Nanomaterials for Energy Group 1
Byungwoo Park
Nanomaterials for Energy Group
http://bp.snu.ac.kr
Cutting-Edge Nanomaterials for Energy:
Solar Cell ∙ Li + Battery
2
Humanity’s Top Ten Problems for the Next 50 Years
1. ENERGY
2. WATER 3. FOOD
4. ENVIRONMENT 5. POVERTY
6. TERRORISM & WAR 7. DISEASE
8. EDUCATION 9. DEMOCRACY 10. POPULATION
2003 6.5 Billion People 2050 8-10 Billion People
Prof. R. E. Smalley (1943 – 2005)
Nanomaterials for Energy Group 3
Nanoscale Control: Nanomaterials for Energy
Nanomaterials for Energy
Solar Cell
Li + Battery
Phosphor Fuel Cell
Water Pumping
Lighting Systems
Portable Devices
Electric Vehicles
Laptops
& Cell Phones
Household Energy Storage System
Portable Power Supply
Less Polluting Power Generation Transportation
Quantum Dot
LEDs LCD TVs
PDP
4 http://foreconomicjustice.org/3989
?
Semiconductor-Sensitized Solar Cells:
from Quantum Dots to Quantum Rods
DSSC SONY DSSC
KIST
6
하나의 광자에 의한 다중 전자 생성 나노입자 크기조절을 통한 광흡수 조절
Nozik, Science (2011).
Advantages of Quantum-Dot-Sensitized Solar Cells
Nanomaterials for Energy Group 7
양자점/전해질 계면처리
양자점의 전기화학적 안정성 확보 Core/Shell 및 불순물 첨가를 이용한 밴드갭 조절
양자점 → 전해질로의 광전하 재결합 억제양자점 전해질
산화물나노전극
TCO TCO
TiO 2 QD Cu 2 S
Core/Shell Structure
Suppression of Recombination: Coating of QD
Nanomaterials for Energy Group 8
0.0 0.1 0.2 0.3 0.4 0.5
0 1 2 3 4
16 Cycles
12 Cycles 8 Cycles
4 Cycles Bare
0.4 0.5 0.6 0.7
1 2 C y cl es
8 C yc le s
4 C yc le s
Ba re
η ( %)
0.4 0.5 0.6 0.7
16 Cycles
12 Cycles
8 Cycles
4 Cycles
Bare
η ( %)
ZnO Cycle Number
C u rren t D en si ty ( mA /c m 2 )
Voltage (V)
• Recombination of carrier electrons is significantly
diminished by the ZnO layer.
• Enhanced adsorption behavior of CdS quantum dot.
300 400 500 600 700
0 20 40 60
4.0 3.5 3.0 2.5 2.0
Photon Energy (eV)
E x te rna l Q ua nt um E ff ic ie nc y ( % )
Wavelength (nm)
400 450 500
0 1 2
8 Cycles
16 Cycles 4 Cycles
Wavelength (nm)
E n h a n ce m en t R a ti o
4 Cycles
8 Cycles
16 Cycles Bare
ZnO Passivation on TiO 2 Electrode in QDSC
J-V
IPCE
H. Choi, J. Kim, C. Nahm, C. Kim, S. Nam, J. Kang,
B. Lee, T. Hwang, S. Kang, D. J. Choi, Y.-H. Kim,
and B. Park, Nano Energy (2013).
Nanomaterials for Energy Group 9
Type-II Heterojunction Nanorods for Solar Cells
Quantum Dots (0-D)
Nanorods (1-D) CdSe
e -
Linear (lHNRs) Core-Shell (cHNRs)
e - e -
Type-II Heterojunction Nanorods (HNRs)
Efficiency
cHNR@TiO 2 lHNR@TiO 2
lHNR@CdS/TiO 2
Electrode Property Modification Nanorod Morphology Tuning
Open pore structure for HNR infiltration Glass
FTO TiO 2
CdS Pretreatment for Improved Electron Transport
&
S. Lee, + J. C. Flanagan, + J. Kang, J. Kim, M. Shim, and B. Park, Sci. Rep. (2015).
S. Lee, + J. C. Flanagan, + B. Lee, T.
Hwang, J. Kim, B. Gil, M. Shim, and B.
Park, ACS Appl. Mater. Interfaces.
(2017).
10
Organo-Metal Halide Perovskite Solar Cells
B Site: Metal Cation A Site: Organic Cation
X Site: Anion
Y. Xiao* and Q. Meng* (Tianjin University), Chem. Commun. 50, 15239 (2014).
Transparent Conducting Oxide Electron Transporting Material Perovskite Absorption Layer
Hole Transporting Material Metal electrode
+
- e
-h
+Cell Architecture
ABX 3 Perovskite Unit Cell
Nanomaterials for Energy Group 11
Power Conversion Efficiency of 22.1%
(from National Renewable Energy Laboratory)
10 µm
Perovskite as the Next Generation Photovoltaics
A: CH 3 NH 3 + , HC(NH 2 ) 2 + , Cs + , . . B: Pb 2+ , Sn 2+ , . . X: I - , Br - , Cl - , . .
ABX 3 Perovskite
CH 3 NH 3 PbI 3 (one-step)
10 µm
TCO ETL MAPbI 3 HTL CE
1 μ m 2 μ m
Nanostructure control of organolead halides perovskite for performance improvement.
1 10 100 1000
10
-510
-410
-310
-2MAPbI 3 (Cl)
S / I 2 (H z -1 )
Frequency (Hz)
1/f MAPbI 3
T. Hwang, D. Cho, J. Kim, J. Kim, S. Lee, B. Lee, K. H. Kim, S. Hong, C. Kim, and B. Park, Nano Energy, 26, 91 (2016).
Wavelength (nm)
1.60 1.65 1.70 1.75
1.601.651.701.75
0 2 8 6 4
on TiO2 Blocking Layer
α
2 (10 7 cm -2)
1.564 eV
1.60 1.65 1.70 1.75
0 2 8 6 4
on TiO2Blocking Layer
α
2(
107cm-2)
1.564 eV
1.586 eV 1.586 eV
Photon Energy (eV)
PS:TiO
2= 1:2
2
700
780 760 740 720
0 8 6 4 10
1.582 eV 1.589 eV
α 2 ( 10
.
7 cm -2 ) 1.596 eV
Photon Energy (eV)
12
Mechanism Control in the Perovskite Solar Cells
0.0 0.2 0.4 0.6 0.8 1.0
0 10 20
Maximum η : 11.23%
C u rr en t D en si ty ( mA /c m
2)
Voltage (V)
RXN 4 RXN 3 RXN 1 RXN 2
2 4 6 8 10 12
Initial 30 Days
E ff ici en cy η (%) N orm al ized η
0.9 1.0
RXN 4 RXN 3 RXN 1 RXN 2
RXN 4
RXN 3 RXN 1 RXN 2
20 μ m
20 μ m 20 μ m
20 μ m
J. Kim, T. Hwang, S. Lee, B. Lee, J. Kim, G. S. Jang, S. Nam, and B. Park, Sci. Rep. (2016).
RXN 1 RXN 2
RXN 3 RXN 4
Nanomaterials for Energy Group 13
The Effects of Excess CH 3 NH 3 I on Perovskites
2 µm
C o unt s
0.0 0.6 1.2 1.8 2.4 3.0 3.6
PbI
2:MAI = 2:3 1.46 ± 0.04 µ m
Grain Size (µm) PbI
2:MAI = 1:1
0.53 ± 0.01 µm
Grain Size Distribution
10 20 30 40
• PbI
2∗ FTO
* (220) (310) *
PbI
2:MAI = 1:1
Int ens it y ( a rb. uni t)
Scattering Angle 2 θ (degree)
PbI
2:MAI = 2:3
(110)
• *
XRD
• Toluene dripping during spinning of the excess CH 3 NH 3 I containing precursor.
Enlarged grain size and improved crystallinity with perfect film coverage.
Toluene Dripping in the Non-Stoichiometric Precursor
B. Lee, S. Lee, D. Cho, J. Kim, T. Hwang, K. H. Kim, S. Hong, T. Moon, and B. Park, ACS Appl. Mater. Interfaces (2016).
2 µm
PbI 2 :MAI = 1:1 PbI 2 :MAI = 2:3
2 µm
300 nm
Perovskite HTM Au
BL-TiO2 FTO
0.0 0.2 0.4 0.6 0.8 1.0
0 5 10 15 20 25
PbI
2:MAI = 1:1 PbI
2:MAI = 2:3
Best η = 14.3%
C u rren t D en si ty ( mA /c m
2)
Voltage (V) J-V Curve
Noise Spectroscopy Photocurrent Analysis
Conductive AFM
PbI
2:MAI = 1:1
PbI
2:MAI = 1:1
PbI
2:MAI = 2:3
PbI
2:MAI = 2:3
14
- Superior light scattering with maintaining transparency and resistance.
- Due to effective crater formation with less amount of overall vertical etching.
0.0 10 20 30 40 50 60 70 80 90 100
Haze (%)
20 30
10 0
80 100 120
350 400 450 500
A ut oc or re la ti on L eng th ( nm )
HCl
Vertical Roughness (nm) Oxalic Acid
20
10
10 20 30 40
0 5 10 15 20 25
Sheet Resistance ( Ω / ) Oxalic Acid
120 s 90 s 60 s 20 min 15 min 10 min
HCl
H aze ( % )
by HCl
1 μm by Organic Acid
Light Trapping by Surface-Textured ZnO Layer
Texturing by Organic Acid
1 μm
W. Lee, T. Hwang, S. Lee, S.-Y. Lee, J. Kang, B. Lee, J. Kim, T. Moon, and B. Park, Nano Energy (2015).
-1.0 -0.5 0.0 0.5 1.0 -1.0
-0.5 0.0 0.5 1.0
C
.(τ
x,τ
y)Di st a n c e τ
y(µm)0.0 0.20 0.40 0.60 0.80 1.001.0
Distance τ
x x(µ m)
y
x y 1 0.8 0.6 0.4 0.2 0
σ
rms= 103 ± 5 nm, a
corr= 460 ± 3 nm
0 200 400 600 800 1000 0.0
0.2 0.4 0.6 0.8 1.0
Distance τ (nm)
C ( τ )
1/e
Light trapping for thin-films solar cells.
Electrode Materials for
Li-Ion Battery
16
Discharge
Electrode Materials for Li-Ion Battery
e -
Cathode Anode
LUMO
HOMO Li +
Li + E g
Carbon Li 1-x CoO 2
ano
μ Li μ Li cat
ELECTROLYTE
Electron
Energy Φ OC Φ
e -
# #
- Capacity (Volume + Mass) - Rate Capability
- Stability - Safety - Cost
Solution?
Nanomaterials for Energy Group 17
J. Cho, Y. J. Kim, T.-J. Kim, and B. Park, Angew. Chem. Int. Ed. 40, 3367 (2001). [Times Cited: 488]
J. Cho, Y. J. Kim, and B. Park, Chem. Mater. 12, 3788 (2000). [Times Cited: 476]
0 10 20 30 40 50 60 70
100 120 140 160 180
SiO
2Bare B
2O
3TiO
2Al
2O
3ZrO
2D is ch ar ge C ap ac it y ( m A h /g)
Cycle Number
C rate = 0.5 C
Improved electrochemical properties by nanoscale metal-oxide coating
Novel Electrochemistry by Nanoscale Coating
18
Metal-Phosphate Nanoparticle-Coated LiCoO 2
AlPO 4 nanoparticles (~3 nm) embedded in the coating layer (~15 nm)
J. Cho, Y.-W. Kim, B. Kim, J.-G. Lee, and B. Park Angew. Chem. Int. Ed. (2003). [Times Cited: 282]
E. Kim, D. Son, T.-G. Kim, J. Cho, B. Park, K.-S. Ryu, and S.-H. Chang
Angew. Chem. Int. Ed. (2004).
C. Kim, M. Noh, M. Choi, J. Cho, and B. Park Chem. Mater. (2005). [Times Cited: 469]
Bare LiCoO 2
AlPO 4 -Coated
LiCoO 2
Nanomaterials for Energy Group 19
Graphene Wrapping on Single-Crystal Li 4 Ti 5 O 12
Self-assembly of TiO 2 (P25) and GO by electrostatic interactions.
Conformal coating of RGO on the individual LTO grains during solid-state reaction (5TiO 2 → Li 4 Ti 5 O 12 , ( ∆𝑽𝑽 ≅ 𝟑𝟑𝟑𝟑𝟑 )).
The graphene-wrapped LTO manifested an excellent specific capacity at a lithiation/delithiation of 10 C after 100 cycles.
Y. Oh, + S. Nam, + S. Wi, J. Kang, T. Hwang, S. Lee, H. H. Park, J. Cabana,
C. Kim, and B. Park, J. Mater. Chem. A (2014). [Inside Back Cover]
20
Single-Layer Graphene Wrapping on LTO
1.8 wt. % G-LTO (Single Layer) 0.5 wt. % G-LTO
(Half Layer)
2.9 wt. % G-LTO (Three Layers)
Sample D
Li– CV (× 10
-13cm
2s
-1)
R
ct( Ω g)
Conductivity (× 10
-3S cm
-1)
0.5 wt. % Graphene
(Half Layer) 1.37 0.17 0.19
1.8 wt. % Graphene
(Single Layer) 0.22 0.11 1.85
2.9 wt. % Graphene
(Three Layers) 0.11 0.16 9.49
Electrochemical Properties of RGO/LTO
J. Kim, + K. E. Lee, + K. H. Kim, S. Wi, S. Lee, S. Nam,
C. Kim, S. O. Kim, and B. Park, Carbon (2017).
Nanomaterials for Energy Group 21
Lithium-Air Battery: Promise and Challenges
Hierarchically ordered porous (HOP) structure
Black-TiO 2 (bTiO 2 )cathode
Carbon-free electrode with high conductivity High theoretical energy density (≈ 3500 Wh kg -1 )
J. Kang, J. Kim, S. Lee, S. Wi, C. Kim, S. Hyun, S.
Nam, Y. Park, and B. Park,
Adv. Energy Mater. (2017). [Front Cover]
22
Oxidation and Reduction
Nanomaterials for Energy Group 23
Nanoscale Control
- Compositions?
- Nanostructures?
- Mechanisms?
http://bp.snu.ac.kr
Solar Cell Li Battery
Future Nanomaterials for Energy
Luminescence
Catalyst
24
Sun-Tae Hwang LG Electronics
Seonghyun Jin Samsung Electronics
Myunggoo Kang University of Michigan
Suji Kang Samsung Electro-Mechanics
Hoechang Kim SK Innovation
Hyemin Kim Y.P. Lee, Mock & Partners
Sungsoo Kim LG Chem
Dr. Taeseok Kim SunPower Corporation
Yumin Kim Samsung Electronics
Doyoung Lee LG. Philips LCD
Jin Sun Lee Samsung Electronics
Junhee Lee Samsung Display
Sangkeun Lee LG. Philips LCD
Sungjun Lee Seoul National University
Jungjin Park Seoul National University
Sungjin Shin LG Chem
Research Assistants
Prof. Woo Young Ahn Seoul National University
Dr. Dae-Han Choi HRL Laboratoties
Seung-Chul Ha SENKO
Kyounghwan Hwang Judge
Sang Uk Hyun University of Toronto
Prof. Kisuk Kang Seoul National University
Prof. Sung Hoon Kang Johns Hopkins University
Heekyung Lee STX Institute of Technology
Prof. Hyukjae (Jay) Lee Andong University
Sang-Min Lee LS Mtron
Joonhee Moon Seoul National University
Prof. Byungha Shin KAIST
Dr. Jae Wook Shin National Institute of Standards and Technology
Jun Wen University of Toronto
Ph.D.
Dr. Donggi Ahn Samsung Electronics
Dr. Hongsik Choi Samsung Electro-Mechanics
Dr. Dae-Ryong Jung Samsung Advanced Institute of Technology
Dr. Joonhyeon Kang LG Chem
Dr. Byoungsoo Kim SKC
Dr. Chohui Kim Samsung Electronics
Prof. Chunjoong Kim Chungnam National University
Dr. Jae Ik Kim Samsung Display
Dr. Jongmin Kim Samsung Fine Chemicals
Dr. Tae-Gon Kim Samsung Advanced Institute of Technology
Dr. Tae-Joon Kim Samsung Electronics
Dr. Yong Jeong Kim KISTEP
Dr. Yongjo Kim Samsung Electronics
Dr. Byungjoo Lee JAFCO Investment Korea
Dr. Deok-Hyung (Doug) Lee AMD/IBM Alliance
Dr. Joon-Gon Lee Samsung Electronics
Dr. Seung-Yoon Lee LG Electronics
Dr. Woojin Lee Samsung Display
Dr. Changwoo Nahm Samsung Electronics
Dr. Seunghoon Nam Korea Institute of Machinery & Materials
Prof. Taeho Moon Dankook University
Dr. Jeongmin Oh Korea Technology Transfer Center
Dr. Yuhong Oh Samsung Electro-Mechanics
Dr. Yejun Park Samsung Electro-Mechanics
Dr. Dongyeon Son Ministry of Trade, Industry, and Energy
Dr. Sungun Wi Samsung Electronics
M.S.
Jiwoo Ahn Samsung SDI
Sujin Byun LG Chem
Yoon Sang Cho The Korea Development Bank
Myungsuk Choi POSCO
Alumni
Nanomaterials for Energy Group 25
Ten Recent Publications
h-index = 49
Title Journal
연도SCI IF
From Nanostructural Evolution to Dynamic Interplay of Constituents:
Perspectives for Perovskite Solar Cells Adv. Mater. 2017 19.791
Route to Improving Photovoltaics Based on CdSe/CdSe x Te 1-x Type-II Heterojunction Nanorods: The Effect of Morphology and Cosensitization on
Carrier Recombination and Transport
ACS Appl. Mater.
Interfaces 2017 7.504
Insights on the Delithiation/Lithiation Reactions of
Li x Mn 0.8 Fe 0.2 PO 4 Mesocrystals in Li + Batteries by in-situ Techniques Nano Energy 2017 12.343
Breathable Carbon-Free Electrode: Black TiO 2 with
Hierarchically-Ordered Porous Structure for Stable Li-O 2 Battery Adv. Energy Mater. 2017 16.721
Synchrotron-Based X-Ray Absorption Spectroscopy for
the Electronic Structure of Li x Mn 0.8 Fe 0.2 PO 4 Mesocrystal in Li + Batteries Nano Energy 2017 12.343
Single-Layer Graphene-Wrapped Li 4 Ti 5 O 12 Anode with
Superior Lithium Storage Capability Carbon 2017 6.331
Evaluating the Optoelectronic Quality of Hybrid Perovskites by
Conductive Atomic Force Microscopy with Noise Spectroscopy ACS Appl. Mater.
Interfaces 2016 7.504
Investigation of Chlorine-Mediated Microstructural Evolution of
CH 3 NH 3 PbI 3 (Cl) Grains for High Optoelcectronic Responses Nano Energy 2016 12.343
Wrapping Strategy for SnO 2 with Porosity-Tuned Graphene for
High Rate Lithium-Anodic Performance Carbon 2015 6.331
Organic-Acid Texturing of Transparent Electrodes toward
Broadband Light Trapping in Thin-Film Solar Cells Nano Energy 2015 12.343
26
Newspapers
http://bp.snu.ac.kr
동아 일보2014. 02. 03
연합 뉴스2017. 08. 29
Nanomaterials for Energy Group 27
MRS Organizer
28
International Meetings (MRS)
Nanomaterials for Energy Group 29
Graduation of Members
*
30
Homecoming Party
*
Nanomaterials for Energy Group 31
Teacher’s Day
32
House Party
Nanomaterials for Energy Group 33
Once in a While
34
Nanomaterials for Energy Group 35
What is My Goal?
36
• ??2009/04/01 Safety or Research?
• Title + 그림 from BP homepage??
Nanomaterials for Energy Group 37
38 Prof. Smalley’s Group
Google Earth