh

(1)

Min Soo KIM

Department of Mechanical and Aerospace Engineering Seoul National University

Optimal Design of Energy Systems

Chapter 16 Calculus Methods of Optimization

(2)

Chapter 16. Calculus Methods of Optimization

16.1 Continued exploration of calculus methods

- A major portion of this chapter deals with principles of calculus method - Substantiation for the Largrange multiplier equations will be provided

- Physical interpretation of λ, and test for maxima-minima are also provided

(3)

Chapter 16. Calculus Methods of Optimization

16.1 Continued exploration of calculus methods

- Lagrange multipliers (from Chap.8)

1 2

( , , ,

n

) y  y x x x

1 1 2

1 2

( , , , ) 0

( , , , ) 0

n

m n

x x x

x x x

1

0

m

i i

i

y  

    

1 1 2

1 2

( , , , ) 0

( , , , ) 0

n

m n

x x x

x x x

n+m scalar equations

(4)

Chapter 16. Calculus Methods of Optimization

16.2 The nature of the gradient vector ( )

1. normal to the surface of constant y

1 1

ˆ

2 2

ˆ

3 3

ˆ dx i  dx i  dx i

1 2 3

1 2 3

y y y 0

dy dx dx dx

x x x

  

   

  

2 2 3 3

1

1

( / ) ( / )

/

y x dx y x dx

dx y x

    

  

 

2 2 3 3

1 2 2 3 3

1

( / ) ( / ) ˆ ˆ ˆ

/

y x dx y x dx

T i dx i dx i

y x

      

      

0 T   y

1 2 3

1 2 3

ˆ ˆ ˆ

y y y

y i i i

x x x

  

   

  

For arbitrary vector :

To be tangent to the surface :

Tangent vector :

Gradient vector :

→ gradient vector is normal to all tangent vectors

→ gradient vector normal to the surface

 y

(5)

Chapter 16. Calculus Methods of Optimization

16.2 The nature of the gradient vector ( )

2. indicate direction of maximum rate of change of y with respect to x

1 2

1 2

n n

y y y

dy dx dx dx

x x x

  

   

  

2 2 2 2

1 2

( dx )  ( dx )   ( dx

n

)  r

constraints :

to find maximum dy :

 y

The constraint indicates a circle of radious for 2 dimensions, and a sphere for 3 dimensions

(6)

Chapter 16. Calculus Methods of Optimization

16.2 The nature of the gradient vector ( )

2 0 1

i i

2

i i

y y

dx dx

x  x

     

 

using Lagrange multipliers :

1 1 2 2 1 2

1 2

1 1

ˆ ˆ ˆ ˆ ˆ ˆ

2 2

n n n

n

y y y

dx i dx i dx i i i i y

x x x

 

    

            

 y

In vector form :

→ indicates the direction of maximum change for a given distance in the space

 y

(7)

Chapter 16. Calculus Methods of Optimization

16.2 The nature of the gradient vector ( )

3. points in the direction of increasing y

 y

small move in the x1-x2 space : 1 2

1 2

y y

dy dx dx

x x

 

 

 

2 2

1 2

y y 0

dy c

x x

       

 

                

If the move is made in the direction of :y

1

( /

1

),

2

( /

2

)

/

i i

dx c dx c y x dx c y x

y x        

 

→ dy is equal or greater than zero

→ y always increase in the direction of

 y

(8)

Optimize subject to

Chapter 16. Calculus Methods of Optimization

16.5 Two variables and one constraint

(prove Lagrange multiplier method)

1 2

1 2

y y

y x x

x x

     

              

2

1 2 1 2

1 2 1

0 /

/

d x x x x x

x x x

 

 

       

                     

2

2

1 1 2

/ /

x

y y

y x

x x x

     

            

1 2

( , )

y x x  ( x x

1

,

2

)  0

Taylor expansion :

substituting the result for ∆𝑥1

(9)

In order for no improvements of Δy,

Chapter 16. Calculus Methods of Optimization

16.5 Two variables and one constraint

(prove Lagrange multiplier method)

2 2

y 0

x x

 

   

  y

1 1

0

x x

 

   

 

∆𝑦 = − 𝜕𝑦

𝜕𝑥

1

𝜕𝜙 𝜕𝑥

2

𝜕𝜙 𝜕𝑥

1

+ 𝜕𝑦

𝜕𝑥

2

Δ𝑥

2

= 0 − 𝜕𝑦

𝜕𝑥

1

𝜕𝜙 𝜕𝑥

2

𝜕𝜙 𝜕𝑥

1

+ 𝜕𝑦

𝜕𝑥

2

= 0

If λ is defined as

𝜕𝑦

𝜕𝑥

1

𝜕𝜙

𝜕𝑥

1
(10)

Chapter 16. Calculus Methods of Optimization

16.6 Three variables and one constraint

As a same manner with 2 variables, 𝑦 𝑥1, 𝑥2, 𝑥3 is need to be optimized subject to the constraint, 𝜙 𝑥1, 𝑥2, 𝑥3

The first degree terms in the Taylor seriers are

𝜕𝑦

𝜕𝑥

1

Δ𝑥

1

+ 𝜕𝑦

𝜕𝑥

2

Δ𝑥

2

+ ( 𝜕𝑦

𝜕𝑥

3

)Δ𝑥

3

𝜕𝜙

𝜕𝑥

1

Δ𝑥

1

+ 𝜕𝜙

𝜕𝑥

2

Δ𝑥

2

+ ( 𝜕𝜙

𝜕𝑥

3

)Δ𝑥

3
(11)

Chapter 16. Calculus Methods of Optimization

16.6 Three variables and one constraint

Any two of the three variables can be moved independently, but the motion of the third variables must abide by the constraint. Arbitraily choosing 𝑥2 as a dependant one,

∆𝑦 = 𝜕𝑦

𝜕𝑥

1

Δ𝑥

1

− 𝜕𝑦

𝜕𝑥

2

𝜕𝜙 𝜕𝑥

1

𝜕𝜙 𝜕𝑥

2

Δ𝑥

1

+ 𝜕𝜙 𝜕𝑥

3

𝜕𝜙 𝜕𝑥

2

Δ𝑥

3

+ 𝜕𝑦

𝜕𝑥

3

Δ𝑥

3

= 0

In order for no improvement to be possible

𝜕𝑦

𝜕𝑥

1

− 𝜕𝑦

𝜕𝑥

2

𝜕𝜙

𝜕𝑥

1

𝜕𝜙

𝜕𝑥

2

= 0 𝜕𝑦

𝜕𝑥

3

− 𝜕𝑦

𝜕𝑥

2

𝜕𝜙

𝜕𝑥

3

𝜕𝜙

𝜕𝑥

2

= 0

(12)

Chapter 16. Calculus Methods of Optimization

16.6 Three variables and one constraint

Define 𝜆 as

𝜕𝑦

𝜕𝑥

1

𝜕𝜙

𝜕𝑥

1

𝜕𝑦

𝜕𝑥

1

− 𝜆 𝜕𝜙

𝜕𝑥

1

= 0

Then

𝜕𝑦

𝜕𝑥

2

− 𝜆 𝜕𝜙

𝜕𝑥

2

= 0 𝜕𝑦

𝜕𝑥

3

− 𝜆 𝜕𝜙

𝜕𝑥

3

= 0

(13)

Chapter 16. Calculus Methods of Optimization

16.6 Three variables and one constraint

Define 𝜆 as

𝜕𝑦

𝜕𝑥

1

𝜕𝜙

𝜕𝑥

1

𝜕𝑦

𝜕𝑥

1

− 𝜆 𝜕𝜙

𝜕𝑥

1

= 0

Then

𝜕𝑦

𝜕𝑥

2

− 𝜆 𝜕𝜙

𝜕𝑥

2

= 0 𝜕𝑦

𝜕𝑥

3

− 𝜆 𝜕𝜙

𝜕𝑥

3

= 0

(14)

Chapter 16. Calculus Methods of Optimization

16.8 Alternate expression of constrained optimization problem

optimize y x x (

1

,

2

)

1 2

( x x , ) b

 

subject to

1 2 1 2 1 2

( , ) ( , ) [ ( , ) ]

L x x  y x x    x x  b unconstrained function

optimum occurs where   L 0

1 1 1

2 2 2

1 2

0

0

( , ) 0

L y

x x x

L y

x x x

x x b

 

 

  

  

  

  

  

  

 

find optimum point

(15)

Chapter 16. Calculus Methods of Optimization

16.9 Interpretation λ of as the sensitivity coefficient

* * *

1 2

1 2

1 2

( , ) y y x y x (1)

y x x SC

b x b x b

 

  

   

    

1 2

1 2

1 2

( , ) x x 1 0 (2)

x x b

b x b x b

  

           

    

* * * *

1 2

* *

1 2

( / ) ( / )

( / ) ( / )

y x y x

x x

  

   

 

   

1 2

1 2

(2) y x y x 0

x b x b

     

    

    sensitivity coefficient (SC) :

(1)  SC  

Referensi

Dokumen terkait

The optimization methods used here is to optimize the input and output gains of the fuzzy logic controller, also known as scaling factors (see Figure 3).. Two

Based on the second objective of the research, the next analysis deals with the types of language function belonging to transference of meaning found in the first chapter of

Over the years, several authors have proposed the tuning of PID to control variable processes by optimization methods, such as genetic algorithms [7–13], particle swarm

Both of these methods are used for multicriteria-based problem solving and careful and effective selection to determine the winner of goods procurement vendors in the

• In analytical or numerical optimization, preferable and more convenient to work with continuous functions of one or more variables than with functions containing

Keywords: agro-ecological analysis, optimization, extruding, feed additive, rice screenings, rice grain waste, rice pod, methods of multiple-factor experiments planning, statistical

xii List of Figures……… xiv List of Abbreviations……….xvii Chapter 1 – General Introduction………1 Chapter 2 – Literature review……… 19 Chapter 3– Optimization of hybrid inoculum

Application of fuzzy optimization in forecasting and planning of construction industry Abstract This chapter proposes a new method to obtain optimal solution using satisfactory